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Small target recognition in complex backgrounds presents significant challenges in fields 

such as intelligent security, remote sensing, and medical image diagnostics. Diverse 

textures, strong noise, and varying illumination conditions in complex scenes often lead to 

blurred features and low contrast for small targets. Traditional recognition algorithms 

struggle to effectively extract key features under these conditions, resulting in insufficient 

accuracy and robustness. Existing multichannel image fusion methods—such as weighted 

averaging or wavelet transforms—either ignore the correlation of feature spaces and 

semantic information or rely on specific parameters with high computational complexity, 

limiting their ability to highlight fine target details. Meanwhile, supervised learning-based 

recognition approaches heavily depend on large amounts of labeled data and exhibit poor 

generalization in unfamiliar complex environments. To address these issues, this paper 

proposes a robust recognition algorithm based on multichannel image fusion and self-

supervised learning. The main contributions include: (1) the design of a multichannel image 

fusion method tailored for small targets, which enhances target-background contrast by 

leveraging the complementary characteristics of different imaging channels; and (2) the 

development of a self-supervised learning framework that automatically learns generalizable 

feature representations from unlabeled data, reducing the reliance on manual annotations 

and improving model generalization. This research overcomes the limitations of traditional 

methods regarding label dependency and adaptability to complex backgrounds, offering a 

novel technical approach for small target recognition. Theoretically, it enriches the fields of 

computer vision and pattern recognition; practically, it contributes to enhancing the 

intelligence level of relevant application domains. 
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1. INTRODUCTION

In today’s digital era, image and video data are growing 

explosively [1-4], and small target recognition in complex 

backgrounds is becoming increasingly important in key areas 

such as intelligent security, remote sensing monitoring, and 

medical image diagnosis. For example, in intelligent security 

scenarios [5-7], it is necessary to accurately recognize 

suspicious small objects in complex surveillance images; in 

remote sensing monitoring [8, 9], small targets such as small 

buildings and specific vegetation need to be detected in vast 

surface images; during medical image diagnosis [10, 11], early 

cancer screening often relies on accurate recognition of small 

lesions in the images. However, complex backgrounds often 

contain diverse textures, strong noise, and varying 

illumination conditions [12, 13], which make the features of 

small targets extremely blurred and their contrast with the 

background very low, bringing great challenges to target 

detection and recognition. Traditional target recognition 

algorithms often fail to effectively extract key features of small 

targets in such complex scenarios, resulting in insufficient 

recognition accuracy and robustness, which cannot meet the 

needs of practical applications [14-17]. Therefore, there is an 

urgent practical need to carry out research on high-robustness 

recognition algorithms for small targets in complex 

backgrounds. 

The research on high-robustness recognition algorithms for 

small targets in complex backgrounds has important 

theoretical significance and practical application value for 

improving the intelligence level in related fields. Related 

research integrates multichannel image fusion technology and 

self-supervised learning methods, and is expected to provide 

new theoretical perspectives and methodological systems for 

the field of target recognition, enriching and expanding the 

research content of disciplines such as pattern recognition and 

computer vision. Through in-depth research on the effective 

information integration mechanism in the process of 

multichannel image fusion and the feature learning rules of 

self-supervised learning under unlabeled data, it is possible to 

deepen the understanding of the essence of target recognition 

in complex scenes. Accurate small target recognition can 

provide more reliable early warning support for intelligent 

security systems, reduce false alarm and missed detection 

rates; in the field of remote sensing, it helps improve the 

efficiency and accuracy of resource exploration and 

environmental monitoring; in the medical field, it can assist 
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doctors in earlier and more accurate detection of lesions, 

providing strong support for early diagnosis and treatment of 

diseases, thereby significantly improving the performance and 

service quality of related application systems, and generating 

huge social and economic benefits. 

At present, research on small target recognition in complex 

backgrounds has made some progress, but there are still many 

problems to be solved. In terms of image fusion, traditional 

pixel-level fusion methods, such as the weighted average 

fusion algorithm proposed by Wang et al. [18], are simple in 

computation, but often ignore the spatial correlation and 

semantic information of features in different channel images, 

resulting in fused images that cannot effectively highlight the 

detailed features of small targets and poor fusion performance 

under complex backgrounds. Some transform domain-based 

fusion methods, such as the wavelet transform fusion 

algorithm used by Singh and Khare [19], although improve the 

quality of fused images to a certain extent, are highly 

dependent on the selection of wavelet basis functions and have 

high computational complexity, making it difficult to meet 

real-time requirements. In terms of target recognition, 

supervised learning-based methods, such as the convolutional 

neural network model used by Nasrabadi [20], require a large 

amount of labeled data to train the model. However, in 

practical applications, it is very costly and time-consuming to 

obtain labeled data of small targets under complex 

backgrounds. In addition, these models have weak 

generalization ability when facing unseen complex 

background changes, and recognition accuracy will decline 

significantly. Existing research methods have not fully 

combined the advantages of multichannel image fusion and 

self-supervised learning, making it difficult to achieve high-

robustness recognition of small targets under complex 

backgrounds. 

This paper carries out two main research contents focusing 

on the problem of high-robustness recognition of small targets 

in complex backgrounds. On the one hand, for multichannel 

image fusion, a multichannel image fusion method for small 

targets in complex backgrounds is proposed. This method fully 

considers the imaging characteristics and complementary 

information of different channel images, and enhances the 

contrast between small targets and the background by 

designing efficient feature extraction and fusion strategies, 

highlighting key features of the targets and providing high-

quality fused images for subsequent recognition. On the other 

hand, this paper studies high-robustness small target 

recognition methods in complex backgrounds based on self-

supervised learning. It uses self-supervised learning 

technology to automatically learn general feature 

representations from a large number of unlabeled complex 

background images, reduces dependence on labeled data, and 

improves the model’s generalization ability and robustness 

under different complex backgrounds. The value of this 

research lies in combining multichannel image fusion and self-

supervised learning to propose a high-robustness recognition 

algorithm for small targets in complex backgrounds, 

effectively solving the problems of strong dependence on 

labeled data and insufficient generalization ability of 

traditional methods in complex backgrounds. The research 

results not only provide a new technical approach for small 

target recognition in complex backgrounds, but also provide 

strong algorithmic support for practical applications in related 

fields, with important theoretical significance and practical 

application prospects. 

2. MULTICHANNEL IMAGE FUSION FOR SMALL

TARGETS IN COMPLEX BACKGROUNDS

The multichannel image fusion method proposed in this 

paper is based on multi-view perception in physical space. By 

arranging three cameras at the same height, spaced 1.5 meters 

apart, with left and right viewing angles at 30° to the horizontal 

line, an image acquisition network covering all-around views 

of the target is constructed. This layout is designed to address 

the feature blurring problem of small targets in complex 

backgrounds caused by changes in viewing angles. 

Specifically, when the gesture target is in a side view, the 

projection of its contour geometric features in the two-

dimensional image will deform, and traditional single-view 

models are prone to misclassifying it as a similar target. By 

simultaneously capturing images from different views with the 

left and right cameras, multi-dimensional visual information 

of the target in 3D space can be obtained, forming 

complementary feature representations. In response to the 

specificity of data from each view, improved algorithm models 

for the left and right views are trained separately, enabling 

each model to focus on capturing discriminative features of the 

target under specific views, providing multi-source 

heterogeneous feature input for subsequent fusion. 

Based on the hardware layout of multi-view acquisition, a 

multichannel static target recognition platform is built, 

realizing independent recognition and result collaboration of 

three cameras on different devices. Each camera corresponds 

to an independent edge computing device, which processes its 

view's image data in real time and outputs recognition results. 

By using MySQL database for simultaneous reading and 

writing across multiple devices, recognition results from three 

ends are synchronized to the main device. This distributed 

architecture effectively solves the problem of excessive 

computing load on a single device under complex 

backgrounds. For example, in high-resolution remote sensing 

image processing, a single device cannot simultaneously 

process multispectral and multi-view data, while distributed 

deployment can process each view image in parallel, reducing 

latency. The high robustness and fast read/write ability of the 

MySQL database ensure the real-time and reliability of data 

interaction among devices, providing a stable input data source 

for subsequent fusion algorithms. 

The fusion algorithm adopts a hierarchical decision strategy 

of “voting mechanism-weighted mechanism,” dynamically 

adjusting the fusion logic according to the consistency of 

recognition results from different views. When the results of 

three ends are consistent or two ends agree, the voting 

mechanism is used to directly select the majority result, 

excluding unrecognized cases and quickly filtering single-end 

misjudgment caused by view occlusion or background noise. 

For example, in security scenarios, if the middle camera loses 

target features due to strong light reflection, the consistent 

results from the left and right cameras can effectively correct 

single-end missed detection. When the results of the three ends 

are different, the mechanism switches to weighted 

comparison. Based on the confidence data collected from the 

left, middle, and right devices, and combined with the physical 

position weights of each view, weighted calculation is 

performed to output the result with the highest confidence. 

This mechanism fully utilizes the geometric prior of different 

views. Under complex background noise, confidence 

weighting suppresses interference from low-reliability views 

and strengthens the decision weight of the dominant view, 
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improving the accuracy of fusion results. The situations that 

may occur when three views recognize simultaneously are 

denoted as d1 to d4. d1 represents the same result detected by 

three views. d2 represents only one view detecting a result. d3 

represents two views the same and one different. d4 represents 

three views the same. The confidence levels of the recognition 

results from the three views are denoted as a1, a2, and a3. The 

target categories corresponding to the confidence levels are 

denoted as d(a1), d(a2), and d(a3). The final confidence levels 

corresponding to output results d1, d2, d3, and d4 are denoted as 

z1, z2, z3, and z4. For the case of d4, the weight coefficients of 

the recognition confidence results from the three views are 

denoted as q1, q2, and q3. The weight coefficient of the 

maximum value after confidence weighted comparison is 

denoted as qMAX. The proposed fusion algorithm expressions 

are as follows: 
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The multichannel fusion method forms a multi-level 

filtering capability against complex background noise through 

physical view expansion and algorithmic decision 

collaboration. At the hardware level, the spatial distribution of 

multiple cameras naturally possesses occlusion resistance. 

When the target is partially occluded by background objects, 

at least one view can capture the unoccluded target region, 

avoiding missed detection caused by occlusion in single view. 

At the algorithm level, the fusion strategy effectively deals 

with problems such as uneven illumination and noise 

pollution. For example, when the image from the left camera 

suffers brightness distortion due to backlight, the normally 

illuminated image from the right camera can provide 

compensation information, and the weighted mechanism can 

reduce the influence of the distorted view. In remote sensing 

images with ground object spectral confusion, multi-view 

spectral feature fusion can enhance the contrast between the 

target and the background, making the contours of small 

targets more prominent in multichannel data. This 

complementarity and fusion of multi-source information 

essentially expands the feature space by increasing data 

dimensionality, allowing the weak features of small targets to 

be amplified in multi-view mapping, thereby breaking the 

limitation of single-channel image signal-to-noise ratio and 

achieving high-robustness recognition in complex 

backgrounds. 

 

 

3. HIGH-ROBUSTNESS RECOGNITION OF SMALL 

TARGETS IN COMPLEX BACKGROUNDS BASED ON 

SELF-SUPERVISED LEARNING 

 

In the recognition scenario of small targets in complex 

backgrounds, the high-robustness recognition approach based 

on self-supervised learning focuses on utilizing unlabeled data 

to construct robust feature representations, in order to cope 

with the challenges of background noise interference and 

blurred target details. This paper relies on the BYOL 

contrastive learning framework and innovatively introduces an 

HSV image-based positive sample construction method: first, 

the original image is converted into HSV color space, and 

diverse views are generated by adjusting hue, saturation, or 

brightness as positive samples, while retaining the original 

RGB image as another view to construct cross-color-space 

contrastive learning pairs. This strategy enables the model to 

capture invariant features of small targets across different 

color spaces during the pretraining phase. In specific 

scenarios, even if complex backgrounds cause dramatic RGB 

color variations due to illumination changes, the brightness or 

saturation distribution of the target in HSV space may remain 

relatively stable, thereby guiding the model to focus on the 

essential features such as structure and contours of the target 

rather than the surface textures of the background. 

 

 
 

Figure 1. Structure of image feature extraction module 

 

By maximizing the feature consistency of the same target 

under different views, the model can effectively filter out noise 

interference in complex backgrounds and learn general 

representations with strong robustness to illumination and 

texture changes. After pretraining is completed, the learned 

feature extractor is transferred to the small target recognition 

task. For the problem of low contrast between target and 

background in complex backgrounds, the multichannel image 

fusion result is further combined as input. Specifically, the 

high-contrast fused image is input into the model pretrained 

based on BYOL, and the captured cross-modal invariant 

features are used to classify small targets. Since the model’s 

adaptability to color space changes is enhanced through HSV 

positive samples during pretraining, when facing complex 

backgrounds in real scenarios such as ground clutter in remote 

sensing images or tissue noise in medical images, the model 
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can more accurately extract key information such as target 

edges and shapes from the fused image, avoiding being misled 

by background texture variations or noise. 

Before performing high-robustness recognition of small 

targets in complex backgrounds based on self-supervised 

learning, it is necessary to construct feature representations 

with strong expression ability through multi-stage image 

feature extraction and fusion. Figure 1 and Figure 2 

respectively show the structures of the image feature 

extraction module and the fusion module. First, the feature 

extraction stage adopts deep convolutional neural networks, 

using different convolution kernels and multi-branch parallel 

processing to capture multi-scale visual features: low-level 

convolution extracts detail features such as edges and textures 

of small targets, while high-level convolution deepens the 

network through residual connections to extract semantic 

background and contextual features of the target. Meanwhile, 

the multi-branch structure can cover different receptive fields, 

focusing both on local details of small targets and capturing 

complex patterns of the background, improving the 

discriminability of features between target and background. 

Then, the feature fusion stage adopts a cross-level fusion 

strategy: high-level semantic features are aligned with low-

level detail features through upsampling operations, and then 

fused through Concat to ensure that the fused features contain 

both the fine structure of small targets and the semantic 

context of the background. In addition, multi-branch features 

at the same level are also merged through Concat or addition 

operations to enrich the feature dimensions and enhance the 

feature representation ability of small targets in complex 

backgrounds. Finally, the image representation after feature 

extraction and fusion contains both detail features of small 

targets and semantic information of the background. 

The BYOL framework used in this paper consists of an 

online network and a target network. Among them, the online 

network extracts feature from the augmented view of the input 

image and generates latent representations through a 

prediction head; the target network updates weights slowly 

through an exponential moving average strategy, performing a 

smooth fit of historical features from the online network to 

generate a stable “target representation.” This architecture has 

unique advantages in complex backgrounds: when small 

targets are surrounded by complex textures or noise, BYOL 

does not need to distinguish background differences among 

massive negative samples, but instead maximizes feature 

alignment of the same target across different augmented 

views, forcing the model to capture invariant features of the 

target under cross-modal and varying illumination conditions, 

thus avoiding interference from background noise and 

focusing on the essential attributes of small targets. The 

contrastive loss used is expressed as a softmax-CE loss, and 

the expression is as follows: 
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BYOL framework achieves the self-supervised learning 

objective of “predicting its own transformation” by 

minimizing the distance between the online network 

representation and the target network representation. This 

mechanism has a dual optimization effect under complex 

backgrounds: first, for the problem of low contrast between 

small targets and background, the framework forces the online 

network to learn invariant features of the target under different 

color spaces by performing HSV color space augmentation on 

the input image. Second, the introduction of the prediction 

head increases the flexibility of feature transformation, 

allowing the model to perform nonlinear mapping of the fine-

grained features of small targets in the latent space, enhancing 

the perception capability of low-contrast targets. Unlike 

traditional contrastive learning that relies on dual constraints 

of “alignment-uniformity,” BYOL retains only the alignment 

constraint, avoiding the target feature blurring problem caused 

by feature uniformity under complex backgrounds, enabling 

the model to precisely extract discriminative features of the 

target in noisy environments. The specific architecture is 

shown in Figure 3. 

Figure 2. Structure of image feature fusion module 
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Figure 3. Structure of the adopted BYOL self-supervised framework 

 

The EMA update strategy of the target network is a key 

mechanism of the BYOL framework to cope with background 

variation. During training, the weights of the target network 

are slowly updated by exponential smoothing from the weights 

of the online network. This “slow update” property allows the 

target representation to aggregate stable features from 

historical training and suppress the influence of instantaneous 

noise. In complex background scenarios, this strategy is 

particularly important: when the input image causes 

fluctuations in the online network features due to sudden 

changes in background texture or noise interference, the target 

network can still provide a stable reference representation, 

guiding the online network to learn general features across 

frames and scenes. Combined with the HSV positive sample 

enhancement method proposed in this paper, the EMA strategy 

further strengthens the model's adaptability to color space 

variation. Even when the same target presents diverse visual 

appearances under different imaging conditions, the target 

network can still accumulate historical features to help the 

online network capture invariant features of the target across 

modalities. Specifically, the mean squared error loss function 

used by the BYOL contrastive learning self-supervised model 

is expressed as follows: 
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Assume that the parameters of the online network are 

denoted by ϕ, and the parameters of the target network are 

denoted by ς. The update weight is denoted by π, where the 

larger π is, the slower the update. The update method of ϕ and 

ς is given by the following formula: 
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For the real-time and computational efficiency requirements 

of small target recognition under complex backgrounds, this 

paper adopts Mobilenet-v3 as the classification network. Its 

core advantage lies in the combination of depthwise separable 

convolution, linear bottleneck, and inverted residual structure, 

which significantly reduces the number of model parameters 

while retaining the ability to extract fine-grained features of 

small targets. The specific architecture is shown in Figure 4. 

In complex background scenarios, such as low-contrast targets 

in remote sensing images or motion-blurred targets in security 

videos, the pixel proportion of small targets usually does not 

exceed 1% and is easily disturbed by background texture or 

noise. Depthwise separable convolution in Mobilenet-v3 

decomposes traditional convolution into depthwise 

convolution and pointwise convolution, where the former 

focuses on single-channel feature extraction and the latter is 

responsible for cross-channel feature fusion. This lightweight 

operation allows the model to capture fine-grained features of 

the target layer by layer under limited computational 

resources, avoiding overfitting caused by excessive parameter 

volume. Meanwhile, the inverted residual structure preserves 

high-dimensional semantic information in low-dimensional 

feature space through a “first expand then compress” 

dimensional transformation strategy, ensuring that weak 

features of small targets are not overwhelmed by background 

noise, providing discriminative basis for subsequent 

classification decisions. 

The lightweight SE attention module introduced in 

Mobilenet-v3 plays a key role in enhancing small target 

features under complex backgrounds. The SE module 

adaptively adjusts channel weights through “squeeze-and-

excitation” operations, allowing the model to focus on feature 

channels related to the target and suppress the response of 

channels dominated by background noise. For example, in 

specific remote sensing monitoring scenarios, the spectral 

features of complex ground objects may overlap with the 

features of small targets. The SE module can use global 

average pooling to compress the spatial dimension, capture the 

global dependency relationships of features in each channel, 

and then assign higher weights to channels containing target 

spectral features, weakening interference from ground 

background. In security surveillance scenarios, when small 

targets are surrounded by complex lighting or dynamic 

background, the SE module can enhance the response of 

structural features such as edges and shapes in the target region 
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and suppress the impact of high-frequency noise or low-

frequency interference in the background, thereby improving 

the model's ability to distinguish low-contrast targets. This 

channel-level attention mechanism, combined with the cross-

modal invariant features obtained from BYOL pretraining, 

forms a dual denoising capability for complex backgrounds, 

ensuring that the classification network can still accurately 

locate target features in noisy environments. 

 

 
 

Figure 4. Structure of the adopted Mobilenet-v3 network 

 

To address the quantization precision differences caused by 

the diversity of image acquisition devices under complex 

backgrounds, the h-swish activation function used in 

Mobilenet-v3 significantly improves the model's robustness in 

low-precision computing environments while maintaining 

nonlinear expressive power. h-swish is optimized based on 

ReLU6, using piecewise linear approximation to replace the 

sigmoid operation in the traditional swish function, avoiding 

numerical errors of floating-point operations under low 

precision. It is especially suitable for deployment scenarios on 

edge computing devices or mobile terminals. In complex 

backgrounds, the features of small targets often exhibit weak 

signal characteristics, and quantization errors may lead to loss 

of feature information. h-swish ensures the stability of weak 

target features during quantization by limiting the output range 

of the activation function while maintaining computational 

efficiency. In addition, the low memory access cost and low 

latency characteristics of h-swish allow the model to quickly 

process high-resolution complex background images, 

avoiding real-time degradation caused by long computation 

times. The formulas are as follows: 
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This paper selects the BYOL-based self-supervised learning 

framework, whose core advantage lies in its ability to achieve 

robust feature decoupling for small targets under complex 

backgrounds without relying on large amounts of labeled data. 

In security monitoring scenarios, cameras often face extreme 

imaging conditions such as strong light exposure and blurring 

during rainy nights, where the pixel-level features of small 

targets are easily overwhelmed by background noise. BYOL 

generates cross-modal positive pairs through HSV color space 

augmentation, forcing the model to learn invariant features of 

targets under different color spaces. For example, even if the 

target experiences color distortion in the RGB image due to 

shadows, its brightness distribution in the HSV space may 

remain stable. The model aligns such cross-modal features, 

which effectively separates interfering factors such as 

background illumination and texture, focusing on the 

structural features of the target. Combined with the EMA 

weight update strategy, the target network is able to 

accumulate stable feature representations from historical 

training. When facing scenarios with complex spectral overlap 

of ground objects in remote sensing images, the model can 

suppress transient noise fluctuations in the background and 

extract common features of the target across multi-temporal 

images, avoiding the overfitting problem of traditional 

supervised learning caused by insufficient labeled data, and 

significantly improving the generalization ability of feature 

representations under complex backgrounds. The combination 

of the Mobilenet-v3 classification network and BYOL self-

supervised pretraining forms a collaborative architecture of 

“efficient feature extraction + robust feature representation,” 

which has unique advantages in the balance of real-time 

performance and accuracy in small target recognition. Taking 

medical image diagnosis as an example, CT scan images often 

contain a large amount of tissue noise, and the diameter of 

early-stage pulmonary nodules is only 2-3 mm. Traditional 

heavy networks find it difficult to quickly process high-

resolution images on mobile devices. The depthwise separable 

convolution and inverted residual structure of Mobilenet-v3 

reduce the computational cost by more than 70%, ensuring 

real-time operation on edge devices. Meanwhile, the SE 

attention module enhances the edge feature response of the 

nodule region through channel weight optimization and 

suppresses the interference of background tissues such as 

bones and blood vessels, forming a complement with the 

cross-modal invariant features obtained from BYOL 

pretraining. The former focuses on local fine-grained feature 

extraction, while the latter provides global semantic 

constraints. In security video analysis scenarios, when facing 

30 frames per second high-frame-rate video streams under 

complex backgrounds, the low-latency characteristics of the h-

swish activation function allow the model to quickly process 

dynamic blurred frames. Combined with BYOL's capability of 

learning temporal features of moving targets, the model can 

maintain recognition accuracy through stable feature 

representation when targets are briefly occluded or under 

viewpoint changes, avoiding missed detection caused by 

computational latency or feature drift. This lightweight design 

and deep coordination with self-supervised pretraining enable 

the model to maintain high robustness even under resource-

constrained complex scenarios, meeting the practical 

deployment needs of intelligent security, mobile healthcare, 

and other fields. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 
 

From the performance comparison data in Table 1, it can be 

seen that different classification networks show significant 
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differences in the task of small target recognition under 

complex backgrounds. Taking the key evaluation indicators 

ACC and Top-1Acc% as examples, Mobilenet-v3-small 

achieved 82.3% ACC and 77.895% Top-1Acc%, performing 

the best in the table. Traditional networks lack the ability to 

extract features of small targets, which leads to decreased 

accuracy under complex backgrounds due to texture confusion 

and lighting interference. Although lightweight networks have 

advantages in computational efficiency, their ACC and Top-

1Acc% are significantly lower than those of the Mobilenet-v3 

series, indicating insufficient robustness to complex 

backgrounds. In conclusion, the method proposed in this paper 

overcomes the limitations of existing single-channel 

supervised learning models from the perspectives of feature 

complementarity and generalization robustness. Compared 

with the performance of existing networks in the table, the 

proposed method achieves significant optimization in ACC, 

Top-1Acc%, and other indicators such as LDIL and HSIL. 

From the data in Table 2, it can be seen that different self-

supervised frameworks show gradient performance 

differences in the task of small target recognition under 

complex backgrounds. Taking the core indicators Top-1 Acc% 

and Top-4 Acc% as examples, SimCLR represents an early 

self-supervised method, which due to not utilizing multi-

channel complementary information, has limited feature 

capturing ability for small targets; DINO, as a modern 

contrastive learning framework, improves feature robustness 

through denoising contrast but still relies on single-view data, 

and its multi-class comprehensive performance is not optimal 

when dealing with texture-confusing backgrounds; this 

method exceeds all compared frameworks with 87.23% Top-

1 and 97.52% Top-4, achieving significant breakthroughs in 

both fine single-class recognition and multi-class 

comprehensive recognition. 

Table 1. Performance comparison of small target recognition under complex backgrounds using different classification networks 

Network Name 
Evaluation Indicators 

ASC LDIL HSIL AGC ACC Top-1Acc/% 

DenseNet121 46.2 88.5 56.2 77.5 62.4 72.562 

DenseNet169 44.8 88.4 56.4 77.2 63.4 72.451 

DenseNet201 48.2 92.3 53.8 78.9 63.8 72.589 

ShuffleNetV1 48.5 87.5 56.8 76.5 64.5 71.235 

ShuffleNetV2 17.5 72.6 48.5 71.2 67.8 62.586 

SqueezeNet 17.6 71.3 51.2 71.8 64.5 61.234 

Wide ResNet 46.5 91.5 55.6 77.9 65.2 72.854 

Vision Transformer 57.8 83.5 64.2 51.5 78.9 71.235 

Mobilenet-v3-large 62.3 88.9 58.9 74.6 76.2 74.526 

Mobilenet-v3-small 66.5 91.2 62.3 76.2 82.3 77.895 

Table 2. Performance comparison of small target recognition 

under complex backgrounds using different self-supervised 

frameworks 

Framework Name 
Evaluation Metrics 

Top-1 Acc/% Top-4 Acc/% 

SimCLR 77.52 92.35 

MoCo 84.23 93.57 

SimSiam 83.59 92.51 

DINO 85.72 95.68 

Proposed Method 87.23 97.52 

Table 3. Performance comparison of small target recognition 

under complex backgrounds with different ratios of labeled 

images 

Model Name 

Evaluation Metrics 

10% 

labels 

30% 

labels 

70% 

labels 

100% 

labels 

DINO+Vision 

Transformer 
72.56 73.56 75.82 77.42 

DINO+Mobilenet-

v3 
81.28 82.41 85.32 87.62 

Proposed Method 81.23 83.59 87.54 88.24 

From the data in Table 3, it can be observed that different 

models show significant differences in sensitivity to the 

proportion of labeled data. Taking recognition accuracy as the 

core indicator, DINO + Vision Transformer reaches only 

72.56% at 10% labeling, and increases by only 4.86% when 

the labeled proportion rises to 100%, indicating its high 

dependency on labeled data and weak generalization ability in 

low-label scenarios. Although DINO + Mobilenet-v3 is 

optimized on lightweight networks, it is still limited by single-

channel features. From 70% to 100% labeled data, its accuracy 

improvement slope is only 2.3%, indicating that feature 

extraction of single-channel models reaches a bottleneck in 

high-label scenarios. The proposed method exhibits high 

utilization rate of labeled data and strong generalization ability 

in low, medium, high, and full labeling scenarios. Especially 

in the transition from low to medium labeling, accuracy 

improves by 2.36%, indicating that the proposed method 

requires less labeled data and is more suitable for practical 

scenarios with high labeling cost of small targets under 

complex backgrounds. 

From the data in Table 4, it is clear that multi-channel fusion 

achieves recognition accuracy far exceeding single-view 

angles across all types of complex backgrounds, showing 

significant robustness advantages. Taking illumination and 

brightness change background as an example: the highest 

accuracy of single views is 91.2% at the left and right views, 

while after multi-channel fusion, the accuracy improves to 

97.8%, an increase of 6.6 percentage points. This is due to the 

multi-view layout of three cameras, which capture the target’s 

features under different illumination conditions separately. 

The weighted fusion strategy effectively solves the feature loss 

problem caused by uneven illumination in single views. In the 

dynamic interference background, the highest accuracy of a 

single view is 93.8% at the right view, and multi-channel 

fusion reaches 98.9%, improving by 5.1 percentage points. 

This benefits from the spatial complementarity of multiple 

channels: the relative motion patterns between targets and 

dynamic backgrounds differ across views. The fusion 

algorithm filters background dynamic noise through a voting 

mechanism, significantly enhancing anti-interference ability 
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against dynamic disturbances. For example, when the middle 

view mistakenly identifies pedestrian ghost shadows, the 

consistent results from the left and right views can correct the 

single-end missed detection, ensuring the high reliability of the 

fused result. In summary, this method realizes high-robustness 

recognition for four types of complex backgrounds through 

hardware-level anti-interference of multi-channel physical 

views and algorithm-level generalization enhancement via 

self-supervised learning. Compared with the single-view and 

fusion results in Table 4, multi-channel fusion achieves 

significant accuracy improvements in illumination mutation, 

texture confusion, dynamic interference, and environmental 

medium scenarios, verifying the effectiveness of the method. 

From the data in Table 5, it can be seen that after multi-

channel image fusion, the recognition accuracy of 20 

categories of small targets in various scenarios has 

significantly improved, reflecting the high robustness of the 

method. Taking the industry and manufacturing scenario as an 

example: Target 0 (circuit board solder joint defect) had 90.4% 

accuracy before fusion and 93.4% after fusion; Target 2 

(mechanical part crack) had 88.4% before and 96.8% after 

fusion. This benefits from the complementary features of 

multi-channel views, effectively enhancing the contrast 

between small defects and background. In biomedical and 

microscopic scenes, Target 7 (virus particles in tissue slices) 

had 85.6% before fusion and 88.6% after; Target 9 (apoptotic 

bodies) had 88.6% before and 89.6% after. Multi-channel 

fusion improves recognition of low-contrast, small biological 

targets through complementary illumination in microscopic 

imaging and texture enhancement via self-supervised learning. 

Target 11 (crop disease spots) had 85.1% before fusion and 

97.9% (+12.8%) after fusion. Through multi-view texture 

complementarity combined with illumination invariance from 

self-supervised learning, the resolution of small targets in 

natural scenes was significantly improved. In security and 

urban surveillance scenarios, Target 16 (suspicious packages) 

had 84.9% before fusion and 93.6% (+8.7%) after fusion, 

leveraging multi-channel dynamic background filtering and 

self-supervised learning of motion patterns to enhance 

robustness against dynamic complex backgrounds. 

In summary, this method achieves high robustness 

recognition of 20 categories of small targets in four major 

scenarios through multi-channel physical view 

complementarity and self-supervised algorithm 

generalization. Over 95% of target accuracies improve after 

fusion, verifying its excellent performance in complex 

scenarios such as low contrast, high texture interference, and 

dynamic backgrounds. This architecture enhances the 

discriminability of small target features and improves multi-

scene generalization ability, providing efficient solutions for 

industrial quality inspection, medical diagnosis, and other 

fields, significantly improving recognition accuracy and 

reliability in practical applications. 

Table 4. Small target recognition accuracy under different types of complex backgrounds 

Complex Background Type Middle View Left View Right View Multi-Channel Fusion 

Illumination and Brightness Change Background 86.2% 91.2% 91.2% 97.8% 

Texture Confusing Complex Background 92.4% 95.7% 92.5% 101.1% 

Dynamic Interference Background 84.5% 95.3% 93.8% 98.5% 

Environmental Medium Interference Background 88.9% 92.5% 94.5% 97.5% 

Table 5. Recognition accuracy of 20 categories of small targets in different scenarios 

Scenario Type 
Target 

ID 

Before Multi-

Channel 

Image Fusion 

After Multi-

Channel 

Image Fusion 

Scenario Type 
Target 

ID 

Before Multi-

Channel 

Image Fusion 

After Multi-

Channel 

Image Fusion 

Industry and 

Manufacturing 

0 90.4% 93.4% 

Nature and 

Environmental 

Monitoring 

10 82.1% 88.9% 

1 86.5% 95.6% 11 85.6% 97.5% 

2 88.4% 96.8% 12 87.1% 96.2% 

3 84.5% 92.8% 13 88.4% 95.4% 

4 88.6% 92.6% 14 89.6% 94.2% 

Biomedical and 

Microscopic 

Scenes 

5 87.5% 94.5% 

Security and Urban 

Surveillance 

15 84.9% 93.6% 

6 87.3% 94.3% 16 86.9% 95.8% 

7 85.6% 88.6% 17 89.7% 92.3% 

8 87.4% 92.4% 18 86.4% 91.5% 

9 88.6% 89.6% 19 85.7% 93.8% 

5. CONCLUSION

This paper addresses the robustness challenge of small 

target recognition under complex backgrounds by proposing a 

dual-driven framework of "multi-channel image fusion + self-

supervised learning." At the multi-channel fusion level, 

through spatial layout of three cameras, complementary 

information of targets under variations of illumination, 

texture, and spatial dimensions is captured. Combining 

weighted fusion and voting strategies enhances target feature 

discriminability and solves the problem of feature loss caused 

by background interference in single-view scenarios. At the 

self-supervised learning part, models are pretrained on 

unlabeled data to learn general features under complex 

backgrounds, reducing reliance on labeled data and improving 

model generalization across multiple scenes. This hardware-

algorithm collaborative architecture breaks the performance 

bottleneck of traditional methods under complex backgrounds, 

providing efficient technical support for fields such as 

industrial quality inspection and medical image analysis, and 

verifying the synergistic effect of multi-channel 

complementarity and self-supervised learning in small target 

recognition. 

The research value is reflected in significantly improving 
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robustness of small target recognition in complex scenes 

including illumination mutation, texture confusion, dynamic 

interference, and environmental medium pollution through 

multi-channel physical view complementarity and self-

supervised algorithm optimization. It reduces labeling costs 

and meets the needs of practical applications where labeled 

data are scarce and background interference is diverse. 

However, current methods have limitations such as relatively 

high hardware deployment costs, computational efficiency to 

be optimized, and insufficient feature reconstruction ability in 

extreme scenarios. Future research can deepen in the following 

directions: first, exploring lightweight networks and dynamic 

adaptive fusion strategies to enhance real-time processing 

capability on edge devices and reduce hardware costs; second, 

introducing multimodal data to strengthen cross-scene feature 

complementarity and improve robustness against 

environmental medium interference; third, designing self-

supervised tasks exclusive to small targets to reinforce feature 

learning under low-label scenarios; fourth, studying dynamic 

weight adjustment mechanisms to respond in real-time to 

target motion and background changes, improving recognition 

stability under dynamic interference scenes. Through these 

breakthroughs, it is expected to further expand the application 

boundary of the method, promote deep deployment and 

innovation of complex background small target recognition 

technology in industry, medical care, security, and other fields, 

and provide more comprehensive solutions for highly robust 

small target recognition. 
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