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Respiratory diseases pose a significant threat to human health, and early, accurate diagnosis 

is critical for improving patient outcomes. Chest X-ray imaging, due to its affordability and 

convenience, remains the primary tool for clinical screening. However, traditional manual 

interpretation is time-consuming, experience-dependent, and prone to oversight and 

misdiagnosis. With the advancement of deep learning in medical imaging, computer vision–

based automated analysis offers promising solutions to these challenges. Nevertheless, 

existing methods such as U-Net and its variants often struggle with accurately segmenting 

complex lung structures, especially when dealing with noisy images, small lesions, or 

blurred boundaries. Additionally, conventional 2D convolutional neural networks (CNNs) 

have limitations in capturing the spatial features inherent in chest X-ray images, and current 

multi-disease classification models still face challenges in achieving high accuracy and 

generalizability. To address these issues, this study proposes two key innovations: First, an 

optimized U-Net++L3 network with pruning is developed for automatic chest X-ray 

segmentation, effectively reducing parameter redundancy while maintaining accuracy, 

thereby enhancing segmentation performance in regions with complex lesions. Second, a 

densely connected 3D CNN model is designed for the recognition of multiple respiratory 

diseases. By leveraging the spatial feature extraction capabilities of 3D convolutions and the 

feature reuse advantages of dense connections, the model achieves precise classification of 

conditions such as pneumonia, lung cancer, and chronic obstructive pulmonary disease 

(COPD). The outcomes of this research aim to overcome the limitations of traditional 

models in terms of segmentation accuracy, computational efficiency, and feature 

representation, providing both theoretical innovation and practical value for rapid clinical 

screening and the enhancement of primary healthcare resources.  
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1. INTRODUCTION

Globally, respiratory diseases such as pneumonia, lung 

cancer, and COPD [1-4] pose a serious threat to human health, 

with high incidence and mortality rates that remain 

persistently elevated. Early and accurate diagnosis [5, 6] is 

critical for improving patient prognosis, and chest X-ray 

examination [7-10], due to its convenience, low cost, and low 

radiation dose, has become a commonly used method for 

preliminary screening and diagnosis of respiratory diseases. 

However, traditional manual film reading [11, 12] not only 

relies on doctors’ clinical experience and subjective judgment, 

which leads to low efficiency, but also tends to result in missed 

diagnoses and misdiagnoses when dealing with massive image 

data. With the rapid development of artificial intelligence 

technology [13-16], especially the widespread application of 

deep learning in medical image analysis, computer vision–

based automatic segmentation and disease recognition of chest 

X-ray images provide new ideas and methods for improving

the diagnostic efficiency and accuracy of respiratory diseases.

The research on automatic segmentation of chest X-ray 

images and multi-type respiratory disease recognition based 

on CNN has important practical significance. In clinical 

diagnosis, accurate automatic segmentation of chest X-ray 

images can clearly delineate lung lesion areas and provide 

doctors with clear anatomical structures and lesion location 

information, which is helpful for more accurate assessment of 

lesion extent and severity. The multi-type respiratory disease 

recognition model can quickly classify and identify various 

common respiratory diseases, assisting doctors in completing 

a large number of image screenings in a short time, 

significantly improving diagnostic efficiency and reducing 

their workload. In addition, the research results can promote 

the distribution of high-quality medical resources to primary-

level institutions, provide reliable technical support, improve 

the fairness and accessibility of medical diagnosis, and have 

important social value for enhancing the overall prevention 

and control level of respiratory diseases. 

At present, many studies have been conducted in the field 

of chest X-ray image segmentation and respiratory disease 
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recognition. In terms of image segmentation, traditional U-Net 

models and their variants are widely used. However, some 

studies [17-19] have pointed out that these models still have 

limitations in processing complex lung structures and images 

with substantial noise and artifacts. Their segmentation 

accuracy and robustness need to be improved, especially for 

small lesions or regions with blurred boundaries, where 

inaccurate segmentation is likely to occur. In terms of disease 

recognition, many studies adopt 2D CNNs, but the literature 

[20] shows that 2D models are insufficient in capturing the

three-dimensional spatial correlation of disease features in

chest X-ray images. For example, early small nodules of lung

cancer, which exhibit three-dimensional growth

characteristics, are difficult to recognize accurately.

Meanwhile, some recognition models [21-23], when dealing

with mixed diagnoses of multiple types of respiratory diseases,

suffer from limited feature extraction ability, resulting in low

classification accuracy and weak generalization capability,

performing unstably on images collected from different

datasets and devices.

This paper mainly includes two parts. The first part is an 

automatic chest X-ray image segmentation model based on a 

U-Net++L3 pruning optimization network. Based on U-Net++,

the model is optimized using L3 pruning technology to reduce

model parameters and computation while maintaining high

segmentation accuracy, thereby improving segmentation

efficiency and precisely segmenting lung lesion regions,

providing high-quality image data for subsequent disease

recognition. The second part is a multi-type respiratory disease

recognition model based on a densely connected 3D CNN. By

leveraging the advantages of 3D CNNs in fully extracting the

spatial features of images and combining dense connection

structures to enhance feature propagation and reuse, the model

improves its ability to capture and classify features of various

respiratory diseases, achieving accurate recognition of

pneumonia, lung cancer, COPD, and other diseases. The value

of this study lies in effectively addressing the deficiencies of

existing methods in segmentation accuracy, computational

efficiency, feature extraction, and disease classification

through in-depth research on chest X-ray image segmentation

models and multi-type respiratory disease recognition models.

The proposed segmentation model based on U-Net++L3

pruning optimization is expected to improve the model's

runtime speed while ensuring segmentation accuracy, making

it more suitable for fast processing requirements in actual

clinical applications. The recognition model based on the

densely connected 3D CNN can better capture the three-

dimensional spatial features of diseases, improve the

recognition accuracy and generalization ability of multi-type

diseases, and provide strong technical support for early

diagnosis and precise treatment of respiratory diseases, with

important theoretical significance and practical application

value.

2. AUTOMATIC SEGMENTATION MODEL OF

CHEST X-RAY IMAGES BASED ON U-NET++L3

PRUNING OPTIMIZATION NETWORK

Automatic segmentation of chest X-ray images faces 

challenges such as complex anatomical structures of the lungs, 

blurred boundaries of lesion areas, and noise interference. The 

skip connections in traditional encoder-decoder networks only 

fuse features at the same level, making it difficult to capture 

multi-scale detail information, especially lacking 

segmentation accuracy for small lesions or ground-glass-like 

blurred regions. U-Net++ reconstructs the feature fusion paths 

through dense skip connections, enabling cross-layer fusion of 

fine-grained features at different depths of the encoder with 

coarse-grained semantic information from the decoder, 

forming a multi-level feature interaction network. The 

network model can more accurately capture the spatial 

correlation of complex structures in chest X-ray images such 

as lung lobes, bronchi, and blood vessels, as well as the subtle 

boundary differences of lesion regions like pneumonia 

infiltrates and lung nodules. For example, when processing 

chest X-ray images with pleural effusion or pulmonary 

consolidation, the dense connections can effectively integrate 

feature maps of different resolutions, avoiding the boundary 

deviation problem caused by insufficient single-scale features 

in traditional models, thereby improving segmentation 

accuracy in complex lesion scenarios. 

Clinical application scenarios of chest X-ray images impose 

high requirements on the computational efficiency and real-

time performance of the model. The original U-Net++ network 

includes four sub-networks with different depths. Although it 

has flexible feature fusion capabilities, the complete network 

has a large number of parameters and high computational cost. 

This paper chooses to apply L3 layer pruning optimization to 

U-Net++ through deep supervision mechanism, retaining the

core feature fusion paths while removing redundant branches

to achieve a balance between accuracy and efficiency.

Specifically, L3 pruning retains the sub-network structure with

medium depth in the encoder-decoder, avoiding segmentation

blur caused by insufficient feature extraction of shallow sub-

networks and preventing overfitting risk caused by excessive

complexity of deep sub-networks. Aiming at the common

noise interference and individual differences in chest X-ray

images, the pruned network enhances the robustness of feature

learning through deep supervision training, which can reduce

the misjudgment of irrelevant background noise while

maintaining segmentation accuracy of the main lung structures.

2.1 Dense skip connections 

In the U-Net++L3 pruning optimization network, dense 

skip connections build a cross-layer feature interaction 

network, achieving deep fusion of multi-scale anatomical 

structures and lesion features in chest X-ray images. Let au,k 

represent the output of node Au,k. Suppose the combination of 

convolution and activation operation is represented by G(∙), 

the upsampling operation is represented by I(∙), and the 

channel-wise concatenation operation is represented by [∙]. 

Then this process can be expressed by the following formula: 
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Figure 1 shows a schematic diagram of a skip path in U-

Net++. Specifically, the input of each node consists of multi-

source features: for the initial node with k=0 in the encoder 

path, it only receives the coarse-grained semantic features 

obtained from the downsampling of the previous encoder layer, 

focusing on the preliminary distinction between the overall 

contour of the lungs and the background. When k≥1, the node 

not only fuses detail features from predecessor nodes at the 
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same layer, but also introduces semantic information from 

lower-layer nodes through upsampling operations, forming a 

bidirectional fusion of "shallow details–deep semantics". For 

example, when processing a chest X-ray image containing 

lung nodules, node A0,2 integrates shallow edge features from 

A0,0, mid-level texture features from A0,1, and deep semantic 

features upsampled from A1,1, and generates a composite 

feature map with multi-dimensional information through 

feature concatenation and convolution operations. The 

adopted dense skip connection is particularly suitable for the 

diversity of lesion areas in chest X-ray images. Whether it is 

large patchy fuzzy infiltrates of pneumonia or solitary micro-

nodules of lung cancer, the dense connection can aggregate 

cross-layer features to enhance the model’s ability to capture 

complex boundaries and subtle grayscale differences, 

avoiding missed or false segmentation caused by the limited 

features of traditional single-path connections. 

Figure 1. Schematic diagram of a skip path in U-Net++ 

Figure 2. Schematic diagram of U-Net++L3 pruning network 

Figure 2 gives the schematic diagram of the U-Net++L3 

pruning network. In response to the efficiency requirements of 

automatic segmentation of chest X-ray images, the L3 pruning 

optimization retains the core dense connection structure while 

filtering redundant branches, forming a medium-depth feature 

fusion network. Specifically, in the pruned L3 sub-network, 

node connections mainly retain the hierarchy with k≤2, which 

ensures the effective interaction between deep semantic 

features of the encoder and shallow detail features of the 

decoder, and avoids computational redundancy caused by 

overly dense connections. For example, when processing chest 

X-ray images with rib artifacts or pleural effusion interference,

the optimized connection path focuses on feature channels that

contribute more to segmentation accuracy, such as fusing edge

features from predecessor nodes at the same layer and

semantic features upsampled from lower layers through node

A0,1, to accurately locate lung parenchyma boundaries masked

by noise. At the same time, ineffective connections in deep 

sub-networks that redundantly extract common features of 

chest X-ray images are removed, and computational resources 

are concentrated on learning differentiated features related to 

lesions. 

2.2 Deep supervision 

In the training of the U-Net++L3 pruning optimization 

network for chest X-ray image automatic segmentation, the 

deep supervision method adds auxiliary supervision branches 

at intermediate nodes A0,1, A0,2, A0,3, and A0,4 of the dense 

connection, constructing a multi-level loss feedback 

mechanism. Specifically, a 1×1 convolution layer and sigmoid 

activation function are attached at the end of each branch to 

transform the corresponding level feature map into a 

segmentation probability map. Then, a combined loss function 

of binary cross-entropy and Dice coefficient is used to 

independently supervise the mid-level features of the network. 

Assuming the predicted probability and ground truth of the 

image are denoted by �̂�y and Oy, and the batch size is denoted 

by Y, the process can be expressed as: 

( )

1

ˆ,

ˆ21 1 ˆlog
ˆ2

Y y y

y yy

y y

LOSS O O

O O
O O

Y O O=

=

  
−   + 

 + 


 (2) 

The above deep supervision method effectively addresses 

the problem of gradient vanishing during training of deep 

networks, considering the small grayscale differences and 

strong noise interference in lung tissues and lesion areas in 

chest X-ray images. The shallow branches focus on extracting 

detail features such as lung textures and blood vessels, directly 

constraining edge segmentation accuracy through auxiliary 

loss; the deep branches focus on the global morphology of 

lung lobes and semantic distinction of lesion areas, ensuring 

segmentation accuracy of global structures. When processing 

complex X-ray images with rib artifacts or pleural effusion, 

branches at different depths can respectively optimize features 

at different scales, forming a collaborative feature learning 

process from local to global, avoiding underutilization of 

shallow features or gradient attenuation in deep layers caused 

by single-terminal supervision, thereby enhancing the model’s 

ability to capture complex lesion boundaries in chest X-ray 

images. The introduction of deep supervision provides key 

technical support for the pruning optimization of the U-

Net++L3 network. During training, the four branches with 

different depths operate simultaneously to generate four 

segmentation maps, which are fused into the final result 

through an averaging strategy, ensuring that the model fully 

utilizes the feature complementarity of sub-networks at 

multiple depths during the learning phase. During inference, 

the network trained with deep supervision can select the 

optimal sub-network structure retained up to L3 level 

according to the actual complexity of chest X-ray images and 

computational resource requirements. This sub-network 

terminates the auxiliary supervision branch at node A0,2, 

retaining the core feature fusion path of the first three layers of 

dense connections, avoiding segmentation blur caused by 

insufficient feature extraction of shallow sub-networks and 

eliminating redundant high-dimensional feature computation 

in deep sub-networks. 

1449



3. MULTI-TYPE RESPIRATORY DISEASE 

RECOGNITION MODEL BASED ON DENSE 3D CNN 

In order to deeply mine spatio-temporal features of the 

segmentation results of chest X-ray images and effectively 

solve the recognition challenges caused by subtle differences 

between multiple disease features and high inter-class 

confusion, this paper adopts a dense 3D CNN for multi-type 

respiratory disease recognition. The employed 3D convolution 

operation can use the segmented lung lesion region sequence 

as input, and simultaneously capture the spatial and temporal 

features in the image sequence through 3D spatio-temporal 

convolution kernels. This is crucial for the feature extraction 

of diseases with temporal dependence, such as the progressive 

dynamic exudation in pneumonia and the growth trajectory of 

lung cancer nodules. The adopted dense connection structure 

achieves efficient fusion of fine-grained spatio-temporal 

features extracted by shallow networks with abstract semantic 

features of deep networks through densely cross-layer 

connections, avoiding the feature loss problem caused by poor 

information transmission between layers in traditional 3D 

convolutional networks. This is especially suitable for 

complex feature representation when multiple diseases coexist 

in chest X-ray images. 

3.1 Dense 3D convolution block and dense 3D convolution 

network structure 

The dense 3D convolution block proposed in this paper 

constructs a core unit of “bottleneck layer + dense connection”, 

achieving efficient extraction and fusion of spatio-temporal 

features for multi-type respiratory diseases. Each bottleneck 

layer includes batch normalization, ReLU activation, a 1×1×1 

3D convolution kernel, and a 3×3×3 3D convolution kernel in 

sequence. Among them, the 1×1×1 convolution is used to 

compress the channel dimension, retaining key spatio-

temporal information while reducing computational cost; the 

3×3×3 convolution performs 3D spatio-temporal convolution 

on the compressed features to capture local spatial texture and 

dynamic temporal variations in the image sequence. During 

feature transmission, each bottleneck layer concatenates all 

previous layer outputs as input to the current layer through 

channel concatenation, forming cross-layer fusion of “shallow 

temporal motion features–deep semantic features”. For 

example, in the differential diagnosis of lung cancer and 

tuberculosis, spatial features such as nodule edge blurriness 

extracted by shallow bottleneck layers are complemented by 

semantic features such as lymph node enlargement around the 

lesion extracted by deep bottleneck layers through dense 

connections, effectively solving the boundary feature 

confusion problem between the two diseases in chest X-ray 

images. This design is particularly suitable for the lung ROI 

input after segmentation preprocessing. On the basis of 

removing irrelevant background interference such as chest 

wall bones, the dense connection mechanism further enhances 

the cross-layer flow of spatio-temporal features within lesion 

areas, enabling the model to accurately capture compound 

feature patterns in scenarios of coexisting multiple diseases. 

To cope with the high-dimensional complexity of multi-

type respiratory disease features and the requirement for 

model lightweighting, the dense 3D convolution block 

achieves dynamic channel balance through “growth rate 

setting + 1×1×1 convolution for dimensionality reduction”. 

Specifically, each bottleneck layer outputs a fixed number of 

32 channels, which ensures the independence of newly added 

features in each layer while avoiding computational 

redundancy caused by feature map explosion. When multiple 

bottleneck layers are cascaded, the number of channels after 

feature concatenation increases in multiples of the growth rate. 

At this point, a 1×1×1 convolution is introduced before the 

3×3×3 convolution to compress the high-dimensional features 

to a suitable dimension, significantly reducing the parameter 

count of the subsequent 3D convolution. This module design 

is particularly critical for the recognition of diseases such as 

pneumonia and lung cancer that exhibit significant spatio-

temporal heterogeneity: on one hand, the retained dense 

connection paths ensure that the temporal features of early 

mild lesions are not lost, avoiding the issue of shallow feature 

attenuation caused by deep layers in traditional 3D networks; 

on the other hand, the parameter optimization strategy 

effectively curbs overfitting, allowing the model to stably 

learn common and specific features of multiple diseases even 

on limited medical datasets. Figure 3 shows the architecture of 

a dense 3D convolution block containing three 3D bottleneck 

layers. 

Figure 3. Architecture of a dense 3D convolution block with 

three 3D bottleneck layers 

The dense 3D CNN proposed in this paper uses the dense 

3D convolution block as the core unit and achieves accurate 

recognition of multi-type respiratory diseases through a 

hierarchical feature fusion strategy. The network first follows 

the layer scale and output channel configuration of the C3D 

network to ensure structural comparability, while replacing 

traditional 3D convolutional layers with dense connection 

modules containing bottleneck structures: in convolutional 

layers 2 to 5, dense 3D convolution blocks consisting of 2, 4, 

and 8 bottleneck layers are respectively deployed. Within each 

block, shallow spatio-temporal features and deep semantic 

features are concatenated across layers via dense connections, 

forming a bidirectional feature flow of “low-level detail – 

high-level semantics”. For example, when processing 

segmented lung ROI sequence images, the dense block in 

convolutional layer 2 uses 1×1×1 convolution for 

dimensionality reduction and 3×3×3 convolution to extract 

basic spatio-temporal features, and progressively concatenates 

these features into subsequent bottleneck layers, enabling the 

deep network to continuously reuse fine-grained temporal 

differences extracted from shallow layers, thereby avoiding 

the shallow feature loss problem caused by deep layers in 

traditional C3D networks. 

To balance feature extraction ability and computational 

efficiency, the network achieves parameter optimization and 

gradient stability through the “bottleneck dimensionality 

reduction + transition layer design”. Within each dense 3D 
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convolution block, 1×1×1 convolution compresses the input 

channel number to a growth rate of 32, reducing the number 

of parameters of the 3×3×3 convolution by about 60% 

compared to the C3D network, while retaining key spatio-

temporal features. The TransitionLayer introduced at pooling 

layer 4 further compresses the number of channels, restrains 

the expansion of feature maps, alleviates the gradient 

vanishing problem in deep networks, and ensures that the 

model can be scaled to deeper layers without performance 

degradation. Finally, through the combination of average 

pooling and two fully connected layers, the multi-level fused 

spatio-temporal features are mapped to a 101-dimensional 

Softmax classifier, achieving fine-grained classification of 

multi-type diseases such as pneumonia, lung cancer, and 

COPD. This architecture, combined with ROI inputs after 

chest X-ray segmentation, focuses on the spatio-temporal 

dynamics of lesion areas, while reducing interference from 

unrelated backgrounds such as chest wall bones. At the same 

time, through the enhanced feature reuse mechanism of dense 

connections, the recognition accuracy of early micro-lesions 

and progressive features of chronic diseases is significantly 

improved. 

3.2 Dense 3D network with fisher discriminant 

Multi-type respiratory diseases often exhibit overlapping 

features in imaging manifestations, and the same type of 

disease may present significant intra-class dispersion due to 

individual patient differences and different stages of disease 

progression. Although traditional dense 3D CNNs can 

effectively extract spatio-temporal features, they lack explicit 

constraints on inter-class separability in the feature space, 

which leads to susceptibility to ambiguous feature interference 

in complex case classification. To address the problems of 

inter-class confusion and intra-class variation in disease 

features in chest X-ray images, this paper proposes a Fisher 

discriminant regularized dense 3D network for multi-type 

respiratory disease recognition. Based on the Fisher 

discriminant criterion, a regularization term is introduced, 

which forces the network to learn discriminative features 

characterized by “intra-class compactness and inter-class 

separation” through a joint loss function. Under the spatio-

temporal sequence input of segmented lung ROI, this 

mechanism on the one hand constrains features of the same 

disease class to shrink towards the cluster center in the feature 

space, reducing intra-class fluctuations caused by lesion size 

and location differences; on the other hand, it enlarges the 

inter-class distance of different disease features, enhancing the 

model’s discriminative ability in scenarios of disease 

coexistence within shared anatomical regions. For example, in 

the differential diagnosis between lung cancer and pulmonary 

fungal infections, Fisher discriminant regularization can force 

the model to amplify key differentiating features such as the 

spiculation rate at the lesion edge and the density variation rate 

in the enhanced time series, while suppressing interference 

from irrelevant variables such as chest wall artifacts and 

equipment noise. This feature optimization strategy based on 

segmented ROI input not only compensates for the inherent 

weakness of dense 3D networks in learning classification 

boundaries, but also improves the generalization ability of the 

model for small-sample diseases through explicit 

discriminative constraints, providing a robust and 

distinguishable technical solution for clinical multi-disease 

accurate classification. 

This paper uses the Softmax cross-entropy loss function in 

the dense 3D CNN, focusing on its explicit optimization 

capability for the probability distribution of multi-type 

respiratory disease classification. For the spatio-temporal 

feature input of segmented lung ROI, the Softmax function 

first transforms the raw logits output by the last layer of the 

network into a normalized category probability distribution, 

such that the output value of each dimension lies between 0 

and 1 and the sum is 1. For example, when the input is a nodule 

sequence suspected of lung cancer, the Softmax can map 

morphological features of the nodule and temporal growth 

characteristics to the probability values of categories such as 

“lung cancer”, “pulmonary tuberculosis”, and “benign lung 

nodule”. The cross-entropy calculates the difference between 

the predicted probability and the ground truth label, driving the 

network to adjust parameters to minimize classification error. 

Assuming the number of categories is represented by Z, and 

the true class label is denoted by b, with its component in class 

u represented by bu, the Softmax function is expressed as d(au),

representing the predicted probability of the sample in class u.

The loss function expression is:
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This paper introduces a Fisher discriminant regularization 

term into the dense 3D CNN, with the core aim of addressing 

the problem of intra-class dispersion and inter-class confusion 

of multi-type respiratory disease features in the high-

dimensional spatio-temporal embedding space. Although the 

preprocessed lung ROI sequence images after segmentation 

focus on lesion regions, individual differences in lesion 

morphology and density change rates among the same disease 

type lead to significant intra-class dispersion in the feature 

space; meanwhile, nodular lesions of different diseases often 

share anatomical locations in lung lobes, resulting in 

overlapping distributions in low-discriminative feature spaces. 

The Fisher discriminant criterion constructs a regularization 

function D(Q) by explicitly computing intra-class dispersion 

Tq and inter-class dispersion Ty, forcing the network to 

minimize intra-class distance while maximizing inter-class 

distance during training. Assuming the number of categories 

in the training set is denoted by Z, the sample set of class u in 

the training set is denoted by Au, and the mean feature of class 

u is denoted by ωu, the expressions for Tq and Ty are as follows:
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Combining the above two formulas, the regularization 

function can be defined as: 
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The Fisher discriminant regularization term is embedded 

into the network loss function to structurally guide the feature 

extraction process of the dense 3D CNN. Specifically, based 

on the calculation of the Softmax cross-entropy loss, the 

regularization term ηD(Q) is introduced to construct a joint 

loss function, where η is the optimization weight balancing 

classification accuracy and feature discriminability. When 

processing segmented multi-disease mixed ROIs, this 

mechanism drives the network to optimize in the following 

two aspects: (1) Intra-class compactness optimization: For 

feature variation of the same disease, by constraining the 

feature projection to cluster toward the class center on the 

hyperplane, the model ensures robust recognition of different 

presentations of the same disease. For example, even if a 

patient’s lung cancer nodule has blurred edges due to low-dose 

CT noise, its spatio-temporal features will still be pulled 

toward the lung cancer feature cluster, avoiding misjudgment 

caused by local feature perturbations. (2) Inter-class 

separability enhancement: For overlapping regions of inter-

class features, the regularization term maximizes inter-class 

dispersion, forcing the network to learn strongly 

discriminative feature combinations, so that features of the two 

diseases form a clear margin in the embedding space. The 

expression of the joint loss function is as follows: 

( ) ( )QDALOSSLOSS SMa += (8) 

Figure 4 shows the architecture of the dense 3D network 

with Fisher discriminant introduced. 

Figure 4. The Architecture of the dense 3D network with 

fisher discriminant 

4. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 5 presents the performance distribution of different 

U-Net++ pruned networks. The x-axis represents inference

time and the y-axis represents inference mIoU. Among them,

the L3 pruned network achieves an mIoU of 80% at an

inference time of about 10 seconds, demonstrating a balanced

advantage of “accuracy-efficiency”: compared with L1, L3

improves accuracy by 20 percentage points, effectively 

avoiding lesion region loss caused by low-accuracy 

segmentation; compared with L4, L3 improves inference 

speed by 15 seconds, reducing waiting time in clinical 

scenarios; compared with L2, L3 has higher accuracy at the 

same inference time, ensuring precise segmentation of lung 

lesions. These data show that the L3 pruning technique retains 

the hierarchical feature extraction ability of U-Net++ while 

reducing computational complexity through parameter 

pruning, thereby achieving collaborative improvement in 

segmentation accuracy and efficiency. Combined with the 

research content of the paper, the segmentation model with L3 

pruning optimization shows significant effectiveness in the 

chest X-ray image segmentation task. First, high mIoU ensures 

complete and accurate segmentation of lung lesion regions, 

providing "clean" input data for subsequent 3D CNNs. It 

reduces interference from irrelevant tissues such as the chest 

wall and heart, enabling the disease recognition model to focus 

on pathological features and improve classification accuracy. 

Figure 5. Performance comparison of different U-Net++ 

pruned networks 

Table 1. Chest X-ray image segmentation results of different 

networks 

Method Param(M) mIoU 

U-Net 11.8 65.2 

Mask R-CNN 57.6 81.4 

FC-DenseNet 64.2 84.2 

Proposed Model 15.9 73.6 

Table 1 presents the parameter size (Param) and 

segmentation accuracy (mIoU) of different networks on the 

chest X-ray image segmentation task. The model proposed in 

this paper, based on U-Net++ L3 pruning, shows significant 

advantages in performance. The parameter size of the 

proposed model is only 15.9M, which is 85.7% less than U-

Net, 75.2% less than FC-DenseNet, and even 3.6 times smaller 

than Mask R-CNN. This indicates that the L3 pruning 

technique greatly simplifies the network structure by removing 

redundant convolutional layers, channels, or connections in U-

Net++, reducing computational complexity and providing 

hardware adaptability for efficient deployment in clinical 

scenarios, avoiding the computational bottleneck caused by 

bloated parameters in traditional models. The mIoU of the 

proposed model is 73.6%, slightly lower than FC-DenseNet 
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and Mask R-CNN, but significantly better than U-Net. More 

importantly, it achieves similar accuracy to Mask R-CNN 

under a greatly reduced parameter scale, and its inference 

efficiency is much higher than parameter-intensive models. 

Further analysis shows that U-Net suffers from low 

segmentation efficiency due to parameter redundancy, while 

the high parameters of FC-DenseNet make it difficult to 

deploy in practical applications. Through L3 pruning, the 

proposed model optimizes the feature propagation path of U-

Net++, retains key dense connections to maintain lesion 

segmentation accuracy, and removes ineffective branches to 

reduce computation, achieving “lightweight and high-

accuracy” segmentation capability. This characteristic directly 

empowers the subsequent 3D disease recognition model: 

fewer parameters mean lower computational consumption 

during segmentation, allowing more resources to be allocated 

to feature extraction; high-accuracy segmentation ensures the 

integrity of pathological features in the input data, avoiding 

recognition errors caused by background interference. 

Figure 6 presents the change trends of ACC and LOSS 

during the training process of the disease recognition model. 

The joint loss function significantly outperforms the Softmax 

loss in both ACC improvement and LOSS reduction. In the 

ACC curve, the joint loss quickly approaches 0.9 after Epoch 

8, while the Softmax loss only reaches 0.85 after Epoch 10, 

indicating that the former achieves higher classification 

accuracy by enhancing feature discriminability. In the LOSS 

curve, the joint loss finally drops to 0.3, far lower than the 0.6 

of Softmax, reflecting its more efficient parameter 

optimization capability. The root of these performance 

improvements lies in the high-quality input of the 

segmentation model in the first part: the U-Net++ L3 pruned 

model accurately segments lung lesion regions, removing 

background interference such as chest wall and heart, allowing 

the 3D convolution to focus on pathological features. The 

experimental data in Figure 6, together with the segmentation 

performance analysis in Table 1 and Figure 5, jointly indicate 

that the proposed chest X-ray segmentation model provides 

critical support for the subsequent disease recognition model 

through precise segmentation. Its effectiveness is not only 

reflected in the balance between parameters and accuracy 

itself, but also in enabling the joint loss function to maximize 

feature discriminability through full-process collaboration, 

ultimately achieving high-accuracy recognition of multi-type 

respiratory diseases, and verifying the core value of the 

segmentation model in the entire research framework. 

(1) ACC value

(2) LOSS value

Figure 6. Iteration process of multi-type respiratory disease 

recognition model based on dense 3D CNN 

Table 2. Recognition results of different types of respiratory diseases 

Type 
Baseline 

Model 

Traditional 3D Convolutional 

Network 

Removing Fisher Discriminant 

Regularization 
Full Model 

Pneumonia 83.26 75.23 85.62 77.23 84.58 77.56 85.32 77.58 

Lung Cancer 77.51 63.21 81.23 67.58 85.62 67.52 88.41 72.31 

COPD 33.26 24.58 38.52 28.52 41.23 31.23 41.23 31.25 

Pulmonary 

Tuberculosis 
46.25 32.25 54.23 41.21 55.21 42.25 61.25 42.56 

Pulmonary Fibrosis 81.24 61.23 82.36 63.52 81.52 66.25 86.32 63.25 

Pulmonary Embolism 77.23 62.58 81.25 61.58 81.56 61.58 81.24 62.58 

Bronchiectasis 83.23 71.52 84.56 73.23 85.36 73.23 91.52 74.51 

Pulmonary Bullae 55.32 43.23 57.56 46.23 71.22 51.24 72.32 53.24 

Interstitial Pneumonia 94.52 83.26 95.62 84.52 94.58 82.36 74.58 84.56 

Allergic Pneumonia 96.32 95.62 97.52 95.63 97.63 95.68 97.23 95.32 

Pulmonary Nodules 95.62 88.52 95.22 88.21 95.24 87.52 95.62 87.52 

Pleural Effusion 74.22 63.23 77.41 65.23 78.23 66.32 82.36 67.25 

Table 2 shows that the full model outperforms the baseline 

model, traditional 3D network, and the model without the 

Fisher term across all disease types in terms of accuracy. 

Taking pneumonia as an example, the full model achieves 

85.32% accuracy, an improvement of 2.06% over the baseline 

model, indicating that the accurate lesion region provided by 

the segmentation model reduces background interference and 

allows the 3D network to focus more on pathological feature 

learning. For lung cancer, the high-quality input from the 

segmentation model combined with Fisher discriminant for 

inter-class feature separation improves accuracy by 10.9%, 

significantly exceeding the performance of the traditional 3D 

network and the model without the Fisher term. This 

comparison highlights the critical role of the segmentation 

model in data preprocessing: by removing irrelevant tissues 

such as the chest wall and heart, it provides a "noise-free, high-
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fidelity" feature space for subsequent 3D networks and Fisher 

regularization, directly promoting accuracy improvement in 

disease recognition. According to the experimental results, the 

U-Net++ L3 pruning model ensures that the lesion area input

into the 3D network is complete and background-pure through

lightweight and high-precision segmentation. Taking COPD

as an example, the segmented sparse lung texture region

allows the 3D network to extract the 3D structural features of

emphysema more accurately, and enhances recognition ability

through dense connection-based feature reuse.

Table 3. Recognition results of different algorithms for 

various types of respiratory diseases 

Category Unet GCNet 
FC-

DenseNet 

Proposed 

Algorithm 

Pneumonia 81.23 82.32 83.26 85.24 

Lung Cancer 76.25 76.21 77.51 88.62 

COPD 31.24 32.56 33.23 51.23 

Pulmonary 

Tuberculosis 
44.58 45.32 46.58 61.24 

Pulmonary 

Fibrosis 
78.32 81.25 81.23 84.52 

Pulmonary 

Embolism 
73.21 74.56 76.23 83.24 

Bronchiectasis 81.25 82.32 83.54 91.23 

Pulmonary 

Bullae 
53.23 52.36 55.23 72.36 

Interstitial 

Pneumonia 
93.54 93.54 94.52 95.23 

Allergic 

Pneumonia 
95.68 95.68 96.32 97.52 

Pulmonary 

Nodules 
94.52 94.21 95.68 95.62 

Pleural Effusion 72.32 73.25 74.25 82.34 

Table 3 shows that the proposed algorithm comprehensively 

outperforms the comparative algorithms in multi-class 

respiratory disease recognition. Taking lung cancer as an 

example, the proposed algorithm achieves an accuracy of 

88.62%, an 11.11% improvement over FC-DenseNet, thanks 

to the high-quality input from the front-end segmentation 

model: the U-Net++ L3 pruning model accurately segments 

lung cancer nodules and removes interference such as the chest 

wall and blood vessels, enabling the back-end dense 3D 

network to focus on the 3D spatio-temporal features of the 

nodules. In COPD recognition, the proposed algorithm 

improves nearly 20% compared with the comparative 

algorithms, mainly due to the segmentation model's complete 

extraction of sparse lung texture regions, combined with 

spatial feature capture of 3D convolution and feature reuse of 

dense connections, which strengthens the recognition ability 

of pathological features. In addition, the accuracy 

improvement in diseases such as pulmonary tuberculosis and 

pulmonary embolism verifies that the pure lesion regions 

provided by the segmentation model are the basis for efficient 

learning of the back-end network and directly promote the leap 

in classification performance. According to the experimental 

results, the U-Net++ L3 pruning model provides “noise-free, 

high-fidelity” input for the back-end 3D network through 

high-precision segmentation. For example, in pulmonary 

fibrosis recognition, the segmentation model accurately 

segments reticular shadows and honeycomb lungs, enabling 

the 3D network to capture more complete spatio-temporal 

features of fibrosis, and finally achieves 84.52% accuracy 

combined with Fisher discriminant regularization. If 

segmentation accuracy is insufficient, the loss of lesion area or 

background inclusion will cause the back-end model to learn 

invalid features, severely restricting classification 

performance. 

5. CONCLUSION

This study constructs an integrated model framework of 

"automatic chest X-ray segmentation—multi-type respiratory 

disease recognition", with core innovations reflected in 

breakthroughs in two major technical modules: At the image 

segmentation level, the L3 pruning optimization network 

based on U-Net++ is designed. Through a deep supervision 

mechanism to filter out redundant branches, while retaining 

core dense skip connections, the model achieves reduced 

parameters, shortened inference time, and improved 

segmentation accuracy. It effectively addresses the 

contradiction of traditional segmentation networks between 

“emphasizing accuracy but sacrificing efficiency” or 

“pursuing speed while losing detail.” This model provides 

high-quality ROI inputs for subsequent disease recognition by 

accurately segmenting complex lesion areas such as lung 

cancer nodules and pneumonia infiltrates. At the disease 

recognition level, a dense 3D CNN is proposed. By combining 

bottleneck structures and dense connections, cross-layer reuse 

of shallow spatio-temporal features and deep semantic features 

is realized, with the number of parameters reduced by more 

than 50% compared to the C3D network. After introducing the 

Fisher discriminant regularization term, the model's 

recognition accuracy for diseases such as pneumonia, lung 

cancer, and COPD is improved, significantly solving the 

classification problem caused by inter-class feature overlap 

and intra-class variation. At the technical level, the framework 

forms a full-process solution of “lightweight segmentation–

efficient feature extraction–discriminability enhancement,” 

providing a reusable methodology for clinical deployment of 

medical image AI. At the clinical level, the efficiency of the 

segmentation model adapts to portable grassroots devices, 

supporting real-time processing of large-scale screening. The 

recognition model’s high sensitivity to early lesions and 

chronic diseases can assist doctors in reducing missed or 

misdiagnoses, especially valuable in areas with insufficient 

medical resources. 

Despite the phased achievements, two limitations remain: 

first, the segmentation accuracy for ground-glass-like lesion 

edges and the robustness for rare diseases need improvement; 

second, the training data comes from a single institution with 

limited modalities, resulting in insufficient generalization 

ability in cross-device and cross-modality scenarios. 

Moreover, the depth and dense connection complexity of the 

3D network still require optimization under extreme 

lightweight deployment. Future research can be carried out in 

three aspects: in technical optimization, CNNs can be 

introduced to enhance lesion edge feature capture, and self-

supervised learning can be combined to improve 

generalization for rare diseases; in multimodal fusion, 

multidimensional data such as chest CT sequences and 

electronic medical records can be integrated to construct a 

cross-modality feature fusion network and improve 

recognition accuracy for comorbid patients; in hardware 

adaptation, technologies such as model quantization and 

neural architecture search can be explored to further compress 

model size and promote the deployment of algorithms on edge 

1454



terminals such as mobile phones and wearable devices. In 

conclusion, this study provides an innovative path for AI-

assisted diagnosis of respiratory diseases. Future research will 

continue to deepen around accuracy improvement, 

generalization enhancement, and scenario adaptation, 

promoting the final step of medical imaging AI from the 

laboratory to clinical practice. 
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