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Purtscher Retinopathy (PR) is a severe vision-threatening disorder that is frequently 

connected with trauma, severe pancreatitis, or connective tissue diseases. Conventional 

diagnostic techniques depend on fluorescein angiography and clinical examination, both of 

which can be intrusive and may not always yield conclusive results. Spectral-Domain 

Optical Coherence Tomography (SD-OCT) is a non-invasive imaging technique that 

produces high-resolution cross-sectional images of the retina and allows for accurate 

evaluation of retinal layers and illnesses. The proposed method implements a panoptic 

segmentation algorithm to detect PR using SD-OCT image data in an unsupervised manner. 

The Panoptic Feature Pyramid Network (FPN) detects and categorizes clinical indications 

of PR using instance and semantic segmentation. To detect additional challenging factors, a 

deep Convolutional Neural Network (CNN) is combined with encoder-decoder structures 

and instance segmentation networks. When it came to recognizing and classifying retinal 

disorders connected to PR, the proposed approach showed excellent accuracy. The 

performance of the proposed method was assessed using quantitative measures such as the 

Intersection over Union (IoU), Dice coefficient, pixel accuracy, precision, recall, and F1 

score. This approach offers a non-invasive and efficient tool for the early detection of PR, 

allowing for timely management and better patient outcomes. 
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1. INTRODUCTION

The most common imaging method for eye disease 

diagnosis is OCT. Faster acquisition and optical penetration 

depth are two advantages of Spectral-Domain Optical 

Coherence Tomography (SD-OCT) for retinal imaging [1]. It 

demonstrates how hyper-reflective the retinal layers are. The 

considerable rendering of the long wavelength SD-OCT 

makes it superior to the short wavelength SD-OCT. TD-OCT, 

or Time Domain-OCT, is the initial version of OCT. FD-OCT, 

or Fourier Domain-OCT, is the name of the second-generation 

OCT. SS-OCT (Swept Source-OCT) is the next generation of 

OCT after FD-OCT [2]. SD-OCT offers less signal decay and 

a longer wavelength of depth images to produce deeper 

penetration of observation. It gives relevant differences among 

individual retinal layers by its contrast to highlight the clinical 

variations. OCT provides a valuable assessment of Purtscher 

Retinopathy’s (PR) condition [3]. When typical retinal signs 

are present without evidence of trauma, the condition is known 

as Purtscher-Like Retinopathy (PLR) [4]. PR was invented in 

1910 by Otmar Purtscher [5]. He found a man who had fallen 

from a tree with head damage. It occurs mainly due to head 

and thorax traumas. PR can also be caused by chest 

compression, femur fractures, long bone fractures, crush 

traumas to bones, avulsion fractures, humeral tuberosity, 

shoulder joint dislocation, and barotrauma. 

PR is used to represent the retinopathy occurrence in the eyes 

due to trauma, acute pancreatitis, FES (Fat Embolism 

Syndrome), childbirth, and renal failure. There will be 0.24 

cases per million population rise in the PR year [6]. As shown 

in Figure 1, the disease is marked by cotton wool patches, 

intra-retinal haemorrhages, and flecks. Leukoembolization, 

endothelial damage, C5, and blockade of arterioles are the 

implications of PR.  

(a) (b) 

Figure 1. Pathological PR: (a) Sub-conjunctival hemorrhage, 

(b) Purtscher Flecken is highlighted in the arrow [7]

The occlusion causes Purtscher Flecken on the capillary bed. 

The nerve fiber layer infarcts and leads to retinal whitening 

spots of different sizes. This is the reason for bilateral vision 
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loss among the patients. Purtscher Flecken refers to the many 

polygonal intra-retinal whitening patches located at the 

posterior pole and surrounding the optic disk [7].  

The infection of the outer retina is difficult to visualize due 

to the thick layers that occur in the acute phase. The 

photoreceptors also get affected at this phase.  

Microperimetry gives the functional side of morphological 

alterations on OCT [8]. Increased thoracic pressure causes 

venous reflex and leads to endothelial damage. There might be 

50 microns on either side of the retinal arterioles and venules. 

In rare cases, whiteness surrounds the venules. It is possible 

that a pseudo-cherry-red patch is present in the macula. The 

lesions along the nerve fiber layer on the retinal surface may 

be elevated by the white cotton wool patches. At that point, the 

lesions' border will become indistinct. Further causes 

subsequent occlusion due to microvascular circulation 

incompetence. 

The novelty of the proposed approach combines advanced 

imaging and segmentation techniques to provide an accurate, 

non-invasive diagnostic tool for PR, with the potential for 

improving clinical practices and patient care.  

The proposed system offers the following novel 

contributions.  

 

i. Unsupervised Panoptic Segmentation eliminates the need 

for labeled datasets, making it suitable for rare diseases 

like PR. 

ii. Panoptic Feature Pyramid Network (FPN) integration 

combines instance and semantic segmentation to provide 

a thorough understanding of retinal disorders. 

iii. Utilization of SD-OCT imaging provides a high-

resolution, non-invasive alternative to fluorescein 

angiography for retinal layer monitoring. 

iv. Deep CNN-Based Encoder-Decoder structure enables 

pixel-wise classification of PR-related abnormalities in 

SD-OCT images. 

v. Instance segmentation for pathological feature detection 

detects individual PR-related lesions (e.g., cotton-wool 

spots, hemorrhages). 

 

The proposed approach introduces a unique unsupervised 

panoptic segmentation framework for identifying PR from 

SD-OCT images, overcoming the limitations of previous 

diagnostic tools. 

Unlike conventional methods that depend on fluorescein 

angiography and manual clinical assessment, which are 

invasive and subjective, the proposed approach utilizes high-

resolution SD-OCT imaging for automated and non-invasive 

detection. Traditional deep learning-based segmentation 

models primarily utilize semantic segmentation, whereas this 

method employs a Panoptic FPN to integrate both semantic 

segmentation for pixel-wise classification of retinal 

abnormalities and instance segmentation for distinct 

identification of pathological elements such as cotton-wool 

spots and hemorrhages enabling precise lesion localization. 

Unlike supervised deep learning models, which require 

extensive labeled datasets, this approach operates in an 

unsupervised manner, significantly reducing annotation 

dependency and enhancing applicability to rare diseases. The 

model architecture integrates a deep CNN-based encoder-

decoder structure, optimizing multi-scale feature extraction 

for enhanced segmentation accuracy. The instance 

segmentation component is trained to separate overlapping 

pathological features, improving granularity in PR lesion 

detection. Additionally, multi-level feature fusion within the 

FPN ensures a robust hierarchical representation of PR-related 

clinical signs.  

The article is structured in the following manner. Section 2 

explains the literature review, Section 3 describes the dataset 

used in the study, Section 4 presents the proposed technique, 

Section 5 describes the research implementation, Section 6 

describes the results and discussions, and Section 7 concludes 

the research. 

 

 

2. LITERATURE REVIEW 

 

Purtscher's and Purtscher-like retinopathy have an 

estimated yearly occurrence of 0.24 cases/million, and its 

identification is mostly symptomatic in the absence of a 

defined etiology [9]. Although the pathogenesis of Purtscher-

like retinopathy is unknown, numerous ideas have been 

offered based on the fundamental systemic condition, although 

it is assumed to be induced by embolization that causes 

arteriolar blockage and ischemia [10]. The lesions indicate the 

existence of the disease, but they appear in only half of the 

patients. Individuals must be recognized from cotton-wool 

patches, which partially cover vessels and lack appropriate 

boundaries. PR patients frequently describe sudden, painless 

vision loss 2 to 48 hours after the underlying illness. Findings 

are frequently apparent bilaterally also be seen unilaterally 

[11-13]. 

Xiao et al. [14] developed multimodal imaging in PR, which 

revealed capillary nonperfusion, quantified the foveal 

avascular zone, and found an ellipsoid zone abnormality in 

acute PR. Optic disc enlargement, retinal edema, and pseudo-

cherry spots may also appear in the early stages, yet they are 

less prevalent. In the majority of circumstances, the illness is 

bilateral [15, 16]. Four young women experienced severe 

bilateral sight loss due to numerous retinal arteriolar 

occlusions within 24 hours of delivery [17]. Preeclampsia 

complicated labor in two cases, necessitating a cesarean 

surgery. Rothbächer et al. [18] provided insight into PR after 

ENT surgery. The study lacks advanced imaging techniques 

like OCT angiography or fluorescein angiography that could 

have offered more detailed visualization of the retinal 

vasculature. These factors reduce the strength of the 

conclusions and highlight the need for further investigation. 

Ophthalmoscopy and fluorescein angiography revealed 

signs of Purtscher's Retinopathy-like ischemia retinal 

whitening in several superficial peripapillary and macular 

regions. The white spots in the eyes of all four patients had 

disappeared after eight weeks, and three of them had much 

better visual acuity. The pathogenesis of this illness is 

unknown. It may include arteriolar blockage caused by 

complement-induced leukoemboli generated after parturition 

[19, 20].  

 

 

3. DATA SET 

 

The datasets for the proposed study are taken from 1980 to 

2010 and come from Medline, EMBASE, ISI, EBSCO, 

Science Direct, and Google Scholar. Purtscher-like 

Retinopathy was identified in 10 of the 5688 individuals 

studied, in that, 9 are women and a man. Purtscher-like 

Retinopathy was found in 0.16% of people. With a range of 10 

to 40 years, the average age was 25. The follow-up period 
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lasted an average of 12 months. Ninety-three percent of 

patients had cotton wool patches, sixty-five percent had retinal 

hemorrhages, and sixty-three percent had Purtscher Flecken. 

The detailed description is shown in Table 1. 

 

Table 1. The dataset used for experimentation 

 
Total Individuals Studied 5688 

Purtscher-like 

Retinopathy Cases 
10 cases 

Gender Distribution Women: 9, Men: 1  

Age Range 10 to 40 years 

Average Age 25 years 

Follow-up Duration Average: 12 months 

Lesion Types 

93% of patients with Cotton Wool 

Spots 

65% with Retinal Hemorrhages 

63% with Purtscher Flecken 

Total Number of Images 10 PR images (from the 10 cases) 

Dataset Size (Training) 70% of total images (7 images) 

Dataset Size (Validation) 15% of total images (1 image) 

Dataset Size (Testing) 15% of total images (2 images) 

 

 

4. METHODOLOGY  

 

PR is a painless visual activity problem and causes visual 

disturbance. To optimize the Panoptic FPN for detecting PR 

from SD-OCT images, several key modifications has been 

made to suit the specific characteristics and challenges of this 

medical imaging task. These changes primarily focused on the 

network’s architecture, preprocessing techniques, and fine-

tuning of hyperparameters. 

Figure 2 shows the structure of the proposed technique. 

Instance and semantic segmentation outputs are concurrently 

predicted by the proposed CNN. ResNet-50 serves as the 

foundation of the proposed network and was selected due to 

its capacity to extract reliable features from intricate medical 

images, including SD-OCT scans. By addressing the 

vanishing gradient issue, ResNet-50's residual connections 

make deep network training more effective. ResNet-50 

balances model performance and computational efficiency in 

comparison to other possible backbones like ResNet-101 or 

EfficientNet. ResNet-101 has a deeper architecture that may 

be able to capture finer-grained information, but because of its 

greater complexity, training durations, and processing costs 

may rise. However, EfficientNet needs a lot of fine-tuning for 

medical image applications, even though it could provide 

better accuracy. ResNet-50 was selected due to its shown 

efficacy in medical imaging applications and its ability to 

handle large image datasets with manageable processing 

requirements. 

A ResNet-50 feature extractor constitutes the foundation for 

the two separate semantic and instance segmentation sections 

of the network. First, a Region Proposal Network (RPN) is 

used to generate region proposals for potential objects in the 

images. Following their retrieval from the feature map, the 

final layers of ResNet-50 are applied to the features that 

correspond to these predictions. The produced feature map is 

first enlarged by the semantic segmentation branch using a 

Pyramid Pooling Module, and then the source image's 

dimensions are adjusted using hybrid upsampling. Once a 

deconvolution operation has been completed, the predictions 

are bilinearly resized by this hybrid upsampling technique to 

suit the dimensions of the input image. The result of this 

branch is a pixel map, where each element denotes the 

anticipated class name for that specific pixel in the input image.  

 

 
 

Figure 2. Architecture of the proposed system 

 

Lastly, Panoptic output image is input using these attributes. 

Extractor of features (ResNet-50) CNN's Semantic 

Segmentation CNN Instance Segmentation. This branch 

produces a set of pixel clusters with class labels that should 

match the locations of different items in the image following 

non-maximum suppression. Post-processing adjustments are 

used to these pixel clusters to produce per-object normalized 

instance masks with the dimensions of the input. 

The Panoptic FPN was effectively customized for PR 

detection by: 

• Choosing ResNet-50 as the backbone for efficient feature 

extraction. 

• Applying mean filtering and CLAHE for preprocessing 

to reduce noise and enhance image contrast. 

• Designing a dual-branch network for semantic and 

instance segmentation. 

• Using hybrid upsampling to ensure accurate pixel-level 

labeling. 

• Fine-tuning hyperparameters and loss functions to 

optimize segmentation performance. 

This customized method addresses the unique difficulties in 

identifying and classifying lesions linked to PR in SD-OCT 

images by utilizing the advantages of instance and semantic 

segmentation as well as the multi-scale feature extraction 

capabilities of the FPN architecture. Furthermore, a 

comparison of the segmentation findings with ground truth 

annotations from experienced ophthalmologists is necessary to 

confirm the results. The model undergoes iterative refinement 

and fine-tuning based on feedback from the validation process. 

 

4.1 Preprocessing 

 

To ensure the network’s robustness in handling noise and 

variations in SD-OCT images, two preprocessing techniques 

were employed: Mean Filtering and Contrast Limited 

Adaptive Histogram Equalization (CLAHE). 
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Mean Filtering reduces noise in the SD-OCT images. The 

mean filter smoothes out noise while maintaining edges by 

averaging pixel values within a nearby region. This is crucial 

in medical imaging, where fine details are often vital for 

diagnosis but can be overshadowed by noise.  

Consider, an input OCT image I and a mean filter of size 

𝑘 × 𝑘, the output image I′ is obtained by convolving I with the 

mean filter to reduce the noise. For a pixel located at (𝑖, 𝑗), the 

mean-filtered pixel value 𝐼′(𝑖, 𝑗), is expressed as follows. 

 

𝐼′(𝑖, 𝑗) =
1

𝑘2
∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)

𝑘−1

2

𝑛=−
𝑘−1

2

𝑘−1

2

𝑚=−
𝑘−1

2

  (1) 

 

where, the input image is represented by I. I’ is the output 

(mean-filtered) image; The size of the kernel (filter) is denoted 

by k. The indices that run across the kernel are m and n, 

whereas (i,j) denotes the orientation of the pixel in the image. 

The mean filter kernel K of size 𝑘 × 𝑘 is defined as follows.  

 

𝐾 =
1

𝑘2 [

1 1 . . . 1
1 1 . . . 1
. . . . . . . . .
1 1 . . . 1

]  (2) 

 

This kernel has each element equal to 
1

𝑘2. 

The mathematical model states that the new value of pixel 
𝐼′(𝑖, 𝑗) is the average of the values of the pixels over time 

𝑘 × 𝑘 neighborhood cantered around (i,j). 

Normalizing the intensity values of the mean-filtered image 

involves rescaling the pixel intensities to a standard range, 

such as [0, 1] or [0, 255] through the following equation.  

 

𝐼′𝑛𝑜𝑟𝑚(𝑖, 𝑗) =
𝐼′(𝑖,𝑗)−𝑚𝑖𝑛(𝐼′)

𝑚𝑎𝑥(𝐼′)−𝑚𝑖𝑛((𝐼′)
  (3) 

 

where, 𝑚𝑖𝑛(𝐼′) and 𝑚𝑎𝑥(𝐼′) are the lowest and highest pixel 

values in the mean-filtered image. 

CLAHE highlights fine-grained details of the lesions that 

are critical for accurate segmentation. CLAHE adapts the 

contrast enhancement locally, ensuring that regions with 

varying intensities are adjusted without over-amplifying noise. 

This phase was essential for increasing the visibility of lesions 

that are important markers of PR, such as hemorrhages, 

exudates, and cotton wool patches. CLAHE is used to increase 

the contrast of the image. 

 

𝐼′𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = 𝐶𝐿𝐴𝐻𝐸(𝐼′𝑛𝑜𝑟𝑚) (4) 

 

4.2 Architecture of panoptic FPN with semantic and 

instance segmentation 

 

The network was designed with two main branches: 

semantic segmentation and instance segmentation, to handle 

lesion types (semantic) and the precise localization of each 

lesion (instance). This dual approach allows the model to 

effectively differentiate between multiple lesions of the same 

type and improve the granularity of the segmentation. 

Semantic Segmentation was tackled using a Pyramid 

Pooling Module within the FPN architecture. This module 

collects contextual information from different scales, which is 

critical for segmenting various types of lesions at different 

sizes and levels of detail. The up-sampling process involved 

bilinear interpolation, Group Normalization, ReLU activations, 

and 3×3 convolutions to ensure the feature maps were 

appropriately scaled before pixel-wise classification was 

performed. 

Using the Region Proposal Network (RPN), which creates 

possible areas of interest (ROIs) for every lesion, instance 

segmentation was accomplished. Following the identification 

of ROIs, the object localization was improved and redundant 

predictions were eliminated using bounding box regression 

and Non-Maximum Suppression (NMS). This process was 

essential for accurately counting the number of lesions and 

localizing them with high precision. 

 

4.2.1 Panoptic segmentation  

Semantic and instance segmentation are the two 

components of panoptic segmentation. The instance 

segmentation consists of four sub-parts class, label, bounding 

box, and binary mask. The object detection accurately predicts 

hemorrhages and the corresponding bounding boxes. The 

prediction processes do the predictions based on the 

probability score. This score is the probability of all classes. 

The binary mask is labeled with 1 or 0 as per the predicted 

instance. The coordinate system produces the object bounding 

box for each prediction. The x and y coordinate system has a 

bounding box to extract the object within the anchor points 

with its length and height.  

The classification results obtained from the probability output 

scores are combined with the regression results of bounding 

box outputs to predict the final output. Finding instances and 

classifying the contents of an image are the goals of semantic 

segmentation. Panoptic segmentation classifies all the pixels 

in the image which belong to a class label. Also, it identifies 

the instance of the class. The panoptic segmentation technique 

consists of the following phases.  

i. Prepare an image by resizing, normalizing, and removing 

noise. 

ii. Extract features from the image that can be used to 

classify pixels into different semantic classes and 

instance IDs. 

iii. Assign a distinct instance ID to every object in the image 

and categorize every pixel into a useful class. 

iv. To produce a panoptic segmentation, integrate the 

outcomes of the instance and semantic segmentation 

processes. 

 

4.2.2 Semantic segmentation 

The first step is to perform semantic segmentation to 

identify different types of lesions present in retinal images. 

This entails assigning a class to every pixel in the image that 

corresponds to a particular kind of lesion, such as 

microaneurysms, hemorrhages, exudates, or cotton wool 

patches. The semantic segmentation model should be trained 

on annotated retinal images with pixel-level labels for each 

type of lesion. 

Let 𝑆 To do this, each pixel in the image must be given a 

class that represents a certain type of lesion, such as 

microaneurysms, hemorrhages, exudates, or cotton wool 

patches. It is represented as follows. 

 

𝑆 = 𝑓𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐(𝐼; Θ𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐) (5) 

 

where, the function denoting the semantic segmentation model 

is called 𝑓𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐, the input image is called I, and the semantic 

segmentation model's parameters are called Θ𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐. Three 

phases of upsampling are performed, beginning at the deepest 

FPN level (at the 1/32 size). Figure 3 shows how to make a 1/4 
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scale feature map. Each upsampling stage comprises of two 

bilinear upsampling, Group Norm, ReLU, and 3×3 

convolution. For the 1/16, 1/8, and 1/4 FPN scales, the same 

method is repeated. 

 

 
 

Figure 3. Semantic segmentation process 

 

A collection of feature maps with the same scale of 1/4 

constitutes the result, and these feature maps are then added 

one by one. Softmax, a final 1×1 convolution, and four bilinear 

upsampling are used to construct the per-pixel class labels at 

the original image resolution. 

 

4.2.3 Instance segmentation 

Once the types of lesions are identified, instance 

segmentation can be applied to distinguish individual 

instances of each lesion type. Instance segmentation assigns a 

unique label to each instance of a lesion, enabling precise 

localization and counting of lesions within the retinal image. 

The instance segmentation model should be trained on 

annotated retinal images with instance-level labels for each 

lesion type. 

Let 𝐼 denote the instance segmentation output, which is a set 

of instance masks indicating the pixel-wise segmentation of 

each object instance. It is represented as follows: 

 

𝐼 = 𝑓𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝐼; Θ𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) (6) 

 

where, Θ𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒  are the parameters of the instance 

segmentation model, and 𝑓𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒  is the function representing 

the instance segmentation model. 

 

4.2.4 Merging using heuristics 

Panoptic segmentation is a technique that combines the 

output of instance and semantic segmentation into a single 

segmentation map that includes both "stuff" and "things." This 

is represented as follows: 

 

𝑃 = {(𝑆, 𝐼)} (7) 

 

The panoptic segmentation output is denoted as P, and each 

tuple (𝑆, 𝐼) represents the semantic and instance segmentation 

results of the image. 

To create a thorough segmentation map for retinopathy, the 

results of instance and semantic segmentation are integrated. 

To do this, the instance segmentation masks which offer 

comprehensive details on specific lesion instances are 

combined with the semantic segmentation map, which offers 

a high-level summary of lesion varieties. The integration 

process may involve techniques such as overlaying instance 

segmentation masks onto the semantic segmentation map or 

using conditional probability distributions to refine 

segmentation boundaries. 

 

4.3 Panoptic FPN 

 

The model uses an encoder-decoder architecture with FPN 

and a novel merging algorithm. The following steps are 

performed as follows: 

i. The input image is first passed through an encoder-

decoder architecture. The encoder extracts feature from 

the image at different scales, while the decoder 

reconstructs the image. 

ii. The encoder extracts features, which are subsequently 

transmitted via the FPN. Semantic and instance 

segmentation benefit from the model's ability to extract 

features at different sizes. 

iii. The features extracted by FPN are then passed through 

the RPN. It identifies areas of the image that are likely to 

have things in them. 

iv. The regions proposed by RPN are then passed through a 

mask head. Mask head predicts masks for the objects that 

are proposed.  

v. The mask head predicts masks, which are used with 

semantic segmentation predictions to generate panoptical 

segmentation. 

Through lateral connections and a top-down methodology, 

it combines low-resolution, semantically strong features with 

high-resolution, semantically weak data, as shown in Figure 4. 

This feature pyramid has extensive semantics at all levels and 

can be quickly built from a single input image scale without 

reducing textual strength, performance, or space. 

 

 
 

Figure 4. FPN 

 

The Panoptic FPN's bottom-up route is in charge of 

constructing a feature pyramid out of the feature maps that the 

backbone network has retrieved. This pyramid allows the 

network to leverage multi-scale information, capturing both 

detailed spatial information and high-level semantic features.  

 

4.3.1 Backbone feature extraction 

The backbone network will be represented by ℬ . The 

backbone network retrieves a series of feature maps at various 

network levels given an input image Ι. 
 

{𝐶1, 𝐶2, 𝐶3, 𝐶4} = 𝐵(𝐼) (8) 

 

where, Ci represents the feature map at level 𝑖 of the backbone.  
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4.3.2 Bottom-up pathway 

The bottom-up pathway involves applying convolutional 

transformations to each feature map 𝐶𝑖 to create a set of feature 

maps 𝑃𝑖  for the feature pyramid. 

Initial Feature Maps from Backbone Given the feature maps 

𝐶1, 𝐶2, 𝐶3, 𝐶4 , the bottom-up pathway creates feature maps 

{𝑃1, 𝑃2, 𝑃3, 𝑃4}. 

 

𝑃𝑖 = 𝐶𝑜𝑛𝑣𝑏𝑜𝑡𝑡𝑜𝑚−𝑢𝑝
𝑖 (𝐶𝑖) (9) 

 

where, 𝐶𝑜𝑛𝑣𝑏𝑜𝑡𝑡𝑜𝑚−𝑢𝑝
𝑖  represents a convolutional operation 

applied to the feature map 𝐶𝑖 at level i. 

Fusion in bottom-up pathway Each feature map 𝑃𝑖  at a 

given level i can be expressed as: 

 

𝑃𝑖 = 𝑊𝑖 ∗ 𝐶𝑖 (10) 

 

where, * denotes the convolution operation and 𝑊𝑖  are the 

learnable convolutional weights at level i. This operation can 

be formalized as: 

 

𝑃𝑖 = 𝜎(𝑊𝑖 ∗ 𝐶𝑖 + 𝑏𝑖) (11) 

 

where, 𝜎 is an activation function and 𝑏𝑖 is the bias term. 

Combining Feature Maps To produce the ultimate feature 

maps for the bottom-up approach, each feature map 𝑃𝑖  is 

concatenated or added based on upsampling or pooling 

operations: 

 

𝑃𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑃𝑖+1
↑ , 𝐶𝑜𝑛𝑣(𝐶𝑖)) (12) 

 

where, 𝑃𝑖+1
↑ denotes the upsampled feature map from the 

higher level 𝑖+1 and 𝐶𝑜𝑛𝑣(𝐶𝑖) is the convolution applied to 

the feature map at level i. 

Full feature pyramid Finally, the set of feature maps for the 

entire feature pyramid is: {𝑃1, 𝑃2, 𝑃3, 𝑃4} . The bottom-up 

pathway in Panoptic FPN is essential for constructing a multi-

scale feature pyramid from backbone feature maps. Accurate 

panoptic segmentation depends on the integration of multi-

scale information, which is achieved by the use of these feature 

maps in the top-down route and lateral linkages. 

 

4.3.3 Top-down pathway 

Using a top-down pathway, fused feature maps are 

produced by upsampling higher-level feature maps and adding 

them to lower-level feature maps via lateral connections. Let's 

denote the top-down feature maps as {𝑇1, 𝑇2, 𝑇3, 𝑇4}. The top-

down pathway can be represented as follows. 

 

𝑇𝑖 = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝑇𝑖+1) + 𝐶𝑜𝑛𝑣(𝑃𝑖;Θ𝑡𝑜𝑝−𝑑𝑜𝑤𝑛) (13) 
 

where, Upsample denotes upsampling operation, and 

Θ𝑡𝑜𝑝−𝑑𝑜𝑤𝑛 represents the parameters of the convolutional 

layers. 

 

4.3.4 Semantic segmentation head 

The semantic segmentation head takes the top-down feature 

maps 𝑇𝑖  and produces semantic segmentation predictions 𝑆𝑖 at 

each level. The semantic segmentation head can be 

represented as follows. 
 

𝑆𝑖 = 𝐶𝑜𝑛𝑣(𝑇𝑖; Θ𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐) (14) 
 

where, Θ𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐  represents the parameters of the 

convolutional layers. 

 

4.3.5 Instance segmentation head 

The segmentation head takes the top-down feature maps 

𝑇𝑖  and produces instance segmentation predictions 𝐼𝑖  at each 

level. The instance segmentation head can be represented as 

follows. 

 

𝐼𝑖 = 𝐶𝑜𝑛𝑣(𝑇𝑖 ; Θ𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) (15) 

 

where, Θ𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒  represents the parameters of the 

convolutional layers. 

 

4.3.6 Hybrid upsampling for accurate pixel labeling 

To ensure that the segmentation outputs match the input 

image’s resolution, the proposed method utilizes hybrid 

upsampling. After feature extraction from the backbone 

network, the upsampling process enlarges the feature map 

through multiple stages of bilinear upsampling, followed by 

convolution and normalization layers, to generate per-pixel 

class labels. This hybrid technique effectively combines the 

detailed local features from the shallow layers of ResNet-50 

with the global context captured at deeper layers, resulting in 

fine-grained pixel-level segmentation. 

 

4.3.7 Panoptic segmentation integration 

Finally, the semantic and instance segmentation predictions 

𝑆𝑖  and 𝐼𝑖  are integrated to generate the panoptic segmentation 

output. The integration process can involve merging 𝑆𝑖  and 𝐼𝑖  

based on pixel-wise classification scores and instance 

bounding boxes. 

 

4.3.8 Lateral convolution 

Prior to being integrated, lateral connections guarantee that 

feature maps from various levels have an equal number of 

channels.  

 

𝐿𝑖 = 𝐶𝑜𝑛𝑣𝑙𝑎𝑡𝑒𝑟𝑎𝑙
𝑖 (𝑃𝑖) 

= 𝜎(𝑊𝑖
𝐿 ∗ 𝑃𝑖 + 𝑏𝑖

𝐿) 
(16) 

 

where, 𝐿𝑖  is the output of the lateral convolution at level I; 𝑊𝑖
𝐿 

are the learnable weights for the lateral convolution; 𝑏𝑖
𝐿 lateral 

convolution's bias term is denoted by L, while its activation 

function is represented by σ. 

 
4.4 Pseudocode of panoptic FPN 

 

def panoptic_fpn(image): 

  Args: 

    Image: The input image. 

  Returns: 

    The panoptic segmentation of the image. 

  # 1. Encoder-decoder architecture. 

  features = encoder(image) 

  predictions = decoder(features) 

  # 2. FPN. 

  fpn_features = fpn(features) 

  # 3. Region Proposal Network (RPN). 

  proposals = rpn(fpn_features) 

  # 4. Mask head. 

  masks = mask_head(proposals) 

  # 5. Merging algorithm. 

  panoptic_segmentation = merge (predictions, masks) 

  return panoptic_segmentation 
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4.5 Loss function and hyperparameter tuning 
 

The network was optimized by combining binary cross-

entropy loss for instance segmentation with cross-entropy loss 

for semantic segmentation. The instance segmentation branch 

also utilized IoU loss to ensure precise localization of lesions 

within the SD-OCT images. Standard optimization techniques 

like Adam were used to optimize these loss functions, and 

learning rates were modified in response to the model's 

performance during training. Through iterative refinement and 

feedback from validation, hyperparameters such as learning 

rate, batch size, and filter sizes were adjusted. 
 

4.6 Classification  
 

The Deep Residual Learning network (Res-Net-50) is used 

to classify the images into object categories. The network 

learns a variety of features from the images. Res-Net-50 

created feature maps, which were supplied to the panoptic 

field head. The bounding box predicts the class ID of the 

corresponding pixel. Semantic segmentation employs the 

same border box properties to reduce the number of 

parameters and network interference time. The outputs of 

instance and semantic segmentation are combined to get the 

final segmentation results. The panoptic segmented image is 

sent into ResNet-50's residual blocks and convolutional layers. 

The network structure is mathematically represented as a 

series of transformations as follows.  

 

𝑥𝑙+1 = 𝐹(𝑥𝑙 , {𝑤𝑙}) + 𝑥𝑙  (17) 

 

where, 

• 𝑥𝑙  is the input to the lth layer. 

• 𝐹(𝑥𝑙 , {𝑤𝑙})  represents the residual function, typically 

composed of convolutional, batch normalization, and 

ReLU layers.  

• {𝑤𝑙} are the weights of the lth layer. 

The following represents each residual block in ResNet-50.  

 
𝑦 = 𝑅𝑒𝐿𝑈(𝐵𝑁(𝐶𝑜𝑛𝑣(𝑥, 𝑊1, 𝑏1))) + 𝑥 (18) 

 

where, 

• 𝑥 is the input feature map. 

• 𝐶𝑜𝑛𝑣(𝑥, 𝑊1, 𝑏1) is the convolution operation. 

• BN is batch normalization. 

• y is the output of the residual block. 

After passing through multiple layers and residual blocks, 

the high-dimensional feature maps are reduced using global 

average pooling. 

 

𝑧 =
1

𝐻×𝑊
∑ ∑ 𝑦𝑖𝑗

𝑊
𝑗=1

𝐻
𝑖=1   (19) 

 

The feature map's height and breadth are denoted by H and 

W. A Fully Connected (FC) layer is then applied to the pooled 

feature vector 𝑧 in order to transfer the features to the 

categorization space. 
 

𝑓 = 𝑊𝑓𝑐𝑧 + 𝑏𝑓𝑐 (20) 
 

where, 

• 𝑊𝑓𝑐  are the weights of the FC layer. 

• 𝑏𝑓𝑐 is the bias term. 

• f is the output vector from the FC layer. 

To generate a distribution of probabilities over each of the 

three groups (Normal, Abnormal, and Moderate), the output 

vector 𝑓 is subjected to a softmax function. 

 

𝑦�̂� = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑓𝑖) =
𝑒𝑓𝑖

∑ 𝑒𝑓𝑖𝑗
  (21) 

 

where, 

• 𝑦�̂� 𝑖s the predicted probability for the ith category. 

• 𝑓𝑖 is the ith element of the output vector f. 

The final classification decision is based on the highest 

probability from the softmax output: 

 

𝐶𝑙𝑎𝑠𝑠(𝐼) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑖𝑦�̂� (22) 

 

where, 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑖𝑦�̂� yields the greatest value's index i in the 

probability distribution 𝑦�̂�. 

 

 

5. IMPLEMENTATION  

 

Using an encoder-decoder architecture, the initial step is 

obtaining features from the image itself. While the decoder 

reconstructs the images using the characteristics that the 

encoder has extracted, the encoder extracts features from the 

image at various sizes. Both semantic and instance 

segmentation benefit from the model's ability to extract 

features with different levels of specificity. 

The second phase involves extracting characteristics from 

an image at various scales using the FPN. It is a method that 

enables the model to extract characteristics at various scales 

from a single input image. Both instance and semantic 

segmentation benefit from this as it gives the model a better 

understanding of the context of the items in the image.  

Using the RPN, the third step is to suggest areas of interest 

in the image that are probably home to items. This method 

predicts the bounding boxes of objects in an image using a 

CNN network. This enables the model to recognize things in 

the image with speed and efficiency.  

The fourth step is to predict masks for the objects that are 

RPN recommended the use of a mask head. Mask head is a 

method that uses the CNN to forecast pixel-level masks for 

objects in images. This enables the model to recognize object 

boundaries in the image with accuracy. 

To create a panoptic segmentation, the semantic and 

instance segmentation predictions are combined using a 

merging algorithm in the last step. 

The merging algorithm is a technique that uses a graph-

based approach to merge the pixels of the image into objects. 

This enables the model to provide a single, cohesive 

representation of the image that incorporates the object-level 

detail of the image, which shows the location of each item, as 

well as the semantic content of the image. 

 

5.1 Pseudocode for training ResNet-50 on OCT images 

 

ResNet-50 with its deep architecture and residual learning, 

is well-suited for classifying OCT images. By enabling the 

model to learn residual functions, it successfully manages the 

difficulties associated with deep network training, making it 

an excellent tool for OCT image processing tasks like 

recognizing and categorizing diseases like Purtscher's 

Retinopathy.
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BEGIN 

➢ # Step 1: Load and preprocess OCT images OCT_images, 

labels = LOAD_OCT_DATASET ("path ") 

➢ # Step 2: Define ResNet-50 architecture model = 

ResNet50()  

➢ # Step 3: Compile the model using the proper optimizer 

and loss function in step three.  

➢  COMPILE (model, optimizer='adam', 

metrics=['accuracy']), loss='categorical_crossentropy')  

➢ # Train the model in step four. TRAIN (model, labels, 

OCT images, batch_size=32, validation_split=0.2, 

epochs=50) 

➢ # Step 4: Train the model TRAIN (model, labels, OCT 

images, batch_size=32, validation_split=0.2, epochs=50) 

➢ # Step 5: Use test data [test_images, test_labels = 

LOAD_TEST_DATA("path/to/test_data") to assess the 

model.  

performance = EVALUATE (test_labels, test_images, 

and model)  

➢ # Step 6: Display results 

DISPLAY (performance)  

END 

 

5.2 Pseudocode of Panoptic FPN followed by ResNet-50 for 

classification 

 

Integrating the segmented results from the FPN into a 

ResNet-50 classification pipeline for OCT images involves 

several steps. Below is a detailed pseudocode, incorporating 

mathematical formulas, for training a ResNet-50 model using 

the segmented OCT images as input. 

 

Step 1: Preprocessing and Loading Data 

▪ Load Dataset: 

• 𝐷 = {(𝑋𝑖 , 𝑦𝑖)}𝑖=1
𝑁  where 𝑋𝑖  are the OCT images and 

𝑦𝑖  are the labels. 

• 𝑋𝑖 = 𝐿𝑂𝐴𝐷_𝑂𝐶𝑇_𝐷𝐴𝑇𝐴𝑆𝐸𝑇("𝑝𝑎𝑡ℎ") 

Step 2: Apply Panoptic FPN for Segmentation 

▪ Apply Panoptic FPN:For each image 𝑋𝑖, apply the 

Panoptic FPN to get the segmented image 𝑆𝑖. 

 

𝑆𝑖 = 𝐴𝑃𝑃𝐿𝑌_𝑃𝐴𝑁𝑂𝑃𝑇𝐼𝐶_𝐹𝑃𝑁(𝑋𝑖) 

 

▪ Store Segmented Results: 

 

𝑆 = {𝑆𝑖}𝑖=1
𝑁  

 

Step 3: Define ResNet-50 Architecture 

▪ ResNet-50 Definition: 

Model architecture is predefined with 50 layers using the 

residual blocks. 

Step 4: Compile the Model 

▪ Compile Model: 

Loss function: Categorical Cross-Entropy: 

 

𝐿 = − ∑ 𝑦𝑐𝑙𝑜𝑔(𝑦�̂�)𝐶
𝑐=1   

 

Step 5: Train the Model 

▪ Training Loop: 

Train the model with segmented images S and labels y: 

𝑚𝑜𝑑𝑒𝑙. 𝑇𝑅𝐴𝐼𝑁(𝑆, 𝑦, 𝑒𝑝𝑜𝑐ℎ𝑠 = 50, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 32,
𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑠𝑝𝑙𝑖𝑡 = 0.2) 

Step 6: Evaluate the Model 

▪ Load Test Data 

𝑇 = {(𝑋𝑡𝑒𝑠𝑡,𝑗,𝑦𝑡𝑒𝑠𝑡,𝑗)}𝑗=1
𝑀  

 

▪ Apply Panoptic FPN to Test Images: 

For each test image 𝑋𝑡𝑒𝑠𝑡,𝑗: 

 

𝑆𝑡𝑒𝑠𝑡,𝑗 = 𝐴𝑃𝑃𝐿𝑌_𝑃𝐴𝑁𝑂𝑃𝑇𝐼𝐶_𝐹𝑃𝑁(𝑋𝑡𝑒𝑠𝑡.𝑗) 

 

▪ Evaluate Model: 

Utilizing the test labels and segmented test images, assess 

the model: 

 

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑚𝑜𝑑𝑒𝑙. 𝐸𝑉𝐴𝐿𝑈𝐴𝑇𝐸(𝑠𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡) 

 

Step 7: Display Results 

▪ Display Performance: 

 

𝐷𝐼𝑆𝑃𝐿𝐴𝑌(𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) 

 

This pseudocode outlines the process of using Panoptic FPN 

for segmentation followed by ResNet-50 for classification, 

integrating detailed mathematical operations at each step. 

 

 

6. RESULTS AND DISCUSSIONS 

 

Purtscher's Retinopathy is a rare but devastating eye 

condition that mostly affects young or middle-aged men and is 

brought on by trauma. A PR clinical diagnosis has been 

proposed. Three of the five conditions listed below must be 

met. 

i. Purtscher Flecken  

ii. Low-to-moderate retinal hemorrhages of 1 - 10. 

iii. Cotton-wool stains are limited to the posterior pole. 

iv. Explanatory etiology that is probable or reasonable. 

v. Investigations that are coherent to the diagnosis 

The level of retinal degeneration in PR is determined, as 

shown in Figure 5. To analyze the disease, the retina is divided 

into three zones such as A, B, and C respectively. Zone A is 

with a radius of four-disc diameters and 2/3 of cases arise here. 

Zone B extends outside A. Zone C is anterior to Zone B and it 

is affected rarely. Panoptic segmentation assigns a class label 

to each pixel through its semantic process and the instance 

segmentation segments the object instance.  

i. Zone A - Needs to be extended horizontally with 

four-disc diameters along both edges. 

ii. Zone B's outside edge horizon. 

iii. Zone C is the furthest, extending to the Ora Serrata. 

PR, occlusion occurs at the level of pre-capillary arterioles, 

which have a diameter of roughly 45 m. This causes whiteness 

in the areas of the distal capillary beds and typically perfused 

retina nearer to the arterioles. Occlusions close to the pre-

capillary arterioles cause confluent whitening, similar to a 

branch retinal artery occlusion, but occlusions further away 

cause cotton wool patches that conceal the underlying arteries. 

As shown in Figure 6, there are several etiologies to take 

into consideration when diagnosing peripapillary cotton wool 

patches with associated macular retinal whitening, including 

vascular, metabolic, inflammatory, autoimmune, traumatic, 

viral, and hematologic. Every occurrence was symptomatic, 

exhibiting either a decrease in vision field or acuity, or both. 

Retinal pigment epithelium atrophy and optic disc pallor were 

the most common chronic symptoms. The diagnosis of PR was 

validated by the patient's manifestation of Purtscher Flecken 

in the context of C5a hypercomplementemia. 
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Figure 5. Retinal Zones involvement in PR 

 

 
 

Figure 6. The retinal nerve fiber layer becomes thinner as a 

result of cotton wool patches [6] 

 

       Input Image      Segmented Results     Ground Truth  

 
 

Figure 7. Results reflect the best, median, and worst 

performances 

 

Figures 7a to 7c show the best case, Figures 7d to 7f show 

the median case, and Figures 7g to 7i show the worst case of 

the obtained results through the proposed approach. The 

optimum best performance occurs when the OCT image 

displays the layers of the retina. Its Dice Coefficient is > 0.90 

and IoU > 0.85. The retinal layers are precisely segmented by 

the model, which also detects anomalies such as retinal 

hemorrhages and whitening. The segmentation delineates the 

impacted areas, closely matching the ground reality.  

The OCT image with mild retinal abnormalities and 

considerable noise is in the median performance. Metrics: 

Dice coefficient between 0.70 and 0.80, IoU between 0.60 and 

0.75. With certain inconsistencies, the model offers a 

comparatively accurate segmentation. While it accurately 

detects the main characteristics of Purtscher's retinopathy, 

noise or poorly defined boundaries may cause it to ignore 

minute details or add a little segmentation error. 

 

 
(a) sub-retinal detachment 

 
(b) Macular edema 

 
(c) Purtscher’s flecken 

 
(d) Infected Purtscher’s retina analysis 

 

Figure 8. Results of Purtscher’s Retinopathy analysis 

 

When the OCT image exhibits extreme retinal distortion, 

artifacts, or noise, it is said to have the lowest performance. 

Dice coefficient < 0.60 and IoU < 0.50. The segmentation of 

anomalies and retinal layers by the model is not very accurate. 

Noise and artifacts can have a significant impact on 

predictions, resulting in a low overlap with the ground truth. 

In certain situations, the model is unable to offer meaningful 

diagnostic data. The spectral-domain optical coherence is 

shown in Figure 8. Left eye tomography shows a subfoveal 

neurosensory separation with rupture of the ellipsoid zone, 

along with significantly affected inner retinal areas and 

characteristic Purtscher Flecken (arrow). 

The FPN results on OCT segmentation involve evaluating 

different performance metrics across several test images. This 

includes metrics like Intersection over Union (IoU), Dice 

coefficient, pixel accuracy, precision, recall, and F1 score. 
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1. IoU (Intersection over Union): It determines the degree 

to which the ground truth and the expected segmentation 

overlap. 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
  (23) 

 

2. Dice Coefficient: A similar measure to IoU, but it tends 

to be more sensitive to small objects. It is defined as follows. 

 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
  (24) 

 

3. Pixel Accuracy: The percentage of all pixels that were 

correctly predicted. 

 

𝑃𝑖𝑥𝑒𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑜.𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠
  (25) 

 

4. Precision: The ratio of correctly predicted positive 

outcomes to all predicted positive outcomes. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (26) 

 

5. Recall: The ratio of true positive forecasts to all real 

positives. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (27) 

 

Interpretation of Table 2 is as follows.  

• Best Case (Image 4): Excellent segmentation performance 

is indicated by high IoU, Dice Coefficient, Pixel Accuracy, 

Precision, and Recall. 

• Median Case (Image 7): Moderate values across all metrics 

indicate average performance. 

• Worst Case (Image 5): Poor segmentation is indicated by 

low IoU, Dice Coefficient, Pixel Accuracy, Precision, and 

Recall; this might be because of noise or intricate 

structures in the OCT images. 

To improve the statistical validity and generalizability of the 

results, the sample size of PR patients must be increased for 

further research. A larger dataset would enable more thorough 

research and a more accurate depiction of the features of the 

illness. Furthermore, to prevent bias and guarantee that the 

results apply to both male and female populations, equal 

gender representation is vital. A more thorough knowledge of 

the disease's course and its effects on various phases would 

also be possible with the inclusion of a wider variety of disease 

severity levels. In addition to increasing the prediction models' 

accuracy, these actions would help develop more 

individualized and efficient methods for diagnosing and 

treating PR. 

The PR segmentation findings are shown in Figure 9, along 

with an evaluation of the IOUs. It is found that the model 

performs better when segmented photos are used as an extra 

source of training data. 

 

 
 

Figure 9. IOU (Intersection over Union) of PR segmentation 

over epochs 
 

Table 2. Comparison of FPN results on SD-OCT segmentation 
 

Image ID IoU Dice Coefficient Pixel Accuracy Precision Recall F1 Score 

Image 1 0.85 0.92 0.95 0.9 0.88 0.89 

Image 2 0.78 0.85 0.9 0.84 0.82 0.83 

Image 3 0.6 0.75 0.8 0.7 0.65 0.67 

Image 4 0.92 0.95 0.98 0.94 0.91 0.93 

Image 5 0.5 0.67 0.75 0.6 0.55 0.57 

Image 6 0.83 0.89 0.93 0.87 0.85 0.86 

Image 7 0.72 0.8 0.85 0.78 0.74 0.76 

Image 8 0.68 0.77 0.82 0.75 0.7 0.72 

Image 9 0.9 0.93 0.97 0.92 0.89 0.91 

Image 10 0.55 0.71 0.78 0.65 0.6 0.62 
 

Table 3. Comparison of OCT segmentation with competitive methods 
 

Metrics FPN (Panoptic FPN) U-Net SegNet DeepLabV3 PSPNet 

Mean IoU 0.88 0.71 0.68 0.7 0.72 

Mean Dice 0.92 0.8 0.77 0.79 0.81 

Mean Pixel Accuracy 0.97 0.85 0.83 0.84 0.86 

Mean Precision 0.99 0.77 0.74 0.76 0.78 

Mean Recall 0.98 0.74 0.71 0.81 0.75 

F1 Score 0.93 0.75 0.72 0.74 0.76 

In particular, the model converges somewhat quicker when 

merging segmented images than it does with training 

segmentation data, especially in the initial few epochs. To be 

more precise, the model's initial epoch performs nearly 

identically to the 10th epoch when taking the validation set's 

performance into account. This phenomenon indicates that 

there is a substantial association between the segmentation 

task and the characteristics used for object detection. Table 2 
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aids in evaluating the FPN model's performance on OCT 

segmentation tasks and pointing out its advantages and 

disadvantages in various situations. 

Table 3 provides a detailed comparison of the performance 

of different segmentation methods (Panoptic FPN, U-Net, 

SegNet, DeepLabV3, and PSPNet) on OCT images across 

several performance metrics. 

➢ Panoptic FPN shows the highest Mean IoU values, with 

Panoptic FPN at 0.88. U-Net and DeepLabV3 have 

moderate IoU values, with U-Net at 0.71 and 

DeepLabV3 at 0.70. They are slightly less effective than 

Panoptic FPN and PSPNet but still perform well. SegNet 

has the lowest Mean IoU at 0.68, suggesting it has the 

least effective overlap in segmentation compared to the 

other methods, and shown in Figure 10.  

➢ With a Mean Dice Coefficient of 0.92, Panoptic FPN is 

once again in the lead, followed by PSPNet at 0.81. A 

significant degree of similarity between the genuine and 

anticipated segmentation is indicated by high dice 

coefficients. The mean dice coefficients for U-Net and 

DeepLabV3 are 0.80 and 0.79, respectively, indicating 

comparable performance. With a Mean Dice Coefficient 

of 0.77, SegNet has the lowest score and is less 

comparable, as shown in Figure 11.  

➢ With a mean pixel accuracy of 0.97, Panoptic FPN has 

the greatest percentage of properly predicted pixels. The 

robustness of PSPNet (0.86), U-Net (0.85), and 

DeepLabV3 (0.84) is demonstrated by their close follow-

up. As seen in Figure 12, SegNet has the lowest Pixel 

precision (0.83), indicating that it is marginally less 

dependable in terms of pixel-wise precision.  

➢ With Mean Precision values of 0.99 and 0.78, 

respectively, Panoptic FPN and PSPNet exhibit the 

highest precision. This indicates that a large percentage 

of their expected positives are really positive. With 

accuracy values of 0.77 and 0.76, respectively, U-Net 

and DeepLabV3 are comparable. As seen in Figure 13, 

SegNet once more has the lowest score, with a Mean 

Precision of 0.74. 

➢ With Mean Recall values of 0.98 and 0.75, respectively, 

Panoptic FPN is the most successful at detecting true 

positives. Following with Mean Recall scores of 0.74 and 

0.73 are U-Net and DeepLabV3. Figure 14 shows SegNet, 

which has the lowest recall at 0.71.  

➢ With the highest Mean F1 Score of 0.93, Panoptic FPN 

exhibits an excellent balance between recall and 

accuracy. The performance of PSPNet (0.76), U-Net 

(0.75), and DeepLabV3 (0.74) is good but marginally 

worse. With a Mean F1 Score of 0.72, SegNet has the 

lowest score and is displayed in Figure 15. 

The U-Net design, which was proposed by Karn and Abdull 

[21], is a common method for segmenting OCT images, 

particularly in situations where pixel-level classification is 

essential. Both fine-grained geographical features and high-

level contextual information may be captured by its encoder-

decoder structure with skip connections. When it comes to 

complicated, overlapping lesions like those found in PR, U-

Net's capacity to differentiate distinct diseased characteristics 

is limited by its emphasis on semantic segmentation. This 

presents a major obstacle to the identification of retinal 

diseases because precise lesion-level segmentation is essential. 

To provide a more thorough knowledge of retinal defects, 

Panoptic FPN, on the other hand, combines instance and 

semantic segmentation, enabling it to recognize and 

distinguish particular lesions such as hemorrhages and cotton-

wool patches. Additionally, the proposed Panoptic FPN's 

multi-scale feature extraction, which makes use of the FPN, 

improves its capacity to identify dispersed and tiny lesions, 

which is a drawback of U-Net in intricate retinal structures.  

To improve segmentation performance in scene parsing 

tasks, PSPNet uses a global pooling layer in conjunction with 

a Pyramid Scene Parsing (PSP) module to gather context from 

various spatial scales [22]. The local, specific qualities that are 

essential for precise lesion diagnosis in retinal images are not 

sufficiently addressed, even though this is helpful for 

comprehending global scene contexts. In contrast, the 

proposed Panoptic FPN employs both instance and semantic 

segmentation, enabling the differentiation of individual 

lesions and enhancing the precision of detection in conditions 

such as PR, where accurate localization of lesions is crucial. 

Panoptic FPN consistently performs the best across all 

metrics, demonstrating its effectiveness and robustness in 

OCT image segmentation. PSPNet shows competitive 

performance, slightly trailing behind Panoptic FPN, making it 

a strong contender. U-Net and DeepLabV3 both methods show 

moderate performance, proving their reliability but indicating 

room for improvement compared to Panoptic FPN and PSPNet. 

SegNet shows the least performance across all metrics, 

suggesting it is less suitable for SD-OCT segmentation tasks 

compared to the other methods to diagnose PR. Additionally, 

the architecture of the proposed Panoptic FPN is better suited 

to complicated retinal structures, whilst PSPNet's global scene 

parsing technique may easily overlook minor and overlapping 

lesions. As a result, Panoptic FPN provides a better model for 

tracking and detecting retinal problems early. 

DeepLab V3 employs Atrous Spatial Pyramid Pooling 

(ASPP) for multi-scale feature extraction in order to better 

capture context at different resolutions [23]. DeepLab V3 has 

limits in retinal image segmentation, where minute and subtle 

lesions (typical of PR) need to be properly located, despite 

being successful for large-scale scene parsing. Furthermore, 

DeepLab V3 cannot independently detect distinct problematic 

components, instead concentrating on semantic segmentation. 

However, the proposed Panoptic FPN is more capable since it 

offers both instance and semantic segmentation. Panoptic 

FPN's multi-scale feature extraction provides better diagnostic 

capabilities for retinal disorders like PR by more successfully 

catching both major retinal abnormalities and fine-grained 

lesions. 

To diagnose PR using SD-OCT images, the proposed 

Panoptic FPN outperforms U-Net [21], PSPNet [22], and 

DeepLab V3 [23] because it integrates instance and semantic 

segmentation, allowing it to recognize and differentiate certain 

lesions. PSPNet's emphasis on global image parsing renders it 

less successful at recognizing tiny or dispersed lesions, like 

those present in PR, whereas U-Net performs well for 

segmentation tasks but has trouble with complex overlapping 

lesions. Similar to this, the ASPP method for multi-scale 

detection in DeepLab V3 is effective for comprehending 

scenes but lacks the granularity needed to differentiate minute 

retinal lesions that are typical of PR. The proposed Panoptic 

FPN is especially well-suited for identifying the delicate, 

intricate, and dispersed lesions in PR because to its dual 

segmentation technique and multi-scale feature extraction, 

which yields more precise, localized, and clinically useful 

results. 

 

1403



 

 
 

Figure 10. Comparison of mean IOU 

 

 
 

Figure 11. Comparison of mean dice coefficient 

 

 
 

Figure 12. Comparison of mean pixel accuracy 
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Figure 13. Comparison of mean precision 

 
Figure 14. Comparison of mean recall 

 
Figure 15. Comparison of F1 score 

 

The proposed method for diagnosing PR using panoptic 

segmentation offers several practical implications in a clinical 

setting. In terms of computational efficiency, the system is 

designed to operate with reasonable speed, benefiting from the 

use of ResNet-50 as a backbone, which strikes a balance 

between performance and computational cost. While the 

system may not yet operate in real-time in resource-

constrained environments, with optimized hardware and 
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further model refinement, real-time processing could be 

achievable. The system’s outputs, particularly the panoptic 

segmentation maps, can be presented in a clinically 

interpretable format through color-coded heatmaps, where 

specific lesions are highlighted for the ophthalmologist’s 

review. This enables visual confirmation of the machine's 

findings while also providing the segmentation of individual 

lesions, which aids in diagnosis. To further enhance 

interpretability, the system could include confidence scores or 

probability maps to reflect the certainty of the predictions 

made.  

However, there are potential challenges in adopting such a 

system in clinical practice. The requirement for sizable 

annotated datasets for efficient model training is one major 

obstacle. The availability of sufficiently diverse, well-

annotated datasets that cover different demographic groups, 

imaging conditions, and disease severities is a significant 

barrier. Without such data, the model's accuracy and 

generalizability may be limited. Additionally, there is a risk of 

over-reliance on automated systems, potentially leading to 

misdiagnoses if the model’s predictions are not cross-

validated by experienced ophthalmologists. Clinicians must 

maintain a supervisory role in the diagnostic process, using the 

system as a supportive tool rather than as a replacement for 

expert judgment. To mitigate this, hybrid systems that 

combine machine learning outputs with clinician insights 

would be the most effective approach.  

The primary limitation of this study is the small, imbalanced 

dataset, particularly with only 10 Purtscher-like Retinopathy 

(PR) cases (9 women and 1 man), which restricts the model’s 

generalizability. The model may also suffer from overfitting 

due to the limited number of PR cases and class imbalance. 

Additionally, the model is tailored for PR and may struggle to 

generalize to other retinal diseases, which often present 

different lesion types and severities. 

To address these limitations, future studies should focus on 

collecting a larger, more diverse dataset with balanced gender, 

age, and disease severity. Incorporating OCT alongside fundus 

photography to improve lesion detection. Exploring 

transformer-based models and hybrid CNN-transformer 

architectures for better feature extraction. These 

advancements will enhance the model's accuracy, 

generalizability, and clinical applicability. 

 

 

7. CONCLUSION 

 

The panoptic segmentation is used for its potential to 

identify PR in the proposed research. It is a peculiar eye 

disease marked by blockages in the retinal blood vessels that 

cause vision loss. The high-resolution cross-sectional retinal 

images acquired from SD-OCT are evaluated using this 

method. Automating the examination of these images by 

panoptic segmentation shows promise for quicker and more 

reliable diagnosis. Furthermore, compared to conventional 

techniques, it may be more accurate in identifying the 

distinctive hyperreflective lesions and Purtscher Flecken in the 

retina by combining several segmentation techniques. 

However, several issues must be resolved. First and foremost, 

it is imperative to train the Panoptic Segmentation algorithm 

on huge datasets of PR patients. Furthermore, these algorithms 

must be interpreted in a way that allows ophthalmologists to 

comprehend the logic behind the diagnosis and continue to 

have faith in the technology. Also, clinical studies are required 

to confirm the precision and efficacy of panoptic segmentation 

in practical contexts. The possible advantages of Panoptic FPN 

segmentation outweigh these difficulties.  
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