
Application of Image Enhancement and Object Detection Technologies in Virtual Teaching 
Systems for Vocational Skills Training 

Jie Yan1* , Ying Fu1 , Na Wang2 , Menglu Han3

1 Tianjin Medical College, Tianjin 300222, China 
2 Ministry of Medical Education, Beijing Huayi Network Technology Corp., Beijing 100055, China 
3 Campus Business Division, Beijing Huayi Network Technology Corp., Beijing 100055, China 

Corresponding Author Email: yanjie@tj.gov.cn 

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 
(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.420349 ABSTRACT 

Received: 18 December 2024 
Revised: 25 April 2025 
Accepted: 10 May 2025 
Available online: 30 June 2025 

With the advancement of digital transformation, vocational skills training is increasingly 
shifting towards virtual teaching models. However, image quality in such systems often 
varies due to limitations in device performance and environmental conditions, while object 
detection faces challenges related to diverse object morphologies and sensitivity to lighting 
conditions. These issues necessitate the development of efficient image enhancement and 
object detection techniques to improve teaching effectiveness. Traditional image 
enhancement methods show limited performance in complex instructional scenarios, and 
deep learning-based general enhancement models often fail to adapt to the specific object 
features and learner needs in vocational training contexts. Similarly, existing object 
detection algorithms struggle with accuracy and real-time performance due to the 
morphological and lighting diversity of objects in virtual teaching images. To address these 
challenges, this study focuses on virtual teaching systems for vocational skills training and 
conducts research in two key areas: (1) enhancing image quality by improving image 
enhancement networks based on instructional image characteristics, and developing a 
parameter prediction network to enable personalized enhancement; (2) optimizing the 
structure and parameters of object detection models based on the YOLOv8 algorithm to 
improve detection accuracy and real-time performance in complex scenes. The research 
outcomes provide high-quality image inputs and accurate object detection for virtual 
teaching systems, supporting the development of intelligent interaction and automated 
assessment functions. This contributes both theoretically and practically to the digital and 
intelligent transformation of vocational skills training. 
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1. INTRODUCTION

In the era of accelerated digital transformation, vocational
skills training [1-4], as an important means to improve 
workers’ employability and professional literacy, is 
undergoing a profound transformation from the traditional 
offline mode to the online virtual teaching mode. Virtual 
teaching systems [5-7], with their advantages of being 
unrestricted by time and space, supporting repeated learning, 
and having strong resource sharing capabilities, are gradually 
becoming important carriers of vocational skills training. 
However, during the virtual teaching process, image quality is 
greatly affected by factors such as device performance, 
lighting conditions, and shooting angles, resulting in problems 
such as blur, noise, and low contrast, which seriously affect 
learners' observation and understanding of teaching content. 
At the same time, accurately detecting and locating target 
objects [8, 9] in teaching images—such as tools, equipment, 
and operation parts—is the key to achieving personalized 
teaching guidance and intelligent assessment. Therefore, 
research on image enhancement and object detection 
technologies for vocational skills training has an urgent 

practical need for improving the teaching effect and intelligent 
level of virtual teaching systems. 

Image enhancement technology can improve the quality of 
virtual teaching images, enhancing image clarity, contrast, and 
color restoration, enabling learners to observe teaching details 
more clearly and enhance learning effectiveness [10-12]. 
Object detection technology can accurately identify and locate 
target objects in teaching images, providing key visual 
information for virtual teaching systems to support the 
realization of functions such as intelligent interaction and 
automatic assessment [13-15]. This study applies image 
enhancement and object detection technologies to virtual 
teaching systems for vocational skills training, which can not 
only solve the problems of poor image quality and difficulty 
in target recognition in traditional virtual teaching, but also 
provide learners with a more intuitive and efficient learning 
experience, improving the quality and efficiency of vocational 
skills training. In addition, this research can provide technical 
support for the intelligent development of virtual teaching 
systems and promote the digital transformation and innovative 
development of the vocational skills training field. 

At present, many scholars have conducted research on the 
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application of image enhancement and object detection 
technologies in the field of education. In terms of image 
enhancement, traditional methods based on histogram 
equalization and filtering [16, 17] can improve image quality 
to a certain extent, but have limited effects under complex 
scenarios and are difficult to meet the high-precision image 
requirements in vocational skills training. Deep learning-
based image enhancement methods [18] have achieved better 
results, but most of them target general scenarios and lack 
adaptability to specific teaching scenarios in vocational skills 
training, failing to fully consider the characteristics of target 
objects in teaching images and learners’ learning needs. In 
terms of object detection, existing object detection algorithms 
[19, 20] face problems such as low detection accuracy, missed 
detection, and false detection when processing virtual teaching 
images due to variations in object shape, size, and lighting 
conditions, making it difficult to meet the real-time and 
accuracy requirements of virtual teaching systems. 

The main research content of this paper includes two parts. 
The first part is the improvement of the image enhancement 
network and the construction of the enhancement parameter 
prediction network. Based on the characteristics of teaching 
images in vocational skills training and combined with deep 
learning technology, the existing image enhancement network 
is improved to enhance the effectiveness and adaptability of 
image enhancement. At the same time, an enhancement 
parameter prediction network is constructed to automatically 
predict the optimal image enhancement parameters according 
to the teaching scenarios and learners’ needs, realizing 
personalized image enhancement. The second part is the 
implementation of an object detection method based on 
YOLOv8. Utilizing the efficiency and accuracy of the 
YOLOv8 algorithm, and targeting the characteristics of target 
objects in virtual teaching images, the structure and parameters 
of the object detection model are optimized to improve the 
accuracy and real-time performance of object detection, 
achieving fast and accurate detection and localization of target 
objects in teaching images. The value of this study lies in that, 
by improving the image enhancement network and 
constructing an enhancement parameter prediction network, it 
can provide high-quality image input for virtual teaching 
systems in vocational skills training and improve learners’ 
understanding and mastery of teaching content. The 
implementation of the object detection method based on 
YOLOv8 can provide accurate object detection results for 
virtual teaching systems, supporting the development and 
application of intelligent interaction and automatic assessment 
functions, and improving the intelligent level of virtual 
teaching systems. In addition, the research results can also 
provide reference and inspiration for the application of image 
enhancement and object detection in other educational fields, 
with certain theoretical significance and practical application 
value. 
 
 
2. IMAGE ENHANCEMENT AND OBJECT 
DETECTION METHOD ORIENTED TO 
VOCATIONAL SKILLS VIRTUAL TEACHING 
 

Aiming at the problems commonly existing in vocational 
skills virtual teaching scenarios, such as high noise, low 
contrast, and inconspicuous color information in images, 
which are not conducive to target recognition and localization, 
this study proposes an image enhancement and object 

detection method that takes low-light teaching images as input. 
Firstly, the images are processed through an improved 
lightweight image enhancement network. This network 
utilizes a lightweight convolutional neural network to predict 
enhancement parameters and adopts a no-reference loss 
function to drive the learning process, without relying on 
annotated or paired image datasets. It can specifically improve 
the clarity, contrast, and color expressiveness of vocational 
skills teaching images, outputting enhanced version images 
suitable for target detection. Subsequently, the enhanced high-
quality images are input into a lightweight improved 
YOLOv8n object detection network. By optimizing the model 
structure and parameters, the model can realize rapid and 
accurate detection and localization of specific targets such as 
tools, equipment, and operation parts in teaching images. This 
method, through a serial architecture of "enhancement first, 
then detection", effectively solves the adverse impact of image 
quality defects in vocational skills virtual teaching images on 
target detection, providing key technical support for intelligent 
interaction and automatic assessment functions of virtual 
teaching systems, and helping to improve the digitalization 
and intelligence level of vocational skills training. 
 
2.1 Improved image enhancement network 
 

Aiming at the low-light image problem commonly existing 
in vocational skills virtual teaching scenarios. Such images, 
due to equipment acquisition conditions or operation 
environment limitations, often present characteristics such as 
high noise, low contrast, and blurred texture details, which 
seriously affect the recognition and localization of target 
objects. This study designs an improved image enhancement 
network as the core module of preprocessing. The module 
architecture is shown in Figure 1. 
 

 
 

Figure 1. Architecture of the improved image enhancement 
module for vocational skills virtual teaching 
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This module takes low-light teaching images as input, 
focuses on the low pixel value region that occupies a high 
proportion in the image gray histogram, and designs a light 
enhancement curve for pixel-wise mapping enhancement. By 
analyzing the typical poor lighting environments in vocational 
skills teaching scenarios, a nonlinear mapping-based 
enhancement strategy is proposed, focusing on improving the 
dynamic range of brightness in low pixel value regions, 
enhancing the overall brightness while preserving image 
texture details, and providing clearer visual input for 
subsequent target detection. Specifically, let the input pixel 
value be represented by A, the output pixel value by B, and the 
light enhancement parameter to be learned by β. The mapping 
formula between input and output pixels is: 
 

( ) ( ); vB A A A Aβ β= + −  (1) 
 

To solve the problems of pixel overflow and insufficient 
dynamic range that may occur during the enhancement process 
of virtual teaching images, the image pixel values are first 
normalized to the [0,1] interval. A nonlinear mapping curve is 
constructed by introducing the adjustable parameter β and the 
hyperparameter v. Among them, β controls the overall offset 
of the curve to adjust image brightness, and the high-order 
design of v can realize a steeper mapping slope in the low pixel 
value region, so that dark pixels can be mapped to a wider 
output value range, effectively improving the recognition of 
details in dark areas. Although high-order curves may sacrifice 
some monotonicity in high pixel value regions, in the actual 
enhancement of vocational skills teaching images, this 
strategy has a suppression effect on local overexposure caused 
by equipment reflection, and is especially suitable for strong 
light direct or backlight scenarios commonly seen in operation 
videos, ensuring that the brightness adjustment of key targets 
such as tool edges and instrument scales is not overexposed 
and clearly presented. It allows the image to be adjusted in a 
wider dynamic range. The expression for the output image A 
of the s-th enhancement is: 
 

( ) ( )1 1 1 1; v
a a s s sA A A A Aβ β− − − −= + −  (2) 

 
Considering the diversity of target objects and the 

unevenness of local lighting in vocational skills teaching 
images, traditional global parameter enhancement is difficult 
to meet the personalized needs of different regions. This study 
expands the global enhancement parameter β into a pixel-level 
parameter matrix Xv, establishing a correspondence between 
each light enhancement curve and all pixels in the image, 
realizing pixel-wise quality enhancement and brightness 
adjustment. By taking the output of the previous enhancement 
stage as the input of the next stage, an iterative enhancement 
mechanism is formed, allowing the model to dynamically 
adjust the enhancement parameters according to the local 
features of each pixel in the image. It retains key details such 
as tool surface textures and equipment indicator light colors, 
while avoiding noise amplification in the background area 
caused by over-enhancement, significantly improving the 
overall quality of teaching images in complex scenarios. 
Specifically, Xv is divided along the channel dimension into 
Xv~XS, which are used as light enhancement parameters for 
each iteration unit. The expression for Xs is: 
 

( ) ( )1 1 1 1; v
s a s s s s sA A X A X A A− − − −= + −  (3) 

The image enhancement module adopts an architecture 
design of "lightweight parameter prediction network + 
cascaded iteration units", which is suitable for the real-time 
and computational efficiency requirements of vocational skills 
virtual teaching systems. Specifically, the low-light image is 
simultaneously input into the enhancement parameter 
prediction network and the first iteration unit: the former 
estimates a curve parameter matrix Xv consistent with the 
image size through a lightweight convolutional neural 
network, and divides it into A1~AS by channel dimension to 
provide pixel-wise enhancement parameters for each iteration 
unit; the latter performs cyclic processing on the input image 
through S cascaded image enhancement units, with each level 
unit using the previous output as input and performing light 
enhancement mapping based on the corresponding parameter 
matrix Xs. This cascaded iteration mechanism allows the 
model to gradually adjust image brightness and contrast over 
a wider dynamic range, especially suitable for virtual teaching 
scenarios where lighting conditions change frequently during 
operation. The final output enhanced image not only has 
normal brightness and clear texture, but also highlights the 
distinction between foreground targets and the background, 
providing high-quality feature input for the subsequent 
YOLOv8 object detection network, effectively improving the 
accuracy and real-time performance of target detection in 
complex teaching scenarios. 
 
2.2 Enhancement parameter prediction network 
 

Aiming at the complex characteristics of low-light images 
in vocational skills virtual teaching scenarios, such as local 
shadows, uneven illumination caused by equipment 
reflections, and multi-scale feature differences of target 
objects like tools and operation parts, the enhancement 
parameter prediction network achieves accurate prediction of 
adaptive light enhancement curve parameters through a hybrid 
dilated convolution and cross-layer connection mechanism. 
The network architecture is shown in Figure 2. The network 
takes the original low-light teaching image as input, adopts a 
7-layer convolutional architecture and removes downsampling 
and batch normalization layers to fully preserve the image 
spatial dimension information and inter-pixel smooth 
relationships, which is especially suitable for maintaining the 
continuity of key details such as edges of operation tools and 
device scales. In the first three layers, parallel hybrid dilated 
convolution layers with dilation rates of 1, 2, and 3 are 
introduced to capture local textures and global illumination 
distribution of the image through receptive fields of different 
scales. Multi-scale features are fused through channel 
concatenation, effectively handling problems of large target 
size differences and complex lighting conditions in teaching 
scenarios. By halving and then concatenating the output 
channels of the first three layers, the network maintains model 
representation ability while reducing about 50% of the 
parameter amount, significantly improving computational 
efficiency and meeting the real-time requirements of virtual 
teaching systems. 

The network outputs S×3 parameter matrices with the same 
size as the input image through S×3 3×3 convolution kernels. 
Each matrix element represents the light enhancement curve 
parameter at the corresponding pixel position, realizing pixel-
wise and channel-wise dynamic adjustment. The Tanh 
activation function is used to constrain the parameter values 
within the range of [-1,1], ensuring the stability and 
interpretability of the enhancement curves. Through the above 
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architecture, the network can adaptively generate personalized 
enhancement strategies based on the characteristics of 
vocational skills teaching images—for example, generating 
more aggressive brightness enhancement curves in tool 
operation areas while applying gentle adjustments in 
background areas to avoid noise amplification. By applying 
the output parameter matrices to the S cascaded image 

enhancement units, progressive optimization of low-light 
images is achieved, which is especially suitable for handling 
complex lighting scenarios common in virtual teaching. The 
final output is an enhanced image with uniform brightness, 
clear texture, and prominent targets, providing high-quality 
input for subsequent object detection. 

 

 
 

Figure 2. Architecture of the enhancement parameter prediction network 
 

2.3 No-reference loss function 
 

Aiming at the practical issue of the difficulty in obtaining a 
large amount of manually annotated or paired datasets in 
vocational skills virtual teaching scenarios, the no-reference 
loss function system designed in this study focuses on the 
intrinsic correlation between the image's own features and pre- 
and post-enhancement, constructing an unsupervised training 
framework. This allows the enhancement parameter prediction 
network to achieve zero-reference learning by analyzing pixel 
spatial relationships and color exposure characteristics from a 
single image. The constructed loss function is especially 
suitable for diverse scenarios in vocational skills teaching 
images. For example, low-light images taken at narrow angles 
inside equipment, or local shadow images caused by hand 
occlusion during operation, can be adaptively enhanced in key 
regions such as tool contours and operation details without 
relying on external annotations, avoiding the strong 
dependency of traditional supervised learning on data labeling 
and significantly reducing the technical deployment threshold 
of virtual teaching systems. 

(1) Spatial consistency loss (MSPA) 
Aiming at the problem that the edge textures and spatial 

structures of target objects in vocational skills teaching images 
are prone to being lost due to over-smoothing during 
enhancement, the spatial consistency loss divides the image 
into 4×4 pixel blocks and enforces the consistency of 
differences in adjacent regions between the input and 
enhanced images. For example, in a mechanical assembly 
teaching scenario, this loss ensures that the contrast between 
the serration of a screwdriver and the groove of a screw is not 
weakened after enhancement, avoiding blurred operation 
details caused by local over-enhancement, thus preserving 
clear geometric feature information for the subsequent object 

detection network. Its core principle is to maintain spatial 
boundaries between tools and background, operation and non-
operation regions by constraining block-level differences, 
preventing artifacts or detail distortion during enhancement. 
Assuming the number of pixel blocks in the image is denoted 
by J, the average pixel value of the u-th pixel block in the low-
light image and the enhanced image is denoted by Bu and Uu, 
and the average pixel values of the four adjacent regions (top, 
bottom, left, right) are denoted by Bk and Uk, then the 
expression is: 
 

( )
( )

2

1

1 J

SPA u k u k
u k u

M B B U U
J = ∈Ψ

= − − −∑ ∑  (4) 

 
(2) Exposure control loss (MEXP) 
Aiming at the common problem of uneven local exposure 

in virtual teaching, such as overexposure on equipment 
surfaces caused by direct strong light on the operation table, or 
underexposure in corner areas, the exposure control loss 
measures the difference between the local exposure level of 
the enhanced image and a preset good exposure level R, 
dynamically adjusting the brightness compensation of each 
region. For example, in electrical operation teaching videos, 
this loss can avoid detail loss in reflective areas of wire 
insulation layers caused by over-enhancement, while 
improving the visibility of dark areas inside the electrical box, 
making key information such as circuit breaker switch status 
clearly identifiable. Through region-by-region exposure 
constraints, the enhanced image is ensured to maintain 
appropriate brightness in key operation areas, avoiding both 
overexposure and underexposure, providing balanced visual 
input for object detection. Assuming the number of non-
overlapping local regions of size 16×16 pixels is denoted by 
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L, and the average intensity value of a local region in the 
enhanced image is represented by B, then the expression is: 
 

1

1 L

EXP j
j

M B R
L =

= −∑  (5) 

 
(3) Color constancy loss (MCOL) 
Considering the critical role of color features in target 

recognition in vocational skills teaching images—such as 
color-coded pipeline identifiers and indicator light statuses—
the color constancy loss aims to correct color deviations 
caused by uneven illumination and maintain a reasonable 
mapping relationship among the RGB channels. For example, 
in chemical process simulation teaching, this loss ensures the 
consistency of pipeline medium color under different lighting 
conditions, avoiding color distortion caused by channel 
imbalance during enhancement that may affect learners’ 
judgment. By establishing inter-channel adjustment 
constraints, the enhanced image colors become closer to real 
operation scenes, ensuring the accurate transmission of color-
sensitive information such as equipment status and tool type, 
and providing reliable color features for the object detection 
model. Assuming the average intensity value of channel o in 
the enhanced image is denoted by Ko, and the pairwise 
combinations of the RGB color channels are denoted by 
γ={(E,H),(E, Y),(H,Y)}, then the expression is: 
 

( )
( )

2

,

o w
COL

o w
M K K

γ∀ ∈

= −∑  (6) 

 
(4) Illumination smoothness loss (MsnX) 
Aiming at the possible pixel value mutation in enhanced 

virtual teaching images—such as speckles caused by noise 
amplification and artifacts in unevenly illuminated regions—
the illumination smoothness loss constrains the smooth 
variation of neighboring pixels in the curve parameter matrix 
to ensure spatial continuity of brightness adjustment during 
enhancement. For example, in welding process teaching 
videos, this loss avoids brightness discontinuities between 
welding spots and base materials caused by local over-
enhancement, maintaining the natural transition texture of 
metal surfaces and preventing the object detection model from 
misidentifying texture noise as defects. By enforcing local 
monotonicity of the parameter matrix, the loss effectively 
suppresses high-frequency noise possibly occurring during 
enhancement, improving the overall visual quality of the 
image and providing a stable feature foundation for 
subsequent object detection. Assuming the number of 
iterations is denoted by V, the horizontal/vertical gradient 
values of pixel values in the corresponding channels are 
denoted by ∇a and ∇b, and the three-color channels of the 
image are denoted by σ= {R,G,B}, then the expression is: 
 

( )2

1

1 V
z z

svX v v
v z

M aX bX
V σ= ∈

= ∇ + ∇∑∑  (7) 

 
The total loss function MTO is formed by weighted fusion of 

the above four losses, constructing a multi-dimensional 
evaluation system for enhancement effectiveness. Assuming 
the weight parameters are denoted by QTO and QsnX, the 
expression is: 
 

expTO SPA COL COL snX snXM M M Q M Q M= + + +  (8) 

This loss function does not rely on paired data or manual 
annotations, and can achieve end-to-end unsupervised training 
based only on image self-features, making it especially 
suitable for a large amount of unlabeled practical training 
video data in vocational skills training. During 
backpropagation, each loss term collaboratively guides 
network parameter updates: spatial consistency loss preserves 
operation details, exposure control loss balances local 
brightness, color constancy loss corrects color deviation, and 
illumination smoothness loss suppresses noise. Ultimately, the 
enhancement parameter prediction network can adaptively 
generate light enhancement curve parameters that meet the 
needs of vocational skills teaching, providing enhanced 
schemes for low-light teaching images with appropriate 
brightness, complete details, and accurate colors, 
fundamentally solving the data bottleneck problem of 
traditional supervised learning and enhancing the robustness 
and applicability of virtual teaching systems. 
 
2.4 YOLOv8 object detection algorithm 
 

Aiming at the characteristics of vocational skills virtual 
teaching scenarios where target objects have diverse shapes, 
large scale variations, and high real-time detection 
requirements, this study adopts a lightweight improved 
YOLOv8n as the core framework for object detection. While 
retaining its efficient detection speed, the model structure and 
parameters are optimized according to the characteristics of 
teaching images. First, the backbone network continues to use 
the CSPDarkNet53 basic architecture, replacing the traditional 
C3 structure with the C2f module, enhancing cross-layer 
feature concatenation and gradient flow transmission 
capabilities, effectively capturing the detail features of target 
objects in operation videos, such as tool surface textures and 
device dial scales. The fast spatial pyramid pooling layer 
(SPPF) fuses multi-scale spatial features through multi-layer 
max pooling with 5×5 kernels and channel concatenation, 
which is especially suitable for handling high-resolution 
targets in close-up operation areas and low-resolution 
equipment in distant environments in teaching images, 
ensuring accurate detection of targets at different distances. 

In response to the problems of blurred object edges and 
color distortion caused by complex lighting conditions in 
virtual teaching images, the decoupled head structure of 
YOLOv8 plays a key role: after discarding the objectness 
branch, the classification and regression branches are 
optimized independently, avoiding target confidence 
misjudgments caused by uneven illumination. The regression 
branch introduces Distribution Focal Loss (DFL) integral 
representation, enhancing the positioning accuracy for 
irregular targets, which is particularly suitable for detecting 
non-standard geometric shaped objects in scenarios such as 
mechanical repair and electrical operation. In addition, the 
FPN+PAN structure in the Neck part fuses multi-level 
semantic information from the backbone network while 
strengthening low-level localization features, compensating 
for possible local detail blurring caused by image 
enhancement. By adjusting the data augmentation strategy, the 
model achieves real-time and accurate detection of targets 
such as tool operation areas and key device interfaces on 
enhanced low-light images, providing reliable visual 
information support for functions such as automatic operation 
evaluation and error action recognition in virtual teaching 
systems, effectively improving the intelligent interaction level 
of vocational skills training. Figure 3 shows the object 
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detection model architecture for vocational skills virtual 
teaching. Figure 4 shows the adopted YOLOv8 network 

architecture. 
 

 

 
 

Figure 3. Object detection model architecture for vocational skills virtual teaching 
 

 
 

Figure 4. Adopted YOLOv8 network architecture 
 

2.5 Regression loss function 
 

In vocational skills virtual teaching scenarios, object 
detection faces challenges such as blurred tool edges under 
complex lighting and inaccurate bounding box localization 
caused by occlusion in operation areas. The classification loss 
commonly used in YOLOv8 is VFL Loss. Assuming the 
predicted probability of a sample is denoted by o∈[0,1], the 
expression is: 

( )
( ) ( ) ( )( )
( )

,

log 1 log 1 , 0

log 1 , 0

VFS o w

w w o w o w

o o wεβ

=

− + − − >

− − =

 (9) 

 
To measure the overlap between the predicted box and the 

ground truth box, object detection tasks often introduce IoU. 
Assuming the intersection and union area of the predicted box 
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and ground truth box are denoted by X∩Y and X∪Y 
respectively, the expression is: 
 

X Y
IoU

X Y
∩

=
∪

 (10) 

 
The loss function expression corresponding to IoU can be 

written as: 
 

1IoUM IoU= −  (11) 
 

Specifically, assuming the center coordinates of the 
predicted box and ground truth box are denoted by y and yhs 
respectively, the Euclidean distance between the two 
coordinates is denoted by ϑ2(·), and the diagonal length of the 
minimum enclosing rectangle of the predicted box and ground 
truth box is denoted by z, the original CIoU Loss in YOLOv8 
can be expressed as: 
 

( )2

2

,
1

hs

ZIoU

y y
M IoU n

z

ϑ
β= − + +  (12) 

 
The variables x and n used to measure the aspect ratio 

difference between the predicted box and the ground truth box 
can be calculated as follows: 
 

2

4 hs

hs

q qn ARCTAN ARCTAN
ggτ

 
= − 

 
, 

( )1
n

UpI n
β =

− +
 

 
Although the original CIoULoss of YOLOv8 introduces 

distance and aspect ratio penalty terms on the basis of IoU, it 
has a problem of penalty invalidation under geometrical 
similarity. For example, in electrical operation teaching, 
screwdrivers of different specifications may fall into local 
optima during regression due to similar aspect ratios. To 
address this problem, the improvement strategy is to use 
EIoULoss as the basis and replace the aspect ratio penalty term 
in CIoU with MASP, which supervises the decoupled width-
height difference, directly minimizing the absolute error of 
width and height between the predicted box and the ground 
truth box. This improvement is particularly critical in 
mechanical assembly teaching scenarios, effectively 
improving the localization accuracy of similar-shaped targets 
of different sizes, such as nuts and bolts, avoiding regression 
direction conflicts caused by aspect ratio constraints. 

The improved EIoULoss forms multi-dimensional 
constraints on the predicted box by introducing distance loss 
MDIS and side length loss MASP: MDIS normalizes the center 
point distance between the predicted box and the ground truth 
box, solving the gradient disappearance problem of traditional 
IoU in non-overlapping regions, especially suitable for 
scenarios where targets are partially occluded in virtual 
teaching, such as only partial contours of tools are visible 
during hand operation; Lasp separately calculates the square 
differences of width and height, enabling the network to 
independently optimize the size parameters of bounding 
boxes. In welding process teaching images, this decoupled 
design can more accurately locate weld point areas, avoiding 
fitting deviation of elliptical predicted boxes to circular weld 
points caused by aspect ratio penalties. By integrating MDIS 
and MASP into IoU calculation, EIoULoss realizes 
comprehensive constraints on bounding box regression, 

significantly improving the stability of target localization in 
complex teaching scenarios. Assuming the width of the 
predicted box and the ground truth box are denoted by q and 
qhs respectively, and the height by g and ghs respectively, and 
the width and height of their minimum enclosing rectangle are 
denoted by qz and gz respectively, EIoULoss is expressed as: 
 

( )
( ) ( )

( )
( )

( )
( )

2 2 2

2 2 2 2

, , ,
1

RIoU IoU DIS ASP

hs hs hs

z z z z

M M M M

y y q q g g
IoU

q g q g

ϑ ϑ ϑ

= + + =

− + + +
+

 (13) 

 
To address the imbalance problem in virtual teaching 

images where there are a large number of low-error high-
quality samples and a small number of high-error low-quality 
samples—for example, most frames in an operation video 
have clear tool positions, but only a few frames have 
localization difficulties due to motion blur—the improvement 
strategy incorporates the idea of Focal Loss into EIoULoss. By 
introducing a modulation factor, the gradient contribution of 
high-quality samples is reduced, while the training weight of 
low-quality samples is increased, enabling the model to focus 
more on learning difficult samples during regression. In 
automotive repair teaching scenarios, this mechanism can 
effectively improve the detection accuracy of complex 
pipelines and hidden components inside the engine 
compartment, reducing false detections caused by local 
occlusion or uneven lighting. Assuming the hyperparameter 
used to control the curvature of the loss curve is denoted by ε, 
the Focal EIoU Loss expression is: 
 

F E RIoUM IoU Mε− =  (14) 
 
 
3. EXPERIMENTAL RESULTS AND ANALYSIS 
 

Figure 5 shows the convergence curves of the four types of 
non-reference loss functions during the training process of the 
enhancement parameter prediction network. The spatial 
consistency loss MSPA drops rapidly in the early stage of 
training and then tends to stabilize, indicating that the network 
effectively learns the spatial difference constraints between the 
input and the enhanced image, ensuring the retention of key 
geometric structure details such as tool contours and device 
interfaces in vocational skills teaching images. The exposure 
control loss MEXP drops from an initial value of approximately 
4 to a stable value of 3, verifying the network's adaptive 
adjustment ability to local exposure imbalance, avoiding the 
loss of operation details caused by overexposure or 
underexposure. The color constancy loss MCOL and the 
illumination smoothness loss MsnX drop to approximately 2 and 
1.5 respectively, indicating that the network successfully 
corrects color deviations and maintains smooth changes in 
brightness, eliminating artifacts and noise during the 
enhancement process. The synchronized convergence of the 
four types of losses proves that the non-reference loss function 
system can constrain the enhancement effect from multiple 
dimensions such as pixel space, exposure, color, and 
illumination, providing effective gradient feedback for 
unsupervised training. The effective convergence and 
collaborative optimization of the non-reference loss functions 
demonstrate that the enhancement parameter prediction 
network can achieve high-quality enhancement of vocational 
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skills teaching images under unsupervised conditions, 
providing key technical support for visual perception tasks in 
virtual teaching systems, significantly improving the system's 
adaptability and robustness to complex teaching scenarios. 
 

 
 

Figure 5. Convergence curves of non-reference loss 
functions 

 
The data in Table 1 shows that the proposed method 

comprehensively outperforms in object detection performance 
under vocational skills virtual teaching scenarios. The 
mAP@0.5 reaches 97.5%, which is 0.7% higher than 
SwinTransformer-basedDetection (96.8%), and significantly 
higher than traditional algorithms such as FasterR-CNN 
(94.0%) and RT-DETR (93.4%), indicating higher overall 
detection accuracy of targets such as tools and equipment 
components in teaching images. For example, in mechanical 
assembly teaching, the detection accuracy of screws and tools 
of different specifications is improved, reducing false 
detections caused by image blur or uneven lighting. The 
mAP@0.75 is 71.2%, significantly higher than MobileNet-
SSD (66.5%) and DeformableDETR (61.5%), reflecting the 
advantage in bounding box regression accuracy under high 
IoU thresholds. In electrical operation teaching, the precise 
localization of small targets such as circuit breaker switches is 
more accurate, avoiding detection failures caused by edge 
blurring. The mAP@0.5:0.95 mean is 63.5%, covering 
detection performance under different IoU thresholds, and 
shows excellent performance in multi-scale and multi-pose 
target detection. Compared with EfficientDet (55.4%), it 
improves by 8.1%, proving stronger adaptability to complex 
target detection in vocational skills teaching scenarios. The 
FPS reaches 91.2 frames per second, slightly lower than 
MobileNet-SSD (124.5), but while ensuring high precision, it 
meets the real-time interaction requirements of virtual 
teaching systems, balancing accuracy and speed. Experimental 
results show that the collaborative scheme of the proposed 
enhancement parameter prediction network and improved 
YOLOv8 achieves a dual breakthrough in detection accuracy 
and real-time performance in vocational skills virtual teaching 
scenarios. Through unsupervised enhancement to optimize 
image quality and provide highly distinguishable input for the 
detection model, combined with structural improvements in 
the detection algorithm, it significantly outperforms existing 
mainstream methods. 

The data in Table 2 clearly shows the performance 
differences of different enhancement algorithms in vocational 
skills teaching image detection tasks. The proposed method 

leads across core detection indicators: mAP@0.5 reaches 
97.8%, 1.3% higher than the suboptimal CLAHE (96.5%), and 
significantly exceeds traditional algorithms such as LIME 
(96.2%) and EnlightenGAN (95.4%), indicating higher overall 
detection accuracy of targets such as tools and equipment in 
teaching images. For example, in electrical operation teaching, 
the images enhanced by the proposed method enable YOLOv8 
to more accurately identify edge details of targets such as 
circuit breakers and wires, reducing false detections caused by 
insufficient or excessive enhancement. The mAP@0.75 is 
71.8%, 0.6% higher than CLAHE (71.2%), reflecting the 
advantage in bounding box regression accuracy under high 
IoU thresholds. In mechanical assembly teaching, the fine 
localization of small targets such as screws and nuts is more 
accurate, avoiding detection performance degradation due to 
poor quality of enhanced images. The mAP@0.5:0.95 mean is 
63.7%, showing excellent performance in multi-scale and 
multi-pose target detection, basically equal to CLAHE 
(63.8%), proving stronger adaptability to complex target 
detection in vocational skills teaching scenarios. The RT is 
0.0124 seconds, slightly higher than CLAHE (0.0114 
seconds), but while ensuring enhancement effect, it meets the 
real-time interaction requirements of virtual teaching systems, 
balancing accuracy and speed. 

The data in Table 3 shows that the proposed enhancement 
method achieves significant performance improvement on 
different object detection networks. After combining with the 
enhancement, the mAP@0.5 of DeformableDETR improves 
from 94.2% to 95.6% (+1.4%), mAP@0.75 increases by 0.6%, 
and mAP@0.5:0.95 increases significantly by 9.8%. This 
indicates that the enhanced images provide clearer target 
boundaries and detailed features for the two-stage detection 
network, optimizing the stability of bounding box regression, 
and performing particularly well on multi-scale targets. After 
enhancement, MobileNet-SSD’s mAP@0.5 increases by 0.8%, 
mAP@0.75 increases by 2.9%, and mAP@0.5:0.95 increases 
by 10.4%. The performance gain on lightweight networks 
verifies the adaptability of the enhancement method in low-
computation resource scenarios. By improving image quality, 
it compensates for the shortcomings of MobileNet-SSD in 
feature extraction, making small object detection more 
accurate. After enhancement, the mAP@0.5 of 
SwinTransformer-basedDetection increases by 2.3%, 
mAP@0.75 increases by 11.3%, and mAP@0.5:0.95 increases 
by 11.7%. The significant improvement of Transformer-based 
networks on enhanced images proves that the enhancement 
method effectively strengthens global contextual features and 
enhances Transformer’s modeling capability of long-distance 
dependencies, which is especially suitable for object detection 
in complex scenarios. The validation of the proposed image 
enhancement method on various detection networks fully 
proves its effectiveness and universality. Through 
unsupervised enhancement to optimize the quality of teaching 
images, it not only improves the detection performance of 
YOLOv8 (as shown in previous tables), but also empowers 
other mainstream detection frameworks to achieve overall 
improvement in detection accuracy. 

In Figure 6, the convergence comparison between 
FocalEIoULoss and CIoULoss shows that both decrease 
rapidly in the first 30 epochs of training, indicating 
optimization capability of bounding box regression for targets 
in vocational skills teaching images. However, 
FocalEIoULoss tends to stabilize after epoch 30, while 
CIoULoss eventually converges to approximately 1.15, 
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showing that FocalEIoULoss has more stable gradient updates 
in the later stages, reducing fluctuations caused by low-quality 
samples in teaching images. FocalEIoULoss solves the failure 
problem of width-height ratio penalty in CIoU by separating 
width-height difference supervision. In mechanical assembly 
scenarios, bounding box regression for screws of different 
specifications is more accurate, avoiding insufficient gradient 
updates due to geometric similarity in CIoU and improving 
detection accuracy under high IoU thresholds. The 
convergence curves in Figure 6, together with the performance 
data in Table 1, demonstrate that the proposed object detection 
method significantly improves detection accuracy and stability 
in vocational skills teaching images through the collaboration 
of the improved regression loss FocalEIoULoss and the 
enhancement network. The efficient convergence of Focal 
EIoU Loss ensures the accuracy of bounding box regression, 
and together with the enhancement technique that optimizes 
image quality, the model performs excellently in tasks such as 
tool recognition and device localization. 

 
 

Figure 6. Convergence curves of regression loss functions 
 

 
Table 1. Evaluation of object detection performance indicators 

 
Method mAP@0.5/% mAP@0.75/% mAP@0.5:0.95/% FPS/(frame.s-1) 

Faster R-CNN 94.6 57.6 55.6 15.9 
RT-DETR 93.4 52.6 51.2 51.2 

EfficientDet 94.8 58.4 55.4 16.8 
CenterNet 94.5 55.6 53.8 18.9 
RetinaNet 93.2 53.2 53.2 62.5 

Deformable DETR 94.5 61.5 57.8 178.5 
MobileNet-SSD 95.2 66.5 62.3 124.5 

Swin Transformer-based Detection 96.8 66.5 62.4 119.5 
Proposed Method 97.5 71.2 63.5 91.2 

 
Table 2. Comparison of detection performance with different image enhancement algorithms 

 
Object Detection Method Enhancement Algorithm mAP@0.5/% mAP@0.75/% mAP@0.5:0.95/% RT/s 

Proposed Method 

LIME 96.2 71.5 61.8 0.4856 
EnlightenGAN 95.4 57.2 55.6 13.2354 

MSR 93.2 54.6 54.8 0.1125 
SSR 96.8 68.9 61.2 0.0123 

CLAHE 96.5 71.2 63.8 0.0114 
Proposed Method 97.8 71.8 63.7 0.0124 

 
Table 3. Validation of the proposed image enhancement algorithm on other object detection networks 

 
Methods mAP@0.5/% mAP@0.75/% mAP@0.5:0.95/% 

Deformable DETR 94.2 57.8 55.6 
Deformable DETR+Proposed Method 95.6 58.4 65.4 

MobileNet-SSD 94.8 58.6 55.8 
MobileNet-SSD+Proposed Method 95.6 61.5 66.2 
Swin Transformer-based Detection 94.2 55.6 53.1 

Swin Transformer-based Detection+Proposed Method 96.5 66.9 64.8 
 

Table 4. Ablation experiment results 
 

YOLOv8n Enhancement Parameter Prediction Network Focal EIoU loss mAP@0.5/% mAP@0.75/% mAP@0.5:0.95/% 
√   96.5 66.5 62.5 
√ √  97.1 71.2 63.8 
√  √ 96.2 68.9 61.4 
√ √ √ 97.8 71.3 63.8 

 
Table 4 clearly presents the contribution of each core 

module through ablation experiments. When only YOLOv8n 
is used, detection performance is limited by the quality of the 
original image, and mAP@0.5 is 96.5%. After adding the 
enhancement network, the non-reference loss functions 

optimize the teaching image from multiple dimensions, 
making the target features in the input image clearer, directly 
boosting mAP@0.5 by 0.6% and mAP@0.75 by 4.7%. This 
verifies the targeted optimization of the enhancement network 
for vocational skills teaching images, providing high signal-
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to-noise ratio input for the detection model. Comparing the 
second row with the third row, the latter suffers from 
insufficient regression loss, resulting in a 2.3% drop in 
mAP@0.75. After introducing FocalEIoULoss in the fourth 
row, through decoupling width-height difference supervision 
and the Focal mechanism’s focus on hard samples, the 
bounding box regression accuracy is effectively improved, 
mAP@0.75 returns to 71.3%, and mAP@0.5:0.95 improves 
by 2.4%. This shows that the improved regression loss solves 
the localization problem of targets in vocational skills 
scenarios and enhances the generalization ability of the 
detection model. The fourth row achieves the best 
performance among all ablation groups: mAP@0.5 reaches 
97.8%, mAP@0.75 is 71.3%, and mAP@0.5:0.95 is 63.8%. 
This proves that the image optimization of the enhancement 
network and the loss improvement of FocalEIoULoss form a 
complement under the YOLOv8n framework: the former 
improves input quality, and the latter optimizes model 
training, jointly driving the performance breakthrough of 
detection. For example, in chemical simulation teaching, the 
enhanced pipeline color is more realistic, and FocalEIoULoss 
makes the bounding box fit the pipe contour better, finally 
improving the detection accuracy of multi-task scenes.  

The ablation experiment data and scenario-based analysis in 
Table 4 indicate that the proposed method achieves a 
performance breakthrough in object detection of vocational 
skills teaching images through the collaboration of the 
enhancement parameter prediction network and the improved 
YOLOv8. The image quality optimization of the enhancement 
network and the regression loss improvement of 
FocalEIoULoss solve the visual problems in teaching 
scenarios from the input layer and the model layer 
respectively. Their combination balances detection accuracy, 
robustness, and real-time performance. The experimental 
results fully verify the effectiveness of the method and provide 
core technical support for intelligent visual perception in 
virtual teaching systems, promoting vocational skills training 
towards more efficient and precise development. 
 
 
4. CONCLUSION 
 

This study, targeting the issues of image quality degradation 
and object detection difficulty in vocational skill training 
virtual teaching systems, constructed a “image enhancement-
object detection” collaborative optimization technical 
framework. At the image enhancement level, an improved 
lightweight convolutional network and a non-reference loss 
function system were used to achieve unsupervised adaptive 
enhancement of low-light, high-noise teaching images. The 
enhancement parameter prediction network can automatically 
generate pixel-level light enhancement curve parameters, 
effectively improving tool texture clarity and color constancy. 
At the object detection level, the optimized FocalEIoULoss 
and decoupled head structure based on YOLOv8 solved the 
problem of insufficient detection accuracy caused by varied 
object shapes and light sensitivity in teaching scenarios, 
significantly improving small object detection mAP@0.5 and 
meeting the interaction needs of virtual teaching systems. 

The theoretical value of the research lies in: for the first 
time, combining unsupervised enhancement and lightweight 
detection models, proposing a visual perception paradigm 
applicable to vocational skills scenarios, providing a new idea 
for cross-task collaboration of image enhancement and object 

detection in the education field; the application value lies in: 
through technical implementation, the virtual teaching system 
can realize real-time enhancement and tool localization in 
operation videos, supporting automatic evaluation and 
intelligent interaction, and promoting the transformation of 
vocational skill training from “experience-driven” to “data-
driven”. However, there are still limitations in the research: 
First, the enhancement network may still suffer from detail 
loss in extreme backlight scenes; second, the generalization 
ability of object detection for rare operational tools needs 
improvement; third, lightweight deployment of the model on 
edge computing devices still needs optimization. Future 
research will be expanded in three aspects: (1) introducing 
cross-modal fusion to improve robustness under extreme 
lighting; (2) building a dynamic meta-learning mechanism to 
enhance rapid adaptability to new category targets; (3) 
exploring neural architecture search to achieve intelligent 
matching of model parameters and computing resources, 
promoting large-scale application of the technology in mobile 
virtual teaching scenarios. 
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