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Cancer ranks among the top causes of death, primarily due to its tendency to be diagnosed 

at a late stage and its highly aggressive nature. Lung cancer, in particular, has one of the 

highest mortality rates due to delayed diagnosis. The purpose of this study is to address this 

issue by applying cutting-edge deep learning methods for the prompt identification of lung 

cancer from CT scan images. In particular, various Convolutional Neural Network (CNN) 

architectures are utilized to distinguish between cancerous and non-cancerous CT scan 

images. To further enhance classification accuracy, a spatial attention mechanism is 

integrated into the models, enabling them to focus on relevant image regions. The developed 

models are assessed using a publicly accessible dataset and assessed based on various 

performance indicators, including precision, recall, accuracy and the F1-score. The findings 

highlight the superior performance of the attention-enhanced DenseNet model, achieving 

significant improvements in classification metrics compared to other architectures. The 

research supports the improvement of reliable computer-aided diagnosis systems for lung 

cancer, with a focus on the effectiveness of embedding attention modules within CNNs for 

medical imaging tasks. 
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1. INTRODUCTION

Among various illnesses, cancer stands out as a highly fatal 

condition with a substantial likelihood of leading to death. It 

moved from the ninth rank to the sixth rank in terms of 

diseases that are most fatal to humans [1, 2]. 

Cancer results from a combination of environmental, 

lifestyle, and genetic factors. Cancer development is closely 

linked to environmental carcinogens, including tobacco smoke, 

air pollutants, and hazardous chemicals. Moreover, individual 

lifestyle decisions, such as poor diet, lack of exercise, smoking, 

and alcohol use, significantly increase susceptibility to the 

disease. Genetic predisposition also increases susceptibility, 

where mutations in specific genes may lead to the uncontrolled 

growth of cells. Cancer can be broadly classified into several 

types, including carcinomas [3] (affecting skin or organ 

linings), sarcomas [4] (connective tissues like bone and 

muscle), leukemias [5] (blood and bone marrow), lymphomas 

[6] (lymphatic system), melanomas [7] (skin pigment cells),

and [8] brain or spinal cord tumors.

Lung cancer leads to high rates of mortality in developing 

and industrialized countries. For example, in India, the 

mortality rate is estimated at 0.3% per year [3]. Studies have 

shown that women who smoke are more susceptible to lung 

disease than men [2]. One of the key difficulties in preventing 

cancer lies in its insidious nature—it often shows signs and 

symptoms only in the later stages, by which time the disease 

may have progressed to a point where effective treatment 

becomes extremely difficult or, in some cases, impossible. 

Late-stage detection remains a major concern, particularly for 

lung cancer, where prompt diagnosis plays a vital role in 

improving patient prognosis. Extensive research has been 

dedicated to developing methods that detect lung cancer using 

CT scan data [1, 9-17].  

To address the urgent demand for early lung cancer 

diagnosis, this research concentrates on designing a system 

that employs advanced Convolutional Neural Network (CNN) 

models alongside CT imaging to detect lung nodules at an 

early stage. Lung nodules are often the first visible signs of 

lung cancer in imaging tests, and detecting them at an early 

stage is crucial for timely intervention [4]. CT scans [5] are 

commonly used in healthcare to create detailed body images, 

which are essential for detecting lung cancer effectively. 

Figure 1 illustrates the CT scan images utilized to identify the 

presence of a lung nodule, which is indicative of a cancerous 

tumor. CNNs have shown exceptional performance in image 

analysis tasks. Due to their capability to autonomously learn 

and extract meaningful features from visual data, CNNs are 

highly effective for medical image analysis. In this research, a 

range of CNN architectures will be utilized to examine CT 

scan images to detect lung cancer in its beginning stages. One 

of the primary objectives is to classify the CT images into 

cancerous and non-cancerous categories. The categorization 

of CT scan images is done with various CNN models such as 

VGG-19, VGG-16, MobileNet and DenseNet. Through a 

comparative analysis of different CNN models, the objective 

is to identify the architecture that offers optimal performance 

in classifying lung cancer from CT scans, based on indicators 
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including precision, accuracy, and processing efficiency. 

Additionally, with the aim of enhancing model efficiency, an 

attention mechanism will be incorporated into the CNN 

models. The attention mechanism is incorporated to enable the 

model concentrating towards the most critical regions within 

the image—such as tumors or nodules—while minimizing the 

influence of non-relevant areas and overcoming the limitations 

of traditional CNN architectures. This mechanism helps the 

model to improve its feature extraction by assigning higher 

weights to critical areas and enabling more accurate 

classification. 

The key contributions of our suggested research are outlined 

below:  

This work explores multiple deep learning approaches 

applied to CT scan data for the purpose of lung cancer 

detection. 

The models used are VGG-16, VGG-19, MobileNet, 

DenseNet, AlexNet, InceptionResnet and ResNetMobile. 

We developed CNN models with integrated spatial attention 

mechanisms to enhance feature extraction and select relevant 

features. 

We carefully tested how well the deep learning models work 

by using different evaluation measures. 

 

 
 

Figure 1. The lung nodules [1] 

 

 

2. RELATED WORKS 

 

Numerous researchers have employed artificial intelligence 

and deep learning to tackle classification challenges, 

particularly in the medical domain. Several studies have 

focused on the application of Convolutional Neural Networks 

(CNNs) for detecting and classifying lung cancer using 

various imaging techniques, including histopathological 

images and computed tomography (CT) scans. 

Wang et al. [6] introduced a multi-crop CNN architecture 

that automatically classifies lung nodules from CT scans by 

extracting specific features necessary for lung nodule 

classification. This architecture utilizes a novel multi-crop 

pooling technique that crops different regions from 

convolutional feature maps and applies max-pooling multiple 

times. Their extensive experiments demonstrated that this 

approach not only achieves state-of-the-art performance in 

classifying nodule malignancy but also accurately captures 

critical nodule characteristics such as diameter, margin, and 

subtlety, which are essential for predicting malignancy. 

Mundra et al. [7] developed a 3D CNN architecture 

consisting of two primary modules. The first module, a 3D 

region proposal network, identifies potential nodules, while 

the second module evaluates the five most confidently 

detected nodules to estimate their likelihood of being 

cancerous. The outputs are integrated using a leaky noisy-OR 

gate to estimate the overall probability of lung cancer. Both 

components of this network are based on a modified U-Net 

architecture. This model demonstrated its effectiveness by 

securing first place in the 2017 Data Science Bowl. 

Inoue et al. [8] employed six deep learning models that 

combine CT scan data with histopathological images to detect 

lymph node metastasis. Among these, the CNN Gradient 

Descent model achieved the highest performance, with an 

accuracy of 97.86%, precision of 96.39%, sensitivity of 

96.79%, specificity of 97.40%, and an F-score of 97.96%. This 

methodology presents a promising approach for lung cancer 

diagnosis and could be further enhanced by incorporating 

fuzzy genetic optimization techniques. 

In the study by Aljuhani et al. [4], image processing 

techniques were employed in conjunction with machine 

learning methods, including Support Vector Machines (SVM), 

to classify CT images into normal and abnormal lung 

conditions. Tandon et al. [9] proposed a multi-view CNN 

approach for detecting pulmonary nodules in CT scans, which 

received inputs from three distinct detectors designed to 

identify large, solid, and subsolid nodules. 

Pang et al. [10] aimed to identify imaging biomarkers to aid 

in recognizing and staging non-small cell lung cancer 

(NSCLC) by applying various machine learning techniques to 

features extracted from CT images. Their findings suggest that 

CT image features can reliably predict the pathological stage 

of NSCLC. 

Fan et al. [11] designed and assessed a deep neural network 

based on DenseNet, combined with the adaptive boosting 

technique, to differentiate between normal and malignant lung 

images in CT scans. The dataset included 201 images, with 

85% allocated for training and the remaining 15% for testing, 

resulting in a classification accuracy of 90.85%. 

Pennisi et al. [12] presented an automated computer-aided 

diagnosis system named Lung-Deep, which utilizes digital CT 

scans and deep learning techniques to detect six categories of 

lung nodules without the need for complex image pre-

processing. The system integrates CNNs, RNNs, and softmax 

classifiers. Evaluated on a dataset of 1,200 CT images 

containing 3,250 nodules, the model achieved a sensitivity of 

88%, specificity of 80%, and an AUC of 0.98, surpassing the 

effectiveness of existing diagnostic methods. 

Nasser et al. [13] introduced a novel approach that 

integrates computational intelligence by combining Swarm 

Intelligence techniques with Deep Learning for identifying 

and classifying malignant pulmonary nodules in CT images. 

This methodology involves utilizing seven swarm intelligence 

algorithms alongside CNNs on the LIDC-IDRI dataset. The 

primary objective was to evaluate whether swarm-based 

optimization outperforms conventional training methods such 

as backpropagation and gradient descent. The findings 

revealed that models trained using swarm intelligence 

exhibited superior performance in terms of accuracy, 

precision, sensitivity, specificity, and training efficiency, with 

the highest-performing model achieving 93.71% accuracy, 

93.53% precision, 92.96% sensitivity, and 98.52% specificity, 

accompanied by a 25% reduction in training time. 

Liu et al. [14] utilized a combination of DenseNet and 

attention modules. The integration of attention into DenseNet 

demonstrated a marked improvement in performance metrics, 

indicating its effectiveness compared to the baseline DenseNet 

without attention. The model demonstrated an average 

increase of 20% in accuracy and 19.66% in precision.
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3. PROPOSED METHOD 
 

This section outlines the methodological framework of the 

study, including the dataset utilized, preprocessing techniques, 

deep learning architectures implemented, and the evaluation 

metrics employed to assess model performance. 

The primary goal of this work is to assess the impact of 

incorporating a spatial attention mechanism into deep learning 

architectures for classifying lung CT scan images. Two model 

configurations are evaluated: one includes a Spatial Attention 

Layer, while the other does not. Both architectures are based 

on pre-trained Convolutional Neural Networks (CNNs) 

sourced from ImageNet, aiming to enhance classification 

accuracy between malignant and benign nodules. Figures 2 

and 3 present the respective workflow diagrams for models 

with and without attention mechanisms. 

 

 
 

Figure 2. The flowchart of lung cancer detection using 

CNNs without attention module 

 

 
 

Figure 3. Flowchart illustrating the process of lung cancer 

detection using CNNS enhanced with an attention module 

 

3.1 Dataset 

 

Table 1. The number of CT images used for training and test 

 

Training Test 

cancerous non-cancerous cancerous non-cancerous 

1124 871 1124 871 

 

The dataset utilized in this study is the Lung Image 

Database, which is available for free on Kaggle. This dataset 

consists of a collection of lung CT scan images, annotated by 

multiple radiologists. The annotations provide ground-truth 

information regarding cancerous and non-cancerous nodules. 

Table 1 gives the details about how many images are used for 

training and testing. 

 

3.2 Preprocessing steps 

 

To make the CT scan data suitable for model training, 

essential preprocessing procedures are applied in advance. To 

standardize input for CNN models, each image is resized to a 

fixed dimension. In this work, images are resized to 224×224 

pixels, which is suitable for most deep learning architectures, 

including VGG, DenseNet, and MobileNet. To aid model 

convergence during training, pixel intensities are normalized 

to a [0, 1] range by scaling each pixel value with a factor of 

1/255. Additionally, data augmentation techniques are 

employed to expand the training dataset and reduce the risk of 

overfitting. These techniques include random rotations, 

horizontal and vertical flips, zooming, and slight translations. 

Data augmentation artificially inflates the dataset and ensures 

that the models learn to generalize from various 

representations of the same image. Specifically, we employed 

transformations such as horizontal and vertical flipping, 

zooming, rotation, and slight shifts, using the 

ImageDataGenerator in Keras. These augmentations were 

applied uniformly across both classes to reduce overfitting and 

enhance the diversity of training samples, especially for the 

minority class. 

 

3.3 CNN models 

 

Both proposed architectures incorporate various advanced 

pre-trained Convolutional Neural Network (CNN) models 

such as VGG-16, VGG-19, MobileNet, DenseNet, and 

InceptionResNet. These networks, initially trained on the 

extensive ImageNet dataset, offer a robust baseline by utilizing 

features learned from millions of labeled images, making them 

well-suited for image classification tasks. 

 

3.3.1 VGG-16 and VGG-19 

With 16 and 19 layers, respectively, VGG-16 and VGG-19 

are deep CNN architectures. The parameter count for VGG-16 

is around 138 million, and for VGG-19, it's about 144 million. 

In VGG-16, the architecture follows a sequence of 13 

convolution layers and 5 pooling operations, ending with two 

dense layers and a softmax function for classification. VGG-

19 extends this structure by adding three additional 

convolutional layers. Both models employ ReLU activation 

functions and apply dropout in the fully connected layers to 

prevent overfitting [14].  

 

3.3.2 ResNet 

ResNet is a deep CNN network that introduces the residual 

learning. One of the important advantages of ResNet is its 

ability to avoid bad results while increasing network depth [8]. 

ResNet also improves computational efficiency and training 

capabilities. Skip connections apply across two or three layers 

containing ReLU and batch normalization. ResNet performs 

well in image classification by effectively extracting image 

features [15]. 

 

3.3.3 MobileNet 

 MobileNet is a deep CNN network specifically designed 

for low-powered devices like smartphones and embedded 

systems, introduced by Google in 2017. This model employs 
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depthwise separable convolutions—a method that breaks the 

traditional convolution operation into two distinct stages. 

Initially, depthwise convolution processes each input channel 

using distinct filters. Subsequently, pointwise convolution 

employs a 1×1 kernel to merge the outputs across all channels 

into a unified representation. This method significantly 

decreases both computational cost and parameter count, 

without compromising accuracy [16]. 

 

3.3.4 InceptionResNetV2 

InceptionResNetV2 streamlines the traditional inception 

modules by integrating residual connections from ResNet. 

These connections facilitate the training of deeper 

architectures and enhance overall model performance. Studies 

have shown that InceptionResNetV2 accelerates the training 

of Inception models due to these residual connections [17]. 

 

3.3.5 DenseNet 

DenseNet effectively tackles common issues in deep 

networks, such as vanishing gradients and suboptimal 

parameter utilization. Its primary contribution lies in dense 

connectivity, where each layer is connected to all previous 

layers in a feedforward fashion. This architecture improves 

gradient flow and learning efficiency. The dense block, a 

fundamental component of the network, ensures that every 

layer receives features maps from all earlier layers and 

forwards its own output, encouraging feature reuse throughout 

the model. DenseNet also includes shortcut connections to 

prevent vanishing gradients, making training more 

efficient.To control complexity, DenseNet uses transition 

layers between dense blocks, which combine convolution and 

pooling to reduce channels and downsample spatial 

dimensions. DenseNet uses parameters more effectively than 

traditional models, requiring fewer parameters while 

improving accuracy and training performance. This 

architecture is particularly well-suited for image classification 

and is extensively utilized in various computer vision 

applications [18]. 

 

3.3.6 NaseNetMobile 

NasNetMobile, a model introduced by Google Brain in 

2016, incorporates a framework consisting of three primary 

elements: architecture search space, the algorithm used for 

searching, and performance estimation techniques. The search 

space includes operations such as convolutions, fully 

connected layers, and max-pooling, along with exploring how 

these operations are interconnected. To identify suitable neural 

network architectures, the search strategy employs methods 

like random search and reinforcement learning. The goal of 

performance estimation is to optimize resource efficiency by 

reducing the time and computational effort needed for model 

evaluation [19]. 

 

3.4 Spatial attention layer 

 

The Spatial Attention Layer in this model enhances the 

ability of the network to concentrate on relevant spatial regions 

within an image by applying a dynamic attention mechanism. 

It first computes two pooled feature maps—one via average 

pooling, which captures global patterns, and the other via max 

pooling, which emphasizes the strongest activations. The 

resulting pooled feature maps are combined and processed 

through a convolutional layer, producing a spatial attention 

map that emphasizes significant areas by assigning greater 

weights to the most relevant regions. The attention map is 

integrated with the original feature map using element-wise 

multiplication, allowing the model to concentrate on the most 

significant regions for binary classification. This attention 

mechanism enhances classification performance by allowing 

the model to concentrate on critical image regions [20-29]. 

The configuration of the attention module is depicted in Figure 

4. 

 

 
 

Figure 4. The spatial attention layers 

 

In the spatial attention layer, there are two poling layers 

which are average layer and max pooling layer. The average 

layer is computed as:  

 

𝐹𝑎𝑣𝑔(𝑥, 𝑦) =
1

𝐶
∑𝐹(𝑥, 𝑦, 𝑘)

𝐶

𝑘=1

 (1) 

 

where, C is number of channels (or depth) of the feature map. 

 

𝐹𝑚𝑎𝑥(𝑥, 𝑦) = max
1≤𝑘≤𝐶

⬚∑𝐹(𝑥, 𝑦, 𝑘)

𝐶

𝑐=1

 (2) 

 

The 𝐹𝑎𝑣𝑔 , 𝐹𝑚𝑎𝑥  are concatenated using the following 

equation:  

 

𝐹𝑐𝑜𝑛𝑐𝑎𝑡(𝑥, 𝑦) = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐹𝑎𝑣𝑔, 𝐹𝑚𝑎𝑥) (3) 

 

In the final stage, the spatial attention mask is applied to the 

input feature map by conducting an element-wise 

multiplication between the input feature map F and the spatial 

attention map 𝐹𝑐𝑜𝑛𝑐𝑎𝑡: 
 

𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑥, 𝑦) = 𝐹⬚(𝑥, 𝑦) ⊙ 𝐹𝑐𝑜𝑛𝑐𝑎𝑡(𝑥, 𝑦) (4) 

 

𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙  is the refined feature map, which is now weighted 

by the spatial attention mask. As a result, the spatial attention 

mechanism amplifies the most relevant regions while 

diminishing the influence of less important regions. 

Figure 5 visualizes the attention maps generated by our 

model. The attention mechanism is visualized by overlaying a 

heatmap onto the original image, where the attention areas are 

represented with a heatmap. As shown in the generated 

visualizations. The attention maps concentrate on important 

regions within the images.
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Figure 5. Model attention visualization 

 

3.5 Performance metrics 

 

To assess and contrast the effectiveness of the various 

architectures, a set of essential performance metrics is 

employed. 

 

3.5.1 Confusion matrix 

The confusion matrix is an important tool for measuring the 

performance of each architecture. It evaluates how the system 

classifies the samples into predicted and actual classes. In the 

context of our work about cancer detection, four measures of 

the confusion matrix are defined as follows:  

TP: Refers to the cases where the model correctly identifies 

the presence of lung cancer. 

FN: Occurs when the model fails to identify lung cancer, 

mistakenly classifying a cancerous case as non-cancerous, 

resulting in a missed diagnosis. 

True Negative (TN): Represents the total cases where the 

model accurately classifies individuals as free from lung 

cancer. If the model predicts "no lung cancer" and the actual 

condition is also "no lung cancer," it counts as a true negative. 

False Positive (FP): The number of cases where the model 

incorrectly predicts "lung cancer," but the actual condition is 

"no lung cancer." These represent false alarms or incorrect 

diagnoses. 

 

3.5.2 Accuracy 

As a frequently used measure, it quantifies the number of 

correct predictions divided by the total predictions, reflecting 

the model’s general effectiveness [30]. The formula used to 

compute it is as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 (5) 

 

3.5.3 Precision 

Precision is a performance indicator which is commonly 

applied in classification problems within machine learning and 

statistics to assess the reliability of a model's positive 

predictions [31]. Precision quantifies the proportion of 

correctly predicted positive cases out of all cases that the 

model classified as positive. It is mathematically represented 

as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

 

3.5.4 Sensitivity 

Sensitivity measures the fraction of true positive cases that 

the model successfully detects. In medical diagnostics, 

maintaining high sensitivity is essential to minimize the risk of 

overlooking cancerous cases, since false negatives may lead to 

serious outcomes. The mathematicl expression for Sensitivity 

is: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

 

3.5.5 Specificity 

Specificity represents the fraction of true negative 

instances—i.e., non-cancerous cases—that are accurately 

detected by the model. It serves as a complement to sensitivity 

and plays a critical role in minimizing false positive outcomes. 

The calculation is as follows: 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (8) 

 

3.5.6 F1-score 

The F1 score is the harmonic mean of precision and recall, 

providing a balanced measure of the model’s performance, 

especially when dealing with imbalanced datasets. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (9) 

 

 

4. RESULTS AND ANALYSIS 

 

This part outlines the performance outcomes of the 

implemented deep learning models utilized for predicting lung 

cancer based on CT scan imagery. 

To mitigate overfitting, especially considering the limited 

dataset size, we employed several regularization techniques 

such as dropout layers (with a rate of 0.5), early stopping based 

on validation loss, and frozen base layers during initial training 

phases. Additionally, data augmentation was applied using 

ImageDataGenerator to enhance data diversity. 

The models were evaluated on various indicators including: 

accuracy, precision, recall, specificity and F1-score. The 

obtained values of these metrics are shown in Table 2. The 

confusion matrices of the two models are shown in Figures 6 

and 7. Figure 8 shows the model accuracy comparison with 

and without the attention module. The accuracy and loss 

functions are shown in Figures 9 and 10. 

Table 2 provides a comparative evaluation of six deep 

learning models, analyzing their performance with and 

without the inclusion of an attention mechanism across five 

key metrics. Overall, the integration of attention modules leads 

to improved performance in all evaluated criteria. For instance, 

VGG-16 shows a significant improvement in accuracy from 

0.9682 to 0.9848 when attention is added, along with increases 

in Precision, Recall, Specificity, and F1-score. VGG-19 

similarly benefits from the attention module, improving in 

Accuracy from 0.9477 to 0.966, and showing an increase in 

F1-score from 0.9498 to 0.9606. 

DenseNet201, which already performs highly even without 
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attention, achieves nearly perfect scores with its attention-

integrated version, increasing its Accuracy from 0.9962 to 

0.997 and maintaining a Recall of 1.0000 in both versions. 

InceptionResNetV2 also sees an uplift from the addition of 

attention, with Accuracy rising from 0.9611 to 0.9881 and F1-

score from 0.9591 to 0.9900. It is noteworthy that MobileNet 

and NasNetMobile achieved perfect performance across all 

evaluation metrics—including Accuracy, Precision, Recall, 

Specificity, and F1-score—when combined with the attention 

module, emphasizing its strong influence on enhancing these 

models. Overall, the accuracy comparison as shown in Figure 

8 reveals that most models perform better with the attention 

module. 

 

 
 

Figure 6. Confusion matrices for CNN architectures without attention: (a) VGG-16, (b) VGG-19, (c) DenseNet201, (d) 

InceptionResNetV2, (e) MobileNet, (f) NasNetMobile 
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Table 2. The computed values for the evaluation criteria 

 
 Accuracy Precision Recall Specificity F1-Score 

VGG-16 without attention module 0.9682 0.9593 0.9743 0.9648 0.9667 

VGG-16 with attention module 0.9848 0.9748 0.9927 0.9781 0.9836 

VGG-19 without attention module 0.9477 0.9841 0.9179 0.9826 0.9498 

VGG-19 with attention module 0.966 0.9458 0.9779 0.9524 0.9606 

DenseNest201 without attention module 0.9962 0.9930 1.0000 0.9918 0.9965 

DenseNest201 with attention module 0.997 0.997 1 0.997 0.998 

InceptionResNetV2 without attention module 0.9611 0.9294 0.9908 0.9359 0.9591 

InceptionResNetV2 with attention module 0.9881 0.9846 0.9954 0.9867 0.9900 

MobileNet without attention module 0.9992 0.9982 1.0000 0.9984 0.9991 

MobileNet with attention module 1 1 1 1 1 

NasNetMobile without attention module 0.9962 0.9918 1.0000 0.9930 0.9959 

NasNetMobile with attention module 1 1 1 1 1 

 

 
 

Figure 7. Confusion matrices for CNN architectures with attention: (a) VGG-16, (b) VGG-19, (c) DenseNet201, (d) 

InceptionResNetV2, (e) MobileNet, (f) NasNetMobile 
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Figure 8. Accuracy comparison with and without attention module 

 

 
 

Figure 9. Accuracy plots for CNN models without attention mechanisms: (a) VGG-16, (b) VGG-19, (c) DenseNet201, (d) 

InceptionResNetV2, (e) MobileNet, (f) NasNetMobile 
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Figure 10. Accuracy plots for CNN models with attention mechanisms: (a) VGG-16, (b) VGG-19, (c) DenseNet201, (d) 

InceptionResNetV2, (e) MobileNet, (f) NasNetMobile 

 

 
 

Figure 11. The prediction time per sample for the model with 

attention module 

 

The confusion matrices, as shown in Figures 6 and 7, reveal 

that models generally perform better with the attention module, 

especially in reducing false positives and false negatives. 

Without attention, VGG16 and VGG19 have higher 

misclassification rates, as seen by false negatives and false 

positives (e.g., VGG16 shows 45 false positives and 28 false 

negatives). However, with the attention module, both VGG16 

and VGG19 show improvement. VGG16 reduces false 

positives from 45 to 28 and false negatives from 28 to 8, 

indicating enhanced detection of both cancerous and non-

cancerous cases. DenseNet201, InceptionResNetV2, 

MobileNet, and NasNetMobile perform consistently well, 

particularly with attention. They achieve nearly perfect 

classification with minimal or no false positives and false 

negatives. MobileNet and NasNetMobile, notably, achieve 

flawless performance both with and without attention, 

emphasizing their robustness. Overall, the integration of 

attention mechanisms significantly reduced false negatives 

across various models. Notably, MobileNet and 

NasNetMobile achieved perfect classification performance, 

with zero false positives and zero false negatives, both with 

and without the attention module. This indicates their 

robustness and potential reliability in clinical settings. 

The histogram illustrated in Figure 11 clearly demonstrates 

the variation in prediction time per sample among different 

deep learning models enhanced with attention modules. 

MobileNet emerges as the fastest high-performing model, 
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requiring only 0.44182 seconds to predict a single sample 

while maintaining perfect evaluation metrics. It offers the best 

trade-off between speed and accuracy. In contrast, 

NASNetMobile also achieving perfect accuracy, has the 

highest prediction time of 4.2945 seconds. Similarly, 

DenseNet20 and InceptionResNetV2 demonstrate high 

accuracy but with much longer prediction times (2.7975s and 

3.0319s, respectively). The VGG models, especially VGG-16 

provide a balanced alternative, offering good accuracy with 

lower prediction times (0.376s). 

As shown in Figure 10, the MobileNet model enhanced with 

the attention mechanism achieved flawless classification 

results, while also recording one of the shortest prediction 

times per sample. This highlights its strong potential for 

deployment in real-time, resource-constrained clinical settings 

where low latency and computational efficiency are essential. 
 

 

5. CONCLUSION 
 

The study presents a comparative framework for using 

CNNs in lung cancer detection. Results indicate that 

incorporating an attention mechanism into CNN architectures 

significantly improves model performance by directing focus 

toward relevant features. The DenseNet and InceptionResNet 

architectures, when integrated with spatial attention 

mechanisms, exhibited enhanced accuracy and strong feature 

extraction abilities, making them well-suited for the 

challenging task of early lung cancer identification. 

While the proposed approach demonstrated strong 

performance on the Kaggle dataset used in this study, a notable 

limitation is the lack of evaluation on external datasets such as 

LIDC-IDRI. This limitation hinders a comprehensive 

evaluation of the model’s generalizability across various 

imaging techniques and patient demographics.  

Future research will focus on testing the model with more 

diverse and publicly accessible datasets to enhance its 

robustness and real-world clinical relevance. 
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