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Under the framework of educational informatization, dynamic classroom environments—

characterized by flexible spatial layouts and integrated multimedia interaction 

technologies—have emerged as pivotal settings for English language instruction. Teacher–

student interaction, as a core component of the instructional process, encompasses diverse 

verbal and non-verbal communication patterns that significantly influence both pedagogical 

effectiveness and student learning experiences. The advancement of computer vision 

enables more precise analysis of such interactive behaviors; however, current approaches 

remain limited. Methods relying on single-view visual data often fail to comprehensively 

capture the complexity of classroom interactions, resulting in incomplete behavioral 

recognition. Furthermore, traditional handcrafted feature extraction techniques have shown 

limited capacity in capturing dynamic motion cues, thereby reducing recognition accuracy 

in diverse classroom postures and gestures. To address these limitations, a multiview fusion-

based method for recognizing teacher–student interaction behaviors in English classrooms 

was proposed. The model comprises a multiview fusion module and a motion feature 

extraction module. The former integrates visual information from multiple camera angles to 

mitigate single-view occlusion and information loss, while the latter leverages deep learning 

to effectively model dynamic bodily expressions and postural transitions. Experimental 

results demonstrate that the proposed method significantly enhances recognition accuracy 

of interactive behaviors in dynamic classroom environments. This approach provides a 

robust data-driven foundation for optimizing instructional strategies, supporting 

personalized learning, and informing intelligent classroom design. The findings contribute 

both theoretical insights and practical value to the integration of computer vision 

technologies in English language education.  
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1. INTRODUCTION

With the advancement of educational informatization, 

dynamic classroom environments—characterized by flexible 

spatial configurations, abundant multimedia teaching 

resources, and real-time interactive educational equipment [1-

4]—have increasingly been adopted as mainstream settings for 

English language instruction. Within these environments, 

teacher–student interaction behaviors exhibit diverse and 

dynamic patterns [5, 6], encompassing not only traditional 

verbal exchanges but also non-verbal cues such as gestures, 

facial expressions, and body language. These interaction 

behaviors constitute a fundamental component of English 

teaching processes and exert a substantial influence on both 

instructional effectiveness and student learning experience. 

Concurrently, the rapid development of computer vision 

technologies [7-10] provides robust technical support for the 

accurate capture and analysis of teacher–student interactions 

in dynamic classroom settings, enabling in-depth exploration 

of such behaviors from a visual perspective. 

The analysis of teacher–student interaction behaviors in 

dynamic English classroom environments holds significant 

practical implications. From the instructional perspective, the 

accurate recognition and interpretation of these behaviors can 

offer teachers real-time, visual feedback, facilitating timely 

adjustments to teaching strategies and pedagogical methods. 

Such adjustments can optimize instructional processes and 

enhance overall classroom quality. For instance, by examining 

the relationship between teachers’ gestural and verbal 

explanations and students’ responsive behaviors [11, 12], a 

more accurate assessment of students’ engagement levels and 

learning needs can be obtained, thus improving the precision 

and effectiveness of instruction. From the student learning 

perspective, a deeper understanding of interaction behaviors 

can reveal learning patterns and characteristics of students 

during classroom interactions. This, in turn, can provide a 

basis for personalized learning support and learning 

effectiveness evaluation, ultimately contributing to the 

enhancement of students’ overall English language 

proficiency. Furthermore, insights derived from such analyses 

can inform the design and optimization of dynamic classroom 

environments, thereby fostering the integration of educational 

technology with English language instruction. 

Although significant progress has been made in the analysis 
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of teacher–student interaction behaviors within classroom 

environments, several limitations remain. Some studies [13-

16] have primarily relied on single-view visual information, 

which has proven insufficient for capturing the complexity of 

interactions occurring in dynamic classroom environments. 

This reliance has led to partial and sometimes fragmented 

recognition and analysis of interaction behaviors. For 

example, a single camera view may fail to simultaneously 

capture both instructional activities performed by the teacher 

at the lectern and responsive behaviors exhibited by students 

in their seating areas, resulting in the omission of critical 

interactive details. In terms of motion feature extraction, 

certain studies [17-20] have adopted traditional handcrafted 

feature extraction techniques, which demonstrate limited 

effectiveness in identifying dynamic movement patterns 

during teacher–student interactions. It is difficult for these 

methods to accommodate the diversity of human postures and 

movements in dynamic classroom settings, thereby 

constraining the accuracy and robustness of interaction 

behavior analysis. 

A method for recognizing teacher–student interaction 

behaviors in English classroom environments based on 

multiview fusion was proposed in this study. The constructed 

model consists of two primary modules: a multiview fusion 

module and a motion feature extraction module. The 

multiview fusion module integrates visual information 

captured from multiple camera perspectives to obtain a more 

comprehensive view of teacher–student interactions, thereby 

overcoming the limitations of single-view systems. The 

motion feature extraction module employs advanced deep 

learning techniques to efficiently extract and model dynamic 

motion characteristics observed during interactive behavior, 

enhancing the model’s capacity to recognize complex 

interaction patterns with higher accuracy. The value of this 

research lies in the integration of multiview fusion and 

efficient motion feature extraction, which enables more 

accurate identification of teacher–student interaction 

behaviors in dynamic English classroom environments. This 

enhanced recognition capability provides high-resolution 

behavioral data to support the in-depth analysis of interaction 

patterns and the optimization of instructional processes. 

Moreover, the proposed method is expected to offer new 

methodological perspectives and technical references for 

related studies, advancing the field of computer vision–based 

educational behavior analysis. The approach also holds broad 

application prospects in practical English language 

instruction. 

 

 

2. MULTIVIEW FUSION FOR RECOGNIZING 

TEACHER–STUDENT INTERACTIONS IN ENGLISH 

CLASSROOMS 

 

As a representative complex interactive setting, the dynamic 

classroom environment comprises multiple functional zones, 

including the lecture area, student seating area, and group 

discussion area. Teacher–student interaction behaviors within 

such environments are often characterized by cross-regional 

and multimodal features. Teachers may turn to face students 

while writing on the board or engage in close-range 

communication during in-class supervision, whereas students 

may participate through actions such as raising hands, asking 

questions, or engaging in collaborative group work. A single-

camera perspective can capture only a partial view of the 

classroom scene, frequently resulting in the loss of critical 

visual cues—such as students’ micro-expressions and group-

level gestural coordination—thus limiting the ability to 

reconstruct the dynamic interaction chain of "teacher 

instruction–student feedback–bidirectional regulation" typical 

of English classroom discourse. However, in a computer 

vision–based multiview acquisition strategy, cameras are 

deployed at various locations, such as the classroom ceiling 

and side walls, to synchronously capture multiple visual 

dimensions, including frontal views of the teacher's 

instructional posture, lateral views of student reactions, and 

panoramic activity trajectories. This setup enables 

comprehensive 3D visual coverage of teacher–student 

interaction behaviors. The resulting heterogeneous and 

multisource visual data serve as the essential foundation for 

accurately identifying complex behavioral patterns in English 

classrooms, such as question–answer exchanges, group 

discussions, and emotional engagement. Multiview fusion 

techniques function as the critical technological bridge for 

transforming fragmented visual inputs into coherent 

behavioral representations. 

 

2.1 Model architecture design 

 

A method for recognizing teacher–student interaction 

behaviors in English classroom environments based on 

multiview fusion was proposed. The overall model 

architecture is illustrated in Figure 1.  

 

 
 

Figure 1. Overall architecture of the multiview fusion-based 

recognition model for teacher–student interaction behaviors 

in English classroom environments 

 

In dynamic classroom environments, a multiview computer 

vision data acquisition setup was implemented by deploying 

panoramic ceiling-mounted cameras, close-up side-view 

lenses at the lectern, and wide-angle cameras on the classroom 

walls. These devices were used to synchronously capture 

multiview video streams that comprehensively cover teacher–

student interaction scenarios. To ensure temporal and spatial 

coherence, spatiotemporal alignment techniques were applied 

during preprocessing to synchronize the multisource visual 

data across different camera perspectives. Following 

alignment, the multiview fusion module performs cross-view 

modeling using a feature-level fusion strategy. This process 

involves integrating 2D pose features—such as OpenPose 

keypoint coordinates—with appearance features (e.g., 

clothing color, teaching aids), as well as scene-context features 
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(e.g., blackboard content, seating layout). For example, during 

a teaching aid demonstration, fine-grained hand movements 

are captured by the lectern-side camera, while the panoramic 

view records collective student gaze directions and head 

postures. The fusion module employs an attention mechanism 

to adaptively weight salient features from each view, thereby 

generating a comprehensive visual representation that encodes 

spatial positioning, coordinated body movements, and 

semantic scene context. This approach effectively resolves the 

issue of interaction detail loss caused by blind spots in single-

view visual data. 

After the completion of spatial multiview feature fusion, a 

multi-scale temporal attention mechanism was introduced to 

model the long-range temporal dynamics of video segments. 

This mechanism is specifically designed to capture the 

sequential nature of interaction behaviors in English 

classrooms, such as the staged action chain observed during 

question–answer segments (e.g., “teacher poses a question – 

student raises hand – student stands to respond”). To 

implement this, continuous video streams were segmented into 

clips of varying temporal resolutions, including short (e.g., 1-

second), medium (e.g., 10-second), and long (e.g., full-lesson) 

segments. A bidirectional temporal difference network was 

then employed to compute motion differences across 

segments, enabling the identification of key frames associated 

with significant interaction events, such as sudden student 

movements (e.g., standing up) or abrupt changes in teacher 

gestures. Subsequently, an attention mechanism-based 

temporal weighting map was generated, allowing the model to 

focus selectively on critical interaction intervals—such as 

turn-taking moments in dialogue or instances of emotional 

resonance—while suppressing the influence of irrelevant 

routine actions, such as page-turning or blackboard cleaning. 

In group discussion scenarios, for example, the mechanism 

captures continuous interaction sequences such as “teacher 

approaches discussion group – leans in to listen – nods in 

response.” These temporally correlated multiview fusion 

features were enhanced through attention-based weight 

reinforcement and were ultimately integrated with segment-

level motion features, resulting in a dynamic motion 

representation that encodes long-term temporal dependencies. 

 

2.2 Multiview fusion module 

 

Due to the spatiotemporal complexity of teacher–student 

interaction behaviors in dynamic English classroom 

environments—such as the motion trajectories of teachers 

delivering instruction while walking and the postural shifts of 

students engaged in multidirectional interactions—traditional 

video analysis methods that rely solely on height–width planar 

modeling have proven inadequate. These conventional 

approaches often fail to capture the deeper coupling between 

temporal (S) and spatial dimensions. Dynamic behaviors, 

including horizontal teacher movement from the lectern to 

student groups and vertical actions such as students standing 

to respond, are frequently segmented into isolated spatial 

frame sequences when analyzed on a single plane. As a result, 

temporal dependency information tends to be lost. To address 

this limitation, the proposed multiview fusion module 

introduces two novel analytical dimensions: height–time 

(G×S) and width–time (Q×S). Together with the traditional 

spatial plane, these dimensions constitute a 3D modeling 

framework. Within this framework, triaxial spatiotemporal 

convolutional kernels—3×1×1, 1×3×1, and 1×1×3—are 

employed to capture dynamic features along the temporal, 

horizontal, and vertical axes, respectively. This design 

overcomes the limitations of conventional methods in mining 

temporal dynamics, establishing a technical pathway for 

accurately decoding the spatiotemporal correlations among 

actions, motion trajectories, and classroom scenes within 

English instruction. The architecture of the multiview fusion 

module is illustrated in Figure 2. 

 

 
 

Figure 2. Architecture of the multiview fusion module 

 

The module is designed based on an input feature tensor 

A∈RZ×S×G×Q, which is initially divided along the channel 

dimension into two branches: the raw activation branch 

A1∈RβZ×S×G×Q, and the multiview modeling branch A2∈R(1-

β)Z×S×G×Q. The parameter β controls the proportion between raw 

information retention and spatiotemporal modeling 

information, thereby optimizing the trade-off between feature 

completeness and computational efficiency. For A2, multiview 

modeling is achieved through three directional channel 

convolutions: 

Temporal convolution (kernel size: 3×1×1): This operation 

slides along the temporal axis S, capturing sequential frame-

to-frame changes in behaviors such as the evolution of teacher 

gestures or the dynamic shifts in student facial expressions. 

This enables the modeling of temporal dependencies in staged 

interaction patterns such as “questioning–thinking–

responding.” 

Horizontal convolution (kernel size: 1×3×1): This operation 

focuses on variations along the width axis Q, facilitating the 

analysis of horizontal trajectories such as teacher walking 

paths or lateral student group movements during collaborative 

tasks. 

Vertical convolution (kernel size: 1×1×3): This operation 

targets motion along the height axis G, capturing key posture 

changes, including student transitions between sitting and 

standing, or vertical body movements during teacher 

blackboard writing. 

The outputs of the three directional convolutions—denoted 

as PS, PG, and PQ—were fused via weighted summation across 

dimensions to generate a high-order representation that 

integrates multiview spatiotemporal information. This 

representation was subsequently concatenated with the raw 

activation branch A2, resulting in a composite feature 

representation that preserves both local detail and global 

dynamic structure. Let z, s, a, and b represent the indices along 

the channel, temporal, height, and width dimensions, 

respectively. The convolution kernels used for modeling the 

G-Q, Q-S, and G-S views are denoted by JS, JG, and JQ. The 

expressions for the outputs of the three directional 

convolutions are given by: 
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𝑃𝑆 =∑𝐽𝑧,𝑢
𝑆

𝑢

𝛱𝐴𝑧,𝑠+𝑢,𝑔,𝑞
1  (1) 

 

𝑃𝐺 =∑𝐽𝑧,𝑢
𝐺

𝑢

𝛱𝐴𝑧,𝑠,𝑔+𝑢,𝑞
1  (2) 

 

𝑃𝑄 =∑𝐽𝑧,𝑢
𝑄

𝑢

𝛱𝐴𝑧,𝑠,ℎ,𝑞+𝑢
1  (3) 

 

Let σ denote the activation function, and let the activated 

feature map be represented as P1∈RβZ×S×G×Q. The 

corresponding weights for each view are denoted as αS, αG, and 

αQ, respectively. The fusion of PS, PG, and PQ was performed 

using the following equation: 

 

𝑃1 = 𝜎(𝛼𝑆 ⋅ 𝑃𝑆 + 𝛼𝐺 ⋅ 𝑃𝐺 + 𝛼𝑄 ⋅ 𝑃𝑄) (4) 

 

In this study, αS=αG=αQ=1 was set. Finally, the outputs were 

concatenated along the channel dimension—denoted as 

concat—to produce the output of the multiview fusion 

module: 

 

𝐷𝑢 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐴2, 𝑃1) (5) 

 

where, Du∈R V×Z×S×G×Q. In the context of English classroom 

interaction analysis, the triaxial modeling capabilities of the 

proposed module yield substantial advantages. For instance, 

when a teacher engages in a compound behavior involving 

both teaching aid demonstration and blackboard explanation 

in the lectern area, the width–time convolution captures the 

temporal correlation between horizontal movement and 

blackboard content updates. Simultaneously, the height–time 

convolution identifies vertical motion trajectories such as the 

raising or lowering of instructional tools, while the original 

spatial-plane convolution retains spatial relations, including 

fine-grained details of the teaching aid and the collective gaze 

direction of the students. The fusion of these three components 

enables precise semantic parsing of multistage interaction 

events, such as “teacher points to blackboard vocabulary → 

students engage in collective repetition → teacher nods in 

affirmation.” In group discussion scenarios, the horizontal 

convolution can be used to track the teacher's movement 

between groups, the vertical convolution detects height 

changes as students stand to speak, and the temporal 

convolution captures gesture exchanges and text-passing 

sequences, along with their temporal intervals. Together, these 

fused features construct a comprehensive feature vector that 

encodes spatial positioning, action sequencing, and interaction 

rhythm. 

 

2.3 Motion feature extraction 
 

Given the temporal dynamics inherent in teacher–student 

interaction behaviors within dynamic English classroom 

environments—such as multi-stage action chains in classroom 

questioning or sustained collaborative patterns during group 

discussions—traditional video analysis methods that rely on 

direct computation of long-range frame differences are prone 

to introducing noise and often overlook the temporal 

dependencies within intermediate steps. This can result in 

distorted representations of motion patterns associated with 

complex interaction behaviors. To address these limitations, 

the motion feature extraction module was designed around a 

“neighboring segment temporal-difference modeling” 

strategy. A multi-scale receptive field (MF) mechanism was 

introduced to capture fine-grained motion information and to 

mitigate discontinuities in long-term motion representation. 

The architecture of the motion feature extraction module is 

illustrated in Figure 3. Specifically, the input to this module 

consisted of the fused feature map sequence Du, obtained from 

the multiview fusion module. The continuous video was first 

segmented into equal-length clips. Motion differentials 

between adjacent segments—such as frame-wise optical flow 

fields and pose keypoint displacements—were then computed 

to generate a short-term motion difference matrix. This 

approach avoids the computational complexity and 

redundancy associated with long-range frame comparisons, 

while precisely focusing on the dynamic progression of 

interaction sequences such as “question – response – 

feedback,” thereby providing a temporal characteristic basis 

for the frequent occurrence of verbal exchanges accompanied 

by coordinated physical gestures in English classrooms. 

 

 
 

Figure 3. Architecture of the motion feature extraction module 

 

A multi-receptive field strategy based on a three-branch 

parallel architecture was adopted within the module to perform 

multi-scale feature extraction on the motion difference matrix. 

This was achieved using dilated convolutions with varying 

dilation rates, enabling multi-level capture of fine-grained 

motion information under a shared-weights and lightweight 

design. 

Small receptive field branch (dilation rate = 1): This branch 

focuses on capturing instantaneous frame-to-frame motion 

changes, such as subtle finger tremors during teaching aid 

manipulation or student micro-expressions like blinking. 

These features help preserve local interaction behavior details. 

Medium receptive field branch (dilation rate = 2): Designed 

to cover a moderate temporal span of approximately 5–10 

frames, this branch is suitable for analyzing the temporal 

correlations of staged action sequences, such as “teacher walks 

toward student → pauses for explanation” or “student raises 

hand → stands to answer.” 

Large receptive field branch (dilation rate = 3): This branch 

processes long temporal sequences extending beyond 20 
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frames, focusing on the interaction rhythms of an entire lesson. 

Examples include the initiation–peak–resolution cycle of 

group discussions and fluctuations in instructional tempo over 

the course. 

 

 
 

Figure 4. Architecture of the multi-receptive field module 

 

The architecture of the multi-receptive field module is 

shown in Figure 4. Motion features extracted by each branch 

were temporally aligned through zero-padding and then 

concatenated to form a composite motion feature vector. This 

vector integrates instantaneous motion details, mid-range 

stage transitions, and long-range interaction patterns. 

Subsequently, an attention mechanism was introduced to 

generate an attention map over the long-term motion features. 

This mechanism selectively amplifies features corresponding 

to key interactive moments—such as physical contact between 

teacher and student or eye-gaze alignment—while suppressing 

irrelevant motions such as equipment shifts or student posture 

adjustments. In this way, a transformation is achieved from 

raw motion signals to semantically enriched features.  

Formally, the temporal alignment difference between video 

segments De
u is denoted by T(De

u,De
u+1), and is defined as: 

 

𝑇(𝐷𝑢
𝑒 , 𝐷𝑢+1

𝑒 ) = 𝐽2 ∗ 𝐷𝑢+1
𝑒 − 𝐷𝑢

𝑒  (6) 

 

The preliminary long-term motion information extracted 

from video segment u via the multi-receptive field module was 

then used to compute the attention map, denoted by 

L(De
u,De

u+1), where: 

 

𝐿(𝐷𝑢
𝑒 , 𝐷𝑢+1

𝑒 ) =
1

3
∑𝐹𝑘(�̄�(𝐷𝑢

𝑒 , 𝐷𝑢+1
𝑒 ))

3

𝑘=1

 (7) 

 

Finally, the attention map for long-term motion features 

within each segment was computed via residual connection, 

expressed as: 

 

𝐾(𝐷𝑢
𝑒 , 𝐷𝑢+1

𝑒 ) = 𝑆𝐼𝐺 (𝐽3 (𝑀𝐴𝑋(𝐿(𝐷𝑢
𝑒 , 𝐷𝑢+1

𝑒 )))) (8) 

 

𝐿(𝐷𝑢
𝑒 , 𝐷𝑢+1

𝑒 ) =
1

2
[𝐾(𝐷𝑢

𝑒 , 𝐷𝑢+1
𝑒 ) + 𝐾(𝐷𝑢+1

𝑒 , 𝐷𝑢
𝑒)] (9) 

 

In complex interactive scenes of English classroom 

environments, the residual connection architecture is 

employed to effectively mitigate gradient vanishing issues 

encountered in the training of deep networks, thereby ensuring 

the stability of multi-stage feature extraction. For example, in 

analyzing the compound action sequence of "blackboard 

writing followed by turning to pose a question," the small 

receptive field branch captures fine wrist movements during 

writing; the medium receptive field branch models torso 

posture changes during the turning action; and the large 

receptive field branch integrates the entire temporal span from 

the beginning of the writing to the end of the questioning 

behavior. Through residual connection, these features are 

complementarily fused, avoiding fragmentation caused by 

single-scale modeling. In group discussion scenarios 

involving simultaneous participation by multiple students, the 

attention map dynamically focuses on the standing actions and 

gestural interactions of active speakers, while also retaining 

the spatial trajectory of the teacher's supervisory movement. 

This yields a multidimensional motion representation 

encompassing spatial positioning, temporal sequencing, and 

interaction roles. 

 

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

 

As shown in Table 1, the proposed method achieved a Top-

1 accuracy of 81.6%, significantly outperforming all 

comparative approaches. Specifically, models such as 

Temporal Difference Networks (TDN) (73.6%) and Temporal 

Shift Module (TSM) (74.6%)—which rely on single-view 

inputs or basic temporal modeling—exhibited limitations in 

capturing spatial dynamics across multi-zone classroom 

interactions, leading to suboptimal performance. In contrast, 

the multiview fusion module adopted in the present approach 

employed cross-dimensional convolutions over front, side, 

and rear perspectives, thereby enabling comprehensive spatial 

distribution modeling of teacher–student interactions. This led 

to an improvement of 7–8 percentage points over single-view 

methods, confirming the necessity of multiview information 

integration. Although methods such as SlowFast Networks 

(72.8%) and Expanded 3D Convolution Network (X3D) 

(75.9%) utilize 3D convolutions or dual-path structures, their 

capacity for fine-grained motion feature extraction remains 

limited. By contrast, the motion feature extraction module of 

the proposed model—through temporal difference 

computation between adjacent segments and multi-scale 

dilated convolution—effectively distinguished multi-level 

motion patterns such as gesture emphasis by teachers and 

cyclical group discussions. This enabled superior modeling of 

the coupled "language–gesture–expression" behaviors typical 

of English classroom interactions, resulting in a 5.7 percentage 

point improvement over X3D. These results validate the 

synergistic advantage of combining temporal difference 

modeling with multi-receptive fields. Furthermore, models 

such as Global Spatial-Temporal Attention (GSTA) (72.8%) 

and Non-local Network (72.4%) demonstrated insufficient 

scene-specific adaptability in their attention mechanisms, 

making it difficult to focus on key interaction events such as 

teacher–student physical contact or manipulation of 

instructional tools. In contrast, the joint view–motion attention 

design employed in the proposed method successfully 

suppressed non-informative scenes while enhancing the 

semantic salience of pedagogically meaningful interactions. 

This led to an 8.8 percentage point improvement over GSTA, 

highlighting the model’s high degree of contextual 

compatibility with educational settings. 

As shown in Table 2, the performance differences observed 

before and after the introduction of the multiview fusion 

module clearly demonstrate its critical contribution to model 

enhancement. Specifically, under short temporal window 

conditions, the Top-1 accuracy increased from 72.56% to 

72.89%, representing an absolute gain of +1.26%. This 

improvement indicates that during rapid interaction cycles—
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such as teacher questioning followed by immediate student 

responses—the multiview fusion mechanism successfully 

integrated spatial cues from the front, side, and rear 

perspectives. This integration compensated for the blind spots 

inherent in single-view setups, enhanced the spatial contextual 

understanding of brief interactions, and improved recognition 

accuracy. In scenarios involving medium-to-long temporal 

durations, Top-1 accuracy improved from 72.56% to 74.58%, 

corresponding to a +1.38% gain. Under these conditions, the 

module not only fused spatial information but also modeled 

temporal relationships across views, thereby strengthening the 

joint spatiotemporal representation of extended interaction 

sequences. The synergistic effect between deeper backbone 

networks and the multiview fusion module was more 

pronounced, indicating that the multidimensional 

spatiotemporal features generated by the module were 

effectively exploited by deeper architectures. This facilitated 

accurate adaptation to the semantic complexity of classroom 

interactions. The ablation results in Table 2 confirm that the 

multiview fusion module effectively addresses the core 

challenge of information deficiency in single-view modeling 

under dynamic classroom conditions. Significant performance 

improvements were observed across both short-term and 

medium-to-long-term interaction scenarios. The module 

demonstrated strong adaptability to the spatial distribution and 

multidirectional characteristics of English classroom 

interactions and provided essential support for subsequent 

motion feature extraction. Its technical innovation and 

contextual alignment establish the multiview fusion 

mechanism as a central component in educational computer 

vision systems, offering the foundation for achieving high-

performance interaction behavior recognition. 

 

Table 1. Comparison between the proposed method and state-of-the-art approaches 

 
Method Pretrain Backbone Top-1 

TDN Kinetics-400+Classroom-100 ResNet-50 73.6% 

TSM ImageNet+Kinetics-600+Classroom-200 ResNet-50/101 74.6% 

SlowFast Networks Kinetics-700+Classroom-300 
SlowPath:ResNet-50 

FastPath:ResNet-101 

72.8% 

Non-local Network Kinetics-400+Classroom-150 ResNet-50/101 72.4% 

X3D Kinetics-600+Classroom-200 Lightweight 3DResNet 75.9% 

TPN Kinetics-500+Classroom-250 ResNet-50 74.5% 

GSTA YouTube-8M+Classroom-100 ResNet-50 72.8% 

Proposed method ImageNet+Kinetics ResNet-50 81.6% 

 

Table 2. Ablation study: comparison of model performance before and after introducing the multiview fusion module 

 
Method Frames Backbone Top-1 Top-5 △Top-1 

Before multiview fusion 
9 Resnet-50 

72.56 97.58 
+1.26 

After multiview fusion 72.89 97.23 

Before multiview fusion 
14 Resnet-101 

72.56 97.88 
+1.38 

After multiview fusion 74.58 98.36 

 

 
 

Figure 5. Recognition results of teacher–student interaction 

behaviors in English classroom environments under different 

network depths and frame inputs 

 

Figure 5 illustrates the model convergence curves and final 

accuracy values under varying backbone network depths and 

input frame numbers. It can be observed that ResNet-101 

consistently achieves higher accuracy than ResNet-50 in the 

later stages of training. This indicates that deeper networks are 

more capable of fully leveraging the cross-view 

spatiotemporal features generated by the multiview fusion 

module, thereby enabling more effective modeling of 

hierarchical interactive semantics in English classrooms, such 

as instruction–feedback–collaboration. For example, the 

ResNet-101 + 14-frame configuration surpassed 75% 

accuracy by the 25th training epoch, while the ResNet-50 + 9-

frame configuration plateaued at approximately 70%, 

confirming the superior representational capacity of deeper 

networks in capturing the complex interaction patterns present 

in educational settings. Additionally, models with 14-frame 

input demonstrated faster convergence and higher final 

accuracy compared to those with 9-frame input. A longer 

temporal window provided the motion feature extraction 

module with richer dynamic cues, thereby enhancing its ability 

to model long-duration interaction patterns. For instance, in 

the task of capturing a teacher’s movement trajectory across 

multiple student groups, the 14-frame configuration covered 

more stages of the interaction process, effectively reducing the 

risk of missing critical actions often encountered with shorter 

sequences and significantly improving recognition accuracy. 

The convergence analysis in Figure 5 confirms that the 

integration of deeper backbone networks with longer temporal 

inputs fully activates the spatial capabilities of the multiview 

fusion mechanism and the temporal capacity of the motion 

feature extraction. As a result, the proposed method exhibits 

efficient feature learning and semantic modeling in 

recognizing teacher–student interaction behaviors under 
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dynamic English classroom conditions. The combined use of 

deeper networks and extended temporal windows yielded 

notable performance improvements, further validating the 

educational specificity of the technical design. This strategy 

successfully addresses the challenges of limited single-view 

information and loss of dynamics in short sequences. By 

enabling hierarchical feature extraction, the proposed 

framework achieves precise recognition of complex 

interactions and provides a robust pathway for computer 

vision–based educational behavior analysis. The experimental 

evidence strongly supports the method’s effectiveness. 

 

Table 3. Ablation study: performance impact of the multi-

receptive field mechanism 

 

Model Configuration 
Training 

Accuracy (%) 

Testing 

Accuracy (%) 

Without the multi-

receptive field mechanism 
95.6 75.8 

Full model 96.2 77.2 

 

As shown in Table 3, the multi-receptive field mechanism 

plays a critical role in enhancing model performance. On the 

training set, the full model achieved an accuracy of 96.2%, 

representing a 0.6 percentage point improvement over the 

configuration in which the mechanism was removed (95.6%). 

This improvement reflects the effectiveness of the parallel 

multi-scale convolution strategy in capturing detailed motion 

features from the training data. For example, when learning 

compound behaviors such as “teacher writing on the board + 

student note-taking,” the small receptive field branch focuses 

on fine motor movements of the teacher’s hand, the medium 

receptive field models the temporal sequence of note-taking 

behaviors, and the large receptive field integrates the overall 

instructional rhythm. This multi-scale capture enhances the 

model’s ability to fit training data and prevents the loss of 

features often associated with single-scale modeling. The 

improvement was even more pronounced on the testing set, 

where the full model reached 77.2%, surpassing the 75.8% 

accuracy of the reduced model by 1.4 percentage points. This 

gain can be attributed to the diverse temporal scales present in 

interaction behaviors within dynamic classroom 

environments. Teacher–student interactions often include both 

instantaneous micro-movements and prolonged behavioral 

patterns. The multi-receptive field mechanism, through the use 

of dilated convolutions, enables the simulation of receptive 

fields over varying time spans, supporting the joint modeling 

of micro-level actions and macro-level temporal patterns. For 

instance, in the task of recognizing the action “student stands 

to answer,” the small receptive field captures the abrupt 

change in posture at the moment of standing, while the large 

receptive field models the surrounding classroom context 

before and after the response. This joint encoding enhances the 

model’s generalization capability, particularly in the presence 

of real-world challenges such as lighting variation and 

occlusion. The ablation results presented in Table 3 provide 

strong evidence that the multi-receptive field mechanism, 

through effective multi-scale feature extraction, significantly 

improves the recognition of teacher–student interaction 

behaviors in dynamic English classroom environments. The 

observed performance gains in both training and testing 

scenarios demonstrate the mechanism’s ability to model multi-

scale interactive semantics with high precision. Its deep 

integration within the overall model architecture addresses the 

limitations of single-scale feature representation and provides 

critical support for the recognition of complex interaction 

behaviors. 

 

Table 4. Impact of input frame count and network depth on 

model performance 

 

Backbone Frames 
Training 

Accuracy (%) 

Testing 

Accuracy (%) 

Resnet-50 
9 75.6 74.5 

14 76.2 75.2 

Resnet-101 
9 75.8 75.9 

14 76.4 76.5 

 

As presented in Table 4, a consistent upward trend in both 

training and testing accuracy was observed with increases in 

network depth and input frame count. For the testing set, 

ResNet-50 with 9-frame input achieved an accuracy of 74.5%, 

whereas ResNet-101 with 9-frame input reached 75.9%, 

demonstrating that deeper networks possess stronger 

abstraction capabilities for the multiview fusion features, 

thereby enabling improved capture of spatiotemporal 

dependencies in classroom teacher–student interactions. 

Further, the configuration using ResNet-50 with 14-frame 

input yielded 75.2%, while ResNet-101 with 14-frame input 

reached 76.5%. These results indicate that longer temporal 

sequences provide the motion feature extraction module with 

more comprehensive dynamic information, thereby enhancing 

the modeling of long-duration interaction patterns and 

mitigating the loss of critical behavioral stages that often 

occurs in short-sequence inputs. The experimental findings in 

Table 4 confirm that the proposed method—through the joint 

design of deep backbone networks and long temporal 

sequence input—fully leverages the spatial capacity of the 

multiview fusion and the temporal ability of the motion feature 

extraction. This configuration enabled the accurate 

recognition of teacher–student interaction behaviors under 

dynamic English classroom conditions. The combined 

optimization of network depth and input frame count 

effectively addressed two core challenges: insufficient 

information in single-view inputs and loss of dynamics in short 

sequences. Through hierarchical feature extraction, a unified 

spatial–temporal–semantic representation was constructed. 

These results provide strong empirical support for the 

effectiveness of the proposed framework. The design offers a 

reliable technical pathway for computer vision–based analysis 

in educational environments, and its proven scene adaptability 

and performance advantages lay a solid foundation for future 

research. 

 

 

4. CONCLUSION 

 

To address the technical challenges of recognizing teacher–

student interaction behaviors in dynamic English classroom 

environments, an end-to-end method integrating multiview 

spatial modeling with fine-grained temporal dynamic analysis 

was proposed. Two core modules were developed to support 

this framework. By deploying multiview cameras to capture 

classroom video data, channel separation and triaxial 

spatiotemporal convolution were employed to achieve cross-

view feature fusion, thereby resolving the issue of interaction 

detail loss caused by single-view blind spots. To address the 

temporal dynamics of English classroom interactions, a multi-

receptive field strategy based on temporal difference 

computation between adjacent segments was designed. A 
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three-branch parallel structure was constructed using dilated 

convolutions, enabling the model to capture instantaneous 

micro-movements, staged action sequences, and long-term 

interaction patterns. An attention mechanism was further 

integrated to enhance the weight of features associated with 

key interactive moments while suppressing noise from 

irrelevant scenes. The use of residual connections ensured 

stable training of the deep network and enabled efficient 

transformation from raw motion signals to semantically 

enriched features. 

This research is tightly aligned with the multidirectional 

interaction characteristics of English classroom environments. 

Through multiview fusion, full spatial coverage of the 

classroom was achieved, allowing for the first time the 

spatiotemporal modeling of cross-perspective teacher mobility 

and multidirectional student feedback. The motion feature 

extraction module, combining adjacent segment difference 

calculation with multi-receptive fields, effectively addressed 

issues inherent in conventional methods such as high noise in 

long-range frame computations and disrupted temporal 

dependencies. Using hierarchical feature extraction across 

small, medium, and large receptive fields, the model was 

capable of capturing instantaneous features such as subtle 

changes in student mouth movement during repetition, as well 

as modeling long-term patterns such as the overall rhythm of 

a lesson. This provided a robust hierarchical feature 

representation of frequent language–gesture synchronized 

behaviors in educational scenarios. Ablation experiments 

confirmed that this mechanism improved test accuracy by 

1.4% to 2.2%. These findings offer critical technical support 

for intelligent classroom analysis systems and enable 

automated semantic interpretation of teacher–student 

interactions, laying a foundation for applications such as 

instructional evaluation and structured retrieval of classroom 

video content. Compared to generic video analysis models, the 

proposed approach demonstrated superior performance in 

context-specific interaction recognition within educational 

environments, underscoring its substantial practical value. 

However, several limitations in this study remain to be 

addressed. First, the current model relies on synchronized 

acquisition from multiple cameras, which introduces 

considerable complexity in hardware deployment and 

demands high spatial–temporal alignment accuracy. As a 

result, full adaptation to low-cost, single-camera classroom 

environments has not yet been achieved. Second, in scenarios 

involving severe occlusion, complex lighting conditions, or 

unstructured interactions, the model's ability to focus on 

critical features may be weakened, resulting in fluctuations in 

recognition accuracy. Third, the model training still depends 

on large-scale, manually annotated datasets specific to 

educational contexts, limiting generalization performance 

under low-resource or small-sample conditions. Future efforts 

may focus on developing lightweight multiview fusion 

approaches based on self-supervised learning, thereby 

reducing dependence on hardware. Enhancements in spatial 

information modeling under monocular settings should also be 

pursued to improve deployment flexibility. The integration of 

non-visual modalities such as audio and text is encouraged to 

construct cross-modal interaction models that couple linguistic 

and visual features, thereby enabling more comprehensive 

interpretation of compound behaviors such as spoken 

instructions accompanied by gestural demonstrations. 

Additionally, domain adaptation techniques could be explored 

to enhance model generalization across diverse classroom 

environments and instructional models. 
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