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With the rapid advancement of the digital economy, advertising images have emerged as a 

core medium for brand communication. Sentiment classification of such images plays a 

critical role in precision marketing and the enhancement of user experience. Recent progress 

in deep learning offers novel approaches to sentiment analysis in advertising images. 

However, existing methods remain constrained by limitations in multimodal information 

fusion, multi-granularity visual feature processing, and attribute-level sentiment 

interpretation. Common issues include the simplistic concatenation of visual and textual 

features, neglect of the emotional correlation between local and global visual elements, and 

the absence of effective integration of multi-scale attribute-level perspectives, all of which 

result in inadequate classification accuracy and robustness. To address these challenges, an 

attribute-level sentiment analysis model based on multi-level vision-language alignment and 

fusion for advertising images was proposed. Through a multi-granularity visual information 

alignment technique, the model enables precise semantic matching between visual 

elements—at the pixel, region, and object levels—and their corresponding textual 

counterparts. Furthermore, multi-scale attribute-level viewpoints were integrated to capture 

emotional features across dimensions such as color, shape, and embedded textual content. 

A text-centered multimodal training strategy was also designed to filter irrelevant visual 

noise. Experimental results demonstrate significant improvements in both accuracy and 

robustness of advertising image sentiment classification. This model provides technical 

support for advertising effectiveness evaluation and strategy optimization. The findings 

contribute theoretically to the advancement of multimodal sentiment analysis and offer 

practical guidance for precision advertising in contexts such as e-commerce and social 

media. 
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1. INTRODUCTION

Amid the rapid development of the digital economy, 

advertising images have become a vital medium for conveying 

brand values and facilitating communication between 

enterprises and consumers [1-4]. These images are widely 

disseminated across platforms such as e-commerce websites, 

social media, and mobile applications. With the advancement 

of deep learning techniques, substantial progress has been 

achieved in fields including image classification and object 

detection [5-8], thereby offering novel methodologies for 

sentiment classification of advertising images. Advertising 

images typically encompass rich visual elements—such as 

color, shape, and texture—and are often accompanied by 

textual information, working in tandem to express the 

emotional tone and communicative intent of the advertisement 

[9, 10]. Accurate sentiment classification of advertising 

images is instrumental in enabling enterprises to better 

understand consumers’ emotional responses to advertising 

content, thereby optimizing marketing strategies and 

enhancing advertising effectiveness. 

The study of sentiment classification techniques for 

advertising images carries both significant theoretical and 

practical value. Theoretically, it contributes to the expansion 

of the sentiment classification framework by uncovering the 

underlying mechanisms through which visual and textual 

information interact within advertising images. This, in turn, 

provides new perspectives for multimodal sentiment analysis. 

Practically, precise sentiment classification facilitates more 

accurate audience targeting and the development of tailored 

advertising strategies, leading to increased conversion rates 

and higher returns on investment. Moreover, the delivery of 

emotionally aligned advertising content can enhance user 

experience by meeting consumers’ affective preferences. 

Despite recent advances, existing methods for sentiment 

classification of advertising images remain limited in their 

ability to effectively integrate multimodal information. For 

instance, several studies [10-13] have relied on simple 

concatenation or weighted summation of visual and textual 

features without sufficiently modeling the semantic alignment 

and complementary relationships between these modalities, 

resulting in a shallow understanding of the emotional content 

conveyed in advertising images. Other approaches [14-16] 

have struggled to capture the impact of visual details across 

different levels of granularity, often failing to consider the 

interplay between local visual elements and the overall 
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emotional expression of the image. Furthermore, in the 

domain of attribute-level sentiment analysis, many existing 

models [17-20] have lacked mechanisms for integrating multi-

scale attribute-level perspectives, thereby limiting their 

capacity to accurately detect sentiment tendencies across 

various visual attributes. These limitations negatively impact 

both the accuracy and robustness of sentiment classification 

outcomes. 

To address these challenges, an attribute-level sentiment 

analysis model based on multi-level vision-language 

alignment and fusion for advertising images was proposed. 

The model comprises three main components. First, multi-

granularity visual information alignment techniques were 

employed to achieve precise matching between visual 

elements at different levels and corresponding textual 

information, thereby uncovering rich semantic correlations 

between modalities. Second, multi-scale attribute-level 

viewpoints were integrated to extract sentiment features across 

diverse dimensions, enabling a comprehensive analysis of 

emotional cues embedded in color, shape, and textual content. 

Finally, a text-centered multimodal training strategy was 

implemented, with carefully designed loss functions aimed at 

suppressing noise arising from irrelevant visual context and 

enhancing the model’s robustness. The proposed approach 

addresses the major deficiencies of existing techniques by 

introducing a framework that combines hierarchical vision-

language alignment with attribute-level sentiment analysis. 

Substantial improvements in both classification accuracy and 

robustness were thereby achieved. This model not only 

improves the accuracy of sentiment classification in 

advertising images but also offers strong technical support for 

in-depth advertising performance evaluation and strategic 

optimization. It holds significant potential for real-world 

applications. 

 

 

2. ATTRIBUTE-LEVEL SENTIMENT ANALYSIS FOR 

ADVERTISING IMAGES VIA MULTI-LEVEL VISION-

LANGUAGE ALIGNMENT 

 

An attribute-level sentiment analysis model based on multi-

level vision-language alignment and fusion was proposed to 

address core challenges in advertising image sentiment 

classification—namely, the semantic gap between visual and 

textual modalities and the influence of irrelevant visual noise. 

A hierarchical, multi-dimensional analytical framework was 

constructed to resolve these issues systematically. The model 

first employs a multi-granularity image translation mechanism 

to perform cross-modal semantic mapping of advertising 

images at the global scene, local region, and character-level 

visual text. This process enables indirect alignment between 

visual and textual spaces, laying a semantic foundation for 

subsequent vision-language fusion. Following this, visual 

features at multiple scales—including pixel-level, region-

level, and object-level—are extracted using a Residual 

Network (ResNet) architecture. These features are aggregated 

through average pooling to form a visual cue vector that 

effectively captures emotional cues related to color, shape, 

object layout, and textual characters within the advertising 

image. During textual semantic processing, the Bidirectional 

Encoder Representations from Transformers (BERT) model 

was utilized. Through its multi-head attention mechanism, the 

visual cue vector is dynamically concatenated with the key and 

value components of each Transformer block. This facilitates 

deep semantic integration of visual and textual modalities 

during the encoding process, enabling the extraction of 

attribute-level emotional correlations between image and text. 

To mitigate the interference caused by complex visual 

contexts, an adversarial training strategy centered on textual 

semantics was designed. By minimizing the Kullback-Leibler 

(KL) divergence between the output distributions under pure 

text input and mixed vision-text input conditions, irrelevant 

visual noise is effectively filtered out. Finally, a classifier 

outputs attribute-sentiment pairs across multiple 

dimensions—such as color style, object properties, and textual 

content—thereby enabling a fine-grained analysis of 

emotional tendencies in advertising images. This framework, 

through its multi-level vision-language alignment and 

attribute-level sentiment fusion strategy, significantly 

enhances the accuracy and robustness of advertising image 

sentiment classification, thereby providing a systematic 

solution for the emotional-semantic interpretation of 

advertising content. 

The proposed model comprises three primary stages: (a) 

multi-granularity vision-to-text translation and alignment for 

advertising images; (b) multi-scale fusion of visual attribute-

level perspectives; and (c) text-centered multimodal training 

for sentiment analysis. Detailed descriptions of each stage are 

provided in the following subsections. 

 

2.1 Multi-granularity visual-to-text translation and 

alignment of advertising images 

 

In advertising image sentiment analysis, advertising images 

typically encode multi-level semantic content, including 

global scene ambiance, localized object regions, and 

character-level visual text. These visual elements of varying 

granularity collectively serve as the core carriers of emotional 

expression. However, existing multimodal alignment methods 

have been largely constrained to single-granularity 

representations, which limits their ability to comprehensively 

capture hierarchical emotional cues and their semantic 

associations with textual content—from coarse-grained scene-

level impressions to fine-grained character-level details. To 

address this limitation, a multi-granularity visual-to-text 

translation and alignment module was introduced. This 

module decomposes advertising images into distinct layers of 

visual context—namely, global scenes, local regions, and 

character-level text—to enable semantic translation across 

modalities. Through this approach, visual features can be 

precisely aligned with textual semantics across multiple 

dimensions, including global layout, object attributes, and 

character-level meanings. The architectural design of this 

module is illustrated in Figure 1. For example, a dominant red 

hue in the global visual space may correspond to emotionally 

charged words such as passion or promotion in the 

accompanying text. A zoomed-in view of a product within a 

local region may be semantically aligned with functional 

descriptions in the text. Similarly, slogan-like character-level 

elements can be directly mapped to emotionally significant 

keywords in the textual content. This alignment strategy 

ensures comprehensive coverage across granularities, thereby 

avoiding the omission of critical visual cues that may arise 

from single-level alignment techniques. Moreover, this cross-

modal semantic mapping serves to bridge the semantic gap 

between vision and language. It establishes a structured 

foundation for subsequent multi-layer attention mechanisms to 

integrate multi-scale emotional features. As a result, semantic 
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associations between visual elements—such as color styles, 

object properties, and textual content—and their 

corresponding textual representations can be captured with 

high precision across granular levels, significantly enhancing 

the comprehensiveness and accuracy of attribute-level 

sentiment analysis in advertising image classification tasks. 

 

 
 

Figure 1. Architecture of the multi-granularity visual-to-text 

translation and alignment module for advertising images 

 

(a) Global coarse-grained alignment of advertising images 

Within the proposed model, the global coarse-grained 

alignment step of the multi-granularity visual-to-text 

translation and alignment module is designed to capture the 

overall semantic atmosphere of advertising images and 

establish high-level semantic associations with textual 

content. This step introduces an image captioning model to 

extract global features from advertising images and convert 

global visual information, including color palette, spatial 

layout, and object distribution, into natural language 

descriptions, thereby forming a coarse-grained semantic 

representation of the visual content. Specifically, the ClipCap 

model is employed to process an advertising image H, 

generating a descriptive text Z that encapsulates the core 

content of the image. The generated description emphasizes 

macro-level semantic information such as overall scene 

structure, emotional tone, and so on. In doing so, the global 

visual features of the image are semantically translated into 

language-based representations. 

 

𝑍 = 𝐶𝑙𝑖𝐶𝑎𝑝(𝐻) (1) 

 

Through this process, a direct semantic mapping is 

established between the global visual space and the textual 

semantic space at a coarse-grained level. For instance, an 

image dominated by warm tones may be aligned with emotion-

related words such as comfort or passion in the accompanying 

text, while the spatial arrangement of the scene may 

semantically correspond to brand positioning keywords 

described in the textual content. 

(b) Local fine-grained alignment of advertising images 

In the proposed model, the local fine-grained alignment step 

is designed to capture the emotional nuances of localized 

visual elements in advertising images and establish detailed 

semantic mappings with textual content. Given that facial 

expressions often serve as core carriers of affective cues in 

advertising images, this step first employs the LightFace facial 

detector to locate facial regions and extract local visual 

features—including expression, pose, age, and gender. These 

features are subsequently transformed into textual descriptions 

of facial attributes. A facial expression description template is 

then applied to semantically translate the detected facial 

features into structured language representations that are 

compatible with the textual modality, thus generating fine-

grained emotional cues. To effectively filter low-confidence 

interference information, the model ranks the generated facial 

attributes in descending order based on the confidence scores 

provided by the facial detector, prioritizing high-reliability 

emotional features for inclusion. Let F={F1, F2, ..., Ff}, where 

f represents the number of facial descriptions. The conversion 

of facial analysis results into detailed textual information is 

formalized as: 

 

𝐹 = 𝐹𝑎𝑐𝑒_𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝐻) (2) 

 

Through this process, subtle emotional expressions 

conveyed through facial features in advertising images are 

precisely translated into attribute-level emotional keywords 

within the textual space. These keywords form a fine-grained 

semantic alignment with terms related to emotions and 

attitudes in the accompanying advertising text. This alignment 

strategy allows the model to capture deep emotional 

associations between visual and textual modalities at the 

object-attribute level, which compensates for the deficiency of 

traditional methods that ignore local key visual clues. It 

provides foundational semantic support for the fine analysis of 

local emotional attributes in advertising images during the 

subsequent multimodal fusion process and significantly 

enhances the granularity and accuracy of attribute-level 

sentiment analysis. 

(c) Character-level fine-grained alignment of advertising 

images 

Within the proposed attribute-level sentiment analysis 

model based on multi-level vision-language alignment and 

fusion, the character-level fine-grained alignment step is 

designed for semantic extraction and modality alignment of 

character-level visual text in advertising images, addressing 

the limitations of conventional image encoders in processing 

explicit textual information. Given that advertising images 

often convey core emotional appeals directly through 

character-based visual text, the Tesseract OCR engine is 

employed to recognize character regions with high precision. 

Visual text information—including font, color, and layout—is 

extracted and converted into plain textual content denoted as 

Pz, thereby achieving a transformation from character-level 

visual features to the textual semantic space. The expression is 

as follows: 

 

𝑃𝑧 = 𝑂𝐶𝑅(𝐻) (3) 

 

Subsequently, the character-level text Pz is concatenated 

with the global coarse-grained description H and the localized 

facial description F in a structured format: 

Nz=(Z,[SEP],F,[SEP],Pz,[SEP]). This sequence forms a 

composite textual representation that integrates multi-

granularity visual context. It enables the hierarchical 

1323



 

association of global scene semantics, localized emotional 

cues, and character-level explicit textual content within a 

unified modality. For instance, in a cosmetics advertisement, 

the character slogan “brighten the skin” may semantically 

correspond with the global scene description “fresh and 

natural” and the local facial feature “radiant gaze,” together 

mapping to the attribute-level sentiment dimension of 

“confidence in efficacy.” The insertion of [SEP] tokens 

between the input text S and the visual context Nz enables the 

model to clearly distinguish between different modality 

sources. The multi-layer attention mechanism facilitates 

precise alignment between character-level text and advertising 

copy within the Transformer architecture. 

Specifically, both S+N and S are processed through a 

Transformer architecture to obtain their respective hidden 

representations, denoted as GM
S+N and GS

M. Let the label 

transition matrix be represented as Lbk,bk+1, which defines the 

transition probability from label bk to yj+1bk+1. The emission 

matrix is defined as Ok,bk, which denotes the emission 

probability of label bk given the hidden representation GM. The 

hidden representation at the M-th layer is denoted as GM, and 

the conditional probability is expressed as o(b|GM). For a given 

label sequence b=(b1, b2, …, bv), the output distribution of the 

hidden vector GM at the M-th layer for S+N and S can be 

formulated as: 

 

𝑜(𝑏|𝐺𝑀) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (∑𝐿𝑏𝑘,𝑏𝑘+1

𝑣

𝑘=0

+∑𝑂𝑘,𝑏𝑘

𝑣

𝑘=1

) (4) 

 

This character-level fine-grained alignment mechanism not 

only addresses the traditional limitations in processing 

emotionally salient text embedded within images but also 

enables the transformation of strongly emotion-oriented 

character information into computationally tractable attribute-

level sentiment units through cross-modal semantic mapping. 

This process provides fine-grained semantic support for 

sequence labeling performed by the subsequent Conditional 

Random Field (CRF) layer. It enables precise identification of 

direct correlations between character-level textual features—

at both the word and phrase levels—and their corresponding 

emotional attributes. As a result, the model’s capacity to 

analyze key emotional carriers in advertising images, such as 

slogans and brand taglines, is significantly enhanced. An 

illustration of the multi-granularity visual-to-text translation 

and alignment for advertising images is provided in Figure 2. 

 

 
 

Figure 2. Schematic illustration of multi-granularity visual-to-text translation and alignment for advertising images 

 

2.2 Multi-scale visual attribute-viewpoint fusion in 

advertising images 

 

In the proposed model, multi-scale visual attribute-

viewpoint fusion is designed to enable in-depth extraction and 

cross-modal integration of layered emotional information 

embedded within advertising images through three core 

subtasks. The architecture of this fusion framework is 

illustrated in Figure 3. The multi-scale visual feature subtask 

focuses on constructing a hierarchical feature set that spans 

different semantic levels of the image. Using visual backbones 

such as ResNet, features are extracted across pixel-level (color 

and texture), region-level (object layout), and object-level 

(product-specific details) dimensions. These multi-scale 

features comprehensively encode visual cues ranging from 

global scene ambiance to local details and character-level 

textual elements, thereby providing a rich visual basis for 

attribute-level sentiment analysis. The top-V visual attribute-

viewpoint subtask aims to extract the most salient top-V 

adjective-noun pairs (ANPs) in the image, such as vibrant-

color, delicate-packaging, or joyful-expression, through the 

prediction of visual models. These ANPs are used as 

supervisory signals to guide the model’s attention toward 

emotion-critical attributes and their associated sentiment 

viewpoints. This process effectively suppresses low-relevance 

visual noise and enhances the model’s capacity to identify the 

core emotional properties of advertising imagery. The third 

subtask, prompt-based dynamic visual fusion, facilitates deep 

interaction between multi-scale visual features and textual 

semantics using the Transformer architecture in BERT. 

Specifically, visual cues are encoded as prefix prompts 

embedded into the key and value streams during textual 

processing. This enables the model to dynamically integrate 

vision-language information during encoding. A differential 

training strategy was implemented for pure text input S and 

mixed modality input S+N. In the pure text case, the model is 

optimized for intrinsic semantic representation, while in the 

multimodal setting, visual prompts are used to guide the model 

in capturing attribute-level emotional associations between 

visual and textual modalities. To suppress irrelevant visual 

interference, the KL divergence between the output 

distributions of the pure-text and mixed-input pathways was 
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minimized. Through this approach, precise fusion is achieved 

between emotional viewpoints—distributed across attributes 

such as color, objects, and text—and their corresponding 

textual semantics. Fine-grained cross-modal semantic support 

is thereby provided for attribute-level sentiment classification. 

 

 
 

Figure 3. Architecture of multi-scale visual attribute-

viewpoint fusion in advertising images 

 

(a) Multi-scale visual features of advertising images 

The multi-scale visual feature subtask in advertising images 

is designed to construct a hierarchical visual representation 

foundation for attribute-level sentiment analysis by capturing 

multi-dimensional visual cues ranging from global ambiance 

to local detail. This is achieved through a tiered feature 

extraction and fusion mechanism. Given that advertising 

images often exhibit both holistic emotional ambiance and 

localized salient details, ResNet is adopted as the visual 

encoder. Shallow layers of the ResNet are employed to capture 

low-level visual features such as pixel-level color, texture, and 

edge contours, while deeper layers are used to extract object-

level semantics and abstract scene-level concepts. This results 

in a layered feature output that spans different receptive fields. 

In addition, YOLOv5x6 is incorporated as an object detector 

to locate key regions within advertising images. The top C 

regions with the highest confidence scores are retained to 

extract local fine-grained features, thereby minimizing the 

influence of background noise. During the feature fusion 

stage, upsampling techniques were applied to integrate deep 

semantic features with shallow spatial features at the token 

level. This process produces a multi-scale feature map denoted 

as D= (D1, D2, ..., De), enabling the model to perceive both 

global emotional tone and local attribute details 

simultaneously. To enhance semantic aggregation of visual 

attributes, average pooling was subsequently used to reduce 

the dimensionality of the multi-scale feature maps. This 

operation provides a structured multi-scale visual input for the 

downstream tasks of top-N visual attribute-viewpoint 

extraction and dynamic visual fusion. It ensures that attribute-

level sentiment classification across color, object, and text 

dimensions is grounded in hierarchically visual 

representations, thereby enabling precise cross-modal 

semantic alignment and emotional association mining. Let the 

fused multi-scale global image features and object-level 

features be denoted by [D1, D2, ..., De]H and [D1, D2, ..., De]Py, 

respectively. Each Du is mapped to a uniform dimensionality 

through average pooling, denoted by AVE, and the 

computation is formally defined as: 

 
[𝐷1, 𝐷2, … , 𝐷𝑒]𝐻; [𝐷1, 𝐷2, … , 𝐷𝑒]𝑃𝑦  

= 𝑉𝑖𝑠𝑢𝑎𝑙_𝐸𝑛𝑐𝑜𝑑𝑒𝑟([𝐻]; [𝑃𝑦]) 
(5) 

 

𝐷𝑢 = 𝐴𝑉𝐸(𝐷𝑢) (6) 

 

(b) Top-V visual attribute–viewpoint in advertising images 

The top-V visual attribute–viewpoint subtask is designed to 

provide fine-grained supervisory signals by selecting high-

confidence attribute–viewpoint pairs, addressing the semantic 

mapping challenge between multi-scale visual information 

and textual sentiment attributes in advertising images. Given 

the frequent use of object attributes and emotional viewpoints 

to convey marketing intent in advertising imagery, a pretrained 

ANP detector—DeepSentiBank—was employed. This 

detector analyzes the hierarchical visual representations 

produced by the multi-scale visual feature subtask and predicts 

the distribution over 2,089 potential ANPs. These ANPs span 

a wide range of attribute-level sentiment cues associated with 

objects, scenes, and text in advertising images. To mitigate the 

risk of error propagation due to noise from selecting a single 

highest-confidence ANP and to avoid the redundancy 

introduced by full-distribution supervision, the model selects 

the top-V ANPs ranked by prediction probability. These ANPs 

serve as the core supervisory signal, preserving high-salience 

and semantically diverse attribute–viewpoint combinations. 

This strategy ensures that emotionally significant visual 

elements are emphasized while background noise with low 

relevance is suppressed. During training, the cross-entropy 

loss function lossN was used to minimize the divergence 

between the model’s predicted ANP distribution O and the 

ground-truth top-V distribution H, thereby enhancing the 

model’s ability to detect attribute-level sentiment correlations 

such as color–vibrancy or packaging–premium. Let the 

trainable parameters be denoted by Q and y, and let f represent 

the dimensionality of BERT's textual embeddings. The 

predictive distribution O over the top-V ANPs is calculated as: 

 

𝑂 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (𝑄𝑆 (
1

𝑒
∑(𝐷𝑢)

𝑒

𝑢=1

) + 𝑦) (7) 

 

lossN is defined as: 
 

𝑙𝑜𝑠𝑠𝑁 = −𝐻 𝑙𝑜𝑔(𝑂) (8) 
 

Through this structured ANP supervision mechanism, the 

visual features of advertising images are transformed into 

computationally tractable attribute–viewpoint semantic units. 

These units provide explicit emotional dimension guidance for 

subsequent dynamic visual fusion, ensuring that visual 

attributes aligned with textual semantics are precisely located. 

As a result, deep cross-modal alignment and emotional 

integration at the attribute level are achieved. 

(c) Prompt-based dynamic visual fusion in advertising 

images 

The prompt-based dynamic visual fusion subtask is 

designed to achieve hierarchical integration of visual 
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information and textual semantics through a dynamic attention 

mechanism, with the text modality serving as the core. This 

subtask addresses the challenge posed by complex visual 

contexts in advertising images that may interfere with accurate 

sentiment analysis. To enable precise mapping between visual 

elements and textual attributes, multi-scale features are first 

extracted via the visual encoder and used to generate a visual 

prompt vector Nm. This vector is then passed through a 

multilayer perceptron (MLP) for dimensionality reduction and 

normalization, yielding a projected signal compatible with the 

semantic space of BERT’s hidden layers. The transformation 

is formally expressed as: 

 

𝑥𝑢
𝑚 =

exp(𝑀𝐿𝑃(𝐷𝑢))

∑ (exp(𝑀𝐿𝑃(𝐷𝑢)))
𝑒
𝑗=𝑚

 (9) 

 

Within each Transformer block of the BERT architecture, 

the processed visual prompts are concatenated with the key 

and value vectors of the corresponding layer. This allows the 

visual information to be incorporated as a prefix prompt, 

participating directly in the multi-head attention computation. 

As a result, the model is guided to dynamically attend to visual 

cues that are contextually relevant to the current textual 

attribute during encoding. Specifically, Nm is mapped to the 

same embedding space as the text representation through 

linear transformation Qm
σ, yielding the visual prompts σm

j and 

σm
n, which are prepended to the key and value vectors, 

respectively. The corresponding operations are defined as: 

 

𝑁𝑚 = [𝑁𝐻
𝑚; 𝑁𝑃𝑦

𝑚] = ∑(𝛽𝑢
𝑚 ⋅ 𝐷𝑢)

𝑒

𝑢=1

 (10) 

 

[𝜎𝑗
𝑚; 𝜎𝑛

𝑚] = 𝑄𝑓
𝑚𝑁𝑚 (11) 

 

Assuming that in the updated attention matrix, the query, 

key, and value vectors are represented by Qm
WGm-1, 

[σm
j;Qm

jGm-1], and [σm
n;Qm

nGm-1], respectively, the resulting 

fused attention can be expressed as: 

 

𝐹𝑢𝑠𝑖𝑜𝑛𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 

𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑄𝑊
𝑚𝐺𝑚−1 ⋅ [𝜎𝑗

𝑚; 𝑄𝑗
𝑚𝐺𝑚−1])

√𝑓
[𝜎𝑛

𝑚; 𝑄𝑁
𝑚𝐺𝑚−1] 

(12) 

 

Through normalized vectors computed by the dynamic 

mapping unit, the model is enabled to adaptively control the 

degree of visual feature integration across layers. Shallow 

layers are designed to emphasize alignment between 

character-level visual prompts and textual tokens, while 

deeper layers focus on high-level semantic fusion between 

global scene prompts and sentiment-bearing textual 

expressions. This mechanism preserves the dominant role of 

the text modality in attribute extraction, while leveraging 

visual prompts to filter irrelevant background elements. For 

instance, in advertising scenarios such as “limited-time 

offers,” this strategy allows the model to accurately capture the 

co-occurrence of red promotional labels in the visual input 

with textual sentiment phrases such as “rush” or “discount,” 

effectively avoiding interference from less relevant 

background components. Ultimately, through multi-level 

dynamic fusion, explicit associations are formed between 

multi-scale visual attributes and textual attributes. This results 

in a composite representation enriched with cross-modal 

semantic information, which is passed to the attribute-level 

sentiment classifier. The model's capability to decode multi-

level emotional cues in advertising images is thereby 

significantly enhanced. 

 

2.3 Text-centered multimodal training for the sentiment 

analysis model 

 

To address the challenges posed by redundant visual 

information and the weakening of the text modality’s 

dominance, a text-centered multimodal training strategy was 

adopted. Through differentiated input processing and a 

selective backpropagation mechanism, this strategy enables 

the model to selectively utilize visual information while 

reinforcing the primacy of textual semantics. Two input modes 

are defined: pure text input S and text–image hybrid input 

S+N. These inputs are independently processed by the 

Transformer model to generate their respective hidden 

representations, denoted as GS and GS+N. During training, the 

cross-entropy loss function was first employed to compute the 

divergence between the model’s output distributions under the 

two input modes, o(b|GM
S) and o(b|GM

S+N). This forces the 

output distribution of the hybrid input S+N to align more 

closely with that of the text-only input, thereby filtering out 

visual noise unrelated to textual semantics in the advertising 

image. Notably, gradient backpropagation was applied only to 

the gradient loss of the pure text input S, ensuring that the text 

modality retains its central role in attribute extraction and 

sentiment classification. This prevents extensive visual 

content from overshadowing textual signals during gradient 

updates. For instance, when processing advertising images 

containing promotional slogans, this strategy enables the 

model to prioritize sentiment-related keywords such as 

“limited-time” and “special offer” in the text, while using 

visual prompts to selectively focus on salient visual elements 

like red promotional labels and price digits, suppressing 

interference from irrelevant background objects or cluttered 

scenes. The expression is as follows: 

 

𝑙𝑜𝑠𝑠𝑆+𝑁 = 𝐾𝐿(𝑜(𝑏|𝐺𝑆+𝑁
𝑀 )||𝑜(𝑏|𝐺𝑆

𝑀)) 

= ∑𝑜(𝑏|𝐺𝑆+𝑁
𝑀 )log(𝑜(𝑏|𝐺𝑆

𝑀))

𝑏∈𝐵

 (13) 

 

This function loss is calculated as the negative log-

likelihood of the ground-truth label sequence, and the 

minimization of lossS enhances the model’s ability to align 

text–visual attribute pairs such as price–affordability or 

packaging–premium. This ensures that visual information 

serves as a supplementary cue to textual semantics during 

multimodal fusion, rather than acting as the dominant factor. 

Let η, ω, and ε denote the weights used to modulate the 

contribution of each module within the overall objective 

function. The expressions are as follows: 

 

𝑙𝑜𝑠𝑠𝑆 = −∑ log(𝑜(𝑏|𝐺𝑆
𝑀))

𝑣

𝑢=1

 (14) 

 

𝑙𝑜𝑠𝑠𝐿𝑆𝑁𝑋𝐷 = 𝜂 ⋅ 𝑀𝑆 +𝜔 ⋅ 𝑀𝑛 + 𝜀 ⋅ 𝑀𝑆+𝑁 (15) 

 

This training strategy preserves the enhancing role of visual 

information in textual sentiment analysis while simultaneously 

addressing the interference introduced by complex visual 

contexts in advertising images through a text-centered gradient 
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control mechanism. As a result, the model's ability to 

accurately capture cross-modal semantic associations at the 

attribute level is significantly improved. This approach is 

particularly well-suited to advertising scenarios in which text 

serves as a dominant guide for visual sentiment interpretation.  

Figure 4 presents the architecture of the attribute-level 

sentiment analysis system designed for advertising image–text 

pairs. The system achieves end-to-end processing through the 

coordination of multiple functional modules, spanning from 

data acquisition to final sentiment analysis. Initially, 

advertising images are collected from various sources such as 

social media and e-commerce platforms. Following 

acquisition, the images undergo preprocessing operations, 

including filtering, denoising, and cropping, to remove 

irrelevant content. A layout parsing filter is then applied to 

analyze the spatial distribution of image elements, resulting in 

a clean and structured visual input for downstream processing. 

In the feature extraction and fusion layer, the multi-scale 

visual feature subtask is utilized to extract hierarchical visual 

attributes—encompassing global scenes, local objects, and 

textual characters—from advertising images. This process 

yields multi-scale feature representations. Simultaneously, 

cross-modal alignment between visual features and 

advertising texts is achieved through the prompt-based 

dynamic visual fusion mechanism, enabling the formation of 

semantic associations such as color–emotion and object–

attribute. This enhances the complementarity between visual 

and textual information. 

During model training, the top-V visual attribute–viewpoint 

supervision strategy was employed. A pretrained ANP 

detector was used to identify high-confidence ANPs, which 

serve as supervision signals. Sentiment prediction of vision-

language fusion was then optimized using cross-entropy loss. 

A text-centered multimodal training strategy was further 

designed by differentiating between pure text and text–image 

hybrid inputs. KL divergence loss was applied to constrain the 

output of S+N to align with the semantic space of S, thereby 

filtering out unrelated visual noise and reinforcing the 

dominant role of textual semantics in attribute extraction. This 

setup improves the model’s ability to capture fine-grained 

cross-modal associations. In addition, the system incorporates 

a floating matrix construction module to encode visual 

elements of advertising images in a structured format. This is 

supported by a set of data resources, including a preprocessing 

library, caching modules, and a knowledge base, all of which 

provide efficient support for both training and inference 

phases. Ultimately, the system enables end-to-end processing 

that spans multi-scale attribute parsing, semantic alignment 

between image and text, and sentiment viewpoint 

classification. Sentiment tendencies are output across 

dimensions such as product and scene, offering fine-grained 

multimodal insights into advertising effectiveness and 

consumer emotion. By tightly integrating visual and textual 

information, the system enhances both the accuracy and 

robustness of attribute-level sentiment analysis. 

 

Table 1. Performance comparison (%) between the proposed method and existing models on the advertising image sentiment 

analysis task 

 

Modality Model 
Visual Genome Flickr30k Entities 

P R F1 P R F1 

Text 

ELECTRA 52.8 52.9 52.6 58.6 62.3 61.2 

LLaMA 65.4 61.5 61.5 54.2 58.5 56.8 

Longformer 61.2 63.4 62.8 64.5 64.5 64.5 

DeBERTa 57.8 57.9 62.5 64.5 63.5 63.2 

DistilBERT 61.5 64.5 62.6 61.5 65.2 65.8 

Text + Image 

UNITER 61.3 62.3 62.8 62.8 62.8 61.5 

FLAVA 62.8 62.8 62.4 66.2 62.8 62.8 

ASGCN 48.5 45.8 47.5 54.8 54.5 55.5 

RAM 43.2 46.2 44.6 55.2 53.5 52.4 

HAN 66.4 62.5 63.5 66.8 64.5 64.8 

XLNet 62.8 65.8 64.5 66.5 68.9 66.3 

CycleGAN 64.5 68.9 66.8 64.8 67.5 66.8 

PointNet++ 64.2 67.4 66.5 65.2 67.2 66.4 

X-VLM 66.9 67.5 67.8 64.8 66.5 66.2 

Proposed method 68.9 71.5 72.3 67.9 67.5 67.8 

 

Table 2. Ablation study results of the proposed method (%) 

 

Model Configuration 
Visual Genome Flickr30k Entities 

P R F1 P R F1 

Full model 78.5 81.5 82.5 77.5 77.2 77.5 

Without the local and character-level fine-grained alignment 67.2 71.6 68.9 65.2 66.4 65.2 

Without the global and character-level fine-grained alignment 66.5 71.8 68.1 65.4 66.8 66.4 

Without the global and local fine-grained alignment 66.4 71.5 67.5 64.8 65.9 65.8 

Local + character-level fine-grained alignment only 66.8 71.6 68.2 65.2 67.2 66.2 

Global + character-level fine-grained alignment only 67.2 71.8 71.5 65.8 67.4 66.8 

Global + local fine-grained alignment only 68.5 72.8 71.6 66.9 67.9 67.9 

Without the multi-granularity visual-to-text translation and alignment for advertising images 69.5 67.8 66.8 63.5 65.4 64.2 

Without the top-V visual attribute–viewpoint subtask 64.2 71.6 67.5 65.8 65.2 65.2 

Without the prompt-based dynamic visual fusion of advertising images 68.5 68.9 66.5 62.5 63.4 62.3 

Without the text-centered multimodal model training 65.3 71.5 68.9 66.5 66.9 66.8 
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Figure 4. System architecture for attribute-level sentiment analysis in advertising images and texts 

 

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

 

A detailed examination of the performance data presented 

in Table 1 reveals the superior effectiveness of the proposed 

model in advertising image sentiment analysis. On the Visual 

Genome dataset, an F1-score of 72.3% was attained, 

significantly surpassing both text-only models and baseline 

multimodal frameworks. On the Flickr30k Entities dataset, the 

proposed model achieved an F1-score of 67.8%, 

outperforming competitive counterparts such as the eXtensible 

Vision-Language Model (X-VLM). Specifically, text-

dominant models demonstrated limited capability in capturing 

visual–sentiment associations due to the absence of visual 

inputs, leading to lower accuracy of sentiment analysis. For 

instance, the highest F1-score achieved among text-only 

models on the Visual Genome dataset was merely 62.6%, 

markedly lower than the 72.3% attained by the proposed 

approach. This performance gap underscores the 

indispensable role of visual information in the sentiment 

analysis of advertising images. Although certain text + image 

models such as the UNiversal Image-TExt Representation 

(UNITER) and the Foundational Language and Vision 

Alignment (FLAVA) incorporated visual information, they 

lacked targeted optimization for the multi-scale alignment 

challenges inherent in advertising scenarios. The Aspect-

specific Graph Convolutional Networks (ASGCN), for 

example, yielded an F1-score of only 47.5%, which was 

primarily attributed to its inability to model fine-grained 

visual–textual correlations, thereby resulting in suboptimal 

semantic fusion. By contrast, the proposed model employed a 

hierarchical alignment mechanism that enabled precise 

mapping among visual elements, textual attributes, and 

affective viewpoints. This design facilitated a 1.6 percentage 

point improvement in F1-score over X-VLM on the Flickr30k 

dataset, thereby confirming the critical importance of cross-

modal alignment. Furthermore, the integration of multi-scale 

visual attribute fusion and a text-centered training strategy 

enabled comprehensive extraction of affective features while 

suppressing irrelevant visual noise. 

In summary, the experimental findings robustly validate the 

innovative design of the proposed model, which leverages 

multi-granular alignment, hierarchical visual fusion, and a 

text-centered training paradigm to achieve significant 

performance gains on public benchmark datasets. This 

approach successfully addresses long-standing challenges in 

advertising image sentiment analysis, including weak cross-

modal semantic association, visual noise interference, and 

difficulty in multi-scale attribute fusion. Beyond surpassing 

existing techniques, the model offers a highly accurate and 

efficient solution for fine-grained sentiment understanding in 

advertising contexts, demonstrating both practical value and 

scholarly innovation. 

The ablation study results presented in Table 2 confirm the 

superior performance of the complete model on both the 

Visual Genome and Flickr30k Entities datasets. On the Visual 

Genome dataset, the proposed method achieved a precision of 

78.5%, a recall of 81.5%, and an F1-score of 82.5%. Similarly, 

an F1-score of 77.5% was attained on the Flickr30k Entities 

dataset, substantially outperforming all ablated variants. When 

any one of the fine-grained alignment mechanisms—global, 

local, or character-level—was removed, the F1-score dropped 

to 68.9% and 65.2%, respectively, indicating that the 

alignment of multi-scale visual elements, including global 

scenes, local objects, and embedded textual characters, 

constitutes the foundation for accurate multimodal semantic 

correlation. The removal of any alignment granularity was 

shown to impair sentiment feature extraction. Moreover, when 

only a single alignment granularity was retained, the F1-score 

was limited to 68.2%, far below that of the full model, 

underscoring that the fusion of multi-scale visual attributes is 

essential for comprehensive sentiment understanding in 

advertising images. When the text-centered multimodal 

training strategy was excluded, the F1-score declined to 

69.8%, revealing the importance of this strategy in filtering 

irrelevant visual noise through loss function constraints. This 

mechanism was found to preserve the dominant role of the 

textual modality in attribute-level sentiment analysis. As a 

result, the model was still able to accurately identify core 

sentiment associations—such as “price–affordability”—even 

in the presence of distracting visual content, thereby enhancing 

generalization capability. 

Taken together, these findings demonstrate that the 
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proposed attribute-level sentiment analysis model—grounded 

in multi-level vision-language alignment and fusion—

significantly improves the precision of sentiment feature 

extraction and the capture of cross-modal semantic 

associations through the joint optimization of multi-

granularity alignment, multi-scale visual fusion, and text-

centered training. The model achieved consistently high 

performance across benchmark datasets. This confirms the 

model’s effectiveness and its potential to serve as a robust and 

efficient technical solution for fine-grained sentiment analysis 

in advertising scenarios, offering substantial practical value. 

 

 
 

Figure 5. Sensitivity analysis of model performance with 

respect to top-V visual attribute–sentiment pairs 

 

Figure 5 illustrates the sensitivity of model performance to 

the number of top-V visual attribute–sentiment pairs. On the 

Visual Genome dataset, the F1-score increased steadily from 

69% to 71% as the number of top-V pairs increased from 0 to 

10, indicating that the inclusion of the top 10 high-confidence 

visual attribute–sentiment pairs significantly enhanced the 

model’s ability to capture cross-modal semantic associations. 

This trend confirmed the essential role of the top-N visual 

attribute–viewpoint subtask, in which the top-N ANPs were 

selected as supervisory signals. This approach was shown to 

avoid the error propagation of individual ANPs while filtering 

out redundant noise from the full distribution. On the 

Flickr30k Entities dataset, the F1-score reached 68.5% when 

top-10 ANPs were employed, outperforming both the top-1 

and full-distribution (whole) conditions. This result 

demonstrated the generalizability of the visual attribute–

sentiment pair selection strategy for advertising images, with 

the top 10 high-confidence ANPs offering an optimal trade-off 

between supervision quality and quantity. Performance 

degradation was observed when the number of selected ANPs 

exceeded 10, due to the introduction of low-confidence pairs 

that introduced semantic noise and interfered with text-

centered sentiment inference. 

The results confirmed that optimal performance was 

achieved at top-10, validating the mechanism’s ability to focus 

on the most salient visual–sentiment associations within 

advertising images. This effect aligned closely with the multi-

scale visual fusion subtask, in which the top 10 ANPs served 

as supervisory signals that guided the alignment of multi-scale 

visual features with textual semantics, thereby improving the 

precision of the mapping between visual elements, textual 

attributes, and sentiment viewpoints. The variation in model 

performance across different top-V configurations was found 

to be tightly coupled with the proposed system’s multi-

granularity vision-language alignment, dynamic visual fusion, 

and text-centered multimodal training strategy. Specifically, 

the top 10 ANPs were shown to synergize with multi-

granularity alignment by enabling fine-grained 

correspondence between visual elements and text across 

scales. Through dynamic visual fusion, these associations 

were embedded into the key/value prefix structure of BERT, 

enhancing cross-modal semantic understanding. When top-V 

exceeded 10, the text-centered training mechanism was 

observed to suppress noise from low-quality ANPs via loss 

function constraints, preserving the dominance of textual 

features in sentiment analysis. This coordinated design 

enabled the model to achieve peak performance at top-10, 

thereby demonstrating both the efficiency and robustness of 

the proposed method in sentiment analysis of advertising 

images. 

 

 
 

Figure 6. Sensitivity analysis of the hyperparameter ε (with 

ω = 1 and η = 1) 

 

Figure 6 illustrates the effect of the hyperparameter ε (with 

ω = 1 and η = 1) on model performance in terms of F1-score. 

On the Visual Genome dataset, as ε increased from 0.1 to 0.3, 

the F1-score rose from 68% to 71%, indicating that a moderate 

increase in ε strengthened the supervisory signal for vision-

language alignment. This enhancement improved the 

precision in matching attribute pairs such as “price–

affordability.” However, performance degraded when ε 

exceeded 0.3, due to the overemphasis on visual features, 

which introduced noise and weakened the dominance of the 

textual modality. A similar trend was observed on the 

Flickr30k Entities dataset, where the optimal F1-score of 68% 

was achieved at ε = 0.3. This outcome confirmed the pivotal 

role of ε in regulating the effectiveness of multimodal fusion. 

The observed behavior aligned with the loss function’s design, 

in which the contributions of text, vision, and noise modules 

were jointly regulated by η, ω, and ε. At ε = 0.3, visual 

information was effectively supplemented while irrelevant 

noise was suppressed, thus mitigating interference from 

redundant visual content. 

In summary, the empirical findings demonstrated that the 

optimal setting of ε = 0.3 yielded superior performance across 

both Visual Genome and Flickr30k Entities datasets. These 

results validated the efficacy of the loss function and the 

coordinated multi-module framework. By balancing visual 

and textual information while mitigating noise, the proposed 

model significantly enhanced both the precision and 

robustness of sentiment analysis in advertising images. 

Moreover, the hyperparameter-controlled framework offered 

an efficient solution for capturing fine-grained cross-modal 
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sentiment associations, underscoring its theoretical 

significance and practical applicability. 

As shown in Figure 7, the F1-score consistently increased 

with the number of image encoder layers on both the Visual 

Genome and Flickr30k Entities datasets. On the Visual 

Genome dataset, an encoder with 152 layers achieved an F1-

score of 71%, representing a 1.5% improvement over the 18-

layer variant. Similarly, on the Flickr30k Entities dataset, the 

152-layer encoder yielded an F1-score of 68.2%, surpassing 

the 18-layer model by 2.4%. These results indicate that deeper 

encoders facilitated the extraction of richer multi-scale visual 

features, encompassing both abstract global semantics and 

fine-grained local textures, thereby providing hierarchical 

visual representation for vision-language alignment. For 

instance, the increased receptive field of deeper networks 

enhanced the model's ability to capture intricate associations 

in advertising imagery, such as "premium packaging – golden 

texture – positive sentiment toward product quality" more 

accurately, enhancing the accuracy of multimodal semantic 

fusion. At the same time, diminishing returns were observed 

as encoder depth increased, suggesting that the coordinated 

multi-module framework balanced feature richness with 

computational efficiency and prevented overfitting, thereby 

ensuring the effectiveness of deep encoding. 

 

 
(a) Visual Genome dataset 

 

 
(b) Flickr30k Entities dataset 

 

Figure 7. Performance comparison across different numbers 

of image encoder layers 

 

In summary, experimental results demonstrated that the 

proposed model exhibited superior performance in advertising 

image sentiment analysis by optimizing the depth of the image 

encoder and integrating a coordinated design of multi-

granularity alignment, dynamic visual fusion, and a text-

centered training strategy. The adoption of a deeper encoder 

enhanced the extraction of multi-scale visual features, while 

the collaborative functioning of multiple modules enabled 

precise capture of associations between visual and textual 

semantics. This effectively addressed the limitations of 

shallow visual feature hierarchies and insufficient cross-modal 

semantic fusion. The model achieved a high F1-score on 

public benchmark datasets, thereby validating its 

effectiveness. A robust and efficient solution was thus 

provided for fine-grained sentiment analysis in advertising 

scenarios, offering significant value for both academic 

research and real-world applications. 

 

 

4. CONCLUSION 

 

As for the attribute-level sentiment analysis task in 

advertising images, a hierarchical vision-language alignment 

and fusion model was proposed. By integrating multi-

granularity vision-language alignment, multi-scale visual 

attribute fusion, and text-centered training, a complete 

framework was established for feature extraction and cross-

modal semantic integration. The core components of the 

framework comprise the following: (a) Multi-granularity 

alignment was applied to global scenes, local objects, and 

character-level text in advertising images, enabling a precise 

mapping from visual elements to textual attributes and 

sentiment viewpoints. This approach effectively addressed the 

issue of weak visual-textual semantic associations. (b) Top-V 

visual attribute-viewpoint pairs and dynamic visual prompts 

were fused to extract multidimensional sentiment features—

such as color, shape, and embedded text content—thereby 

enhancing the accuracy of fine-grained sentiment analysis. (c) 

A text-centered training paradigm was adopted to suppress 

irrelevant visual noise and reinforce the dominant role of text, 

thereby improving model robustness in complex contexts. 

Empirical results confirmed the model’s effectiveness. On 

the Visual Genome dataset, an F1-score of 72.3% was 

achieved, while an F1-score of 67.8% was obtained on the 

Flickr30k Entities dataset, both significantly outperforming 

pure-text baselines and multimodal benchmarks. Ablation 

studies demonstrated that the removal of core components led 

to a decline in F1-score by 5%–10%, underscoring the 

necessity of coordinated optimization. Sensitivity analyses 

revealed that performance peaked in terms of supervision 

quality and feature hierarchy when the top 10 visual attribute 

pairs were used (F1-score = 71%) and when a 152-layer image 

encoder was employed (F1-score = 71%), validating the 

rationality of the model’s design. 

Several limitations remain. First, data dependence persists, 

as annotation of non-public datasets incurs high costs, 

restricting model generalizability. Second, the computational 

complexity associated with deep modules results in slower 

inference, hindering deployment in real-time scenarios. Third, 

cross-domain generalization remains limited, with reduced 

robustness when processing low-quality images or 

multilingual textual content. Future research may be directed 

toward the following areas: (a) the adoption of self-supervised 

or weakly supervised learning strategies to reduce reliance on 

annotations; (b) model lightweighting techniques to enhance 

inference efficiency; and (c) cross-lingual and cross-cultural 

extensions to improve scalability in global applications. 

In summary, through innovative design, a robust solution 

was provided to the core challenges of sentiment analysis in 

advertising imagery, providing both theoretical and technical 

support for the domain. Future efforts focusing on efficient 

data utilization, lightweight architecture design, and cross-

domain generalization are expected to further promote the 
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practical deployment and scholarly development of 

advertising sentiment analysis technologies, thereby 

supporting the intelligent evolution of the advertising industry. 
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