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Climate change and urban expansion are intensifying the risks of wildfires globally, with 

Mediterranean regions such as Algeria experiencing increased vulnerability due to 

escalating droughts and heatwaves. These events exacerbate ecological degradation, 

threaten human safety, and impose substantial economic costs, which requires advanced risk 

assessment frameworks and adaptive mitigation strategies. This study addresses these 

challenges through a comparative analysis of wildfire prediction models in three climatically 

distinct regions: Béjaïa and Sidi Bel Abbes in Algeria, and Montesinho Natural Park in 

Portugal. Employing eight machine learning algorithms—CatBoost, XGBoost, Support 

Vector Machines (SVM), Random Forest (RF), AdaBoost, Logistic Regression (LR), 

LightGBM, and Decision Trees (DT)—we predict wildfire severity and identify critical 

drivers using feature selection (Principal Component Analysis (PCA), Genetic Algorithms 

(GA), Chi-square tests) and explainability techniques (SHapley Additive exPlanations 

(SHAP), Local Interpretable Model-agnostic Explanations (LIME), Fuzzy Logic). Key 

findings reveal stark regional contrasts: In arid Algeria, the temperature and drought indices 

(Drought Code, DC) dominate the fire dynamics, achieving near-perfect model accuracy 

(AUC-ROC: 0.97–1.00). In contrast, Portugal’s temperate forests prioritize fuel moisture 

metrics (Duff Moisture Code, DMC) and temporal factors, although complex fire regimes 

produce a lower discrimination capacity (AUC-ROC: 0.55–0.78). By integrating global 

(SHAP/PCA) and localized (LIME) insights, we propose region-specific strategies, 

including IoT-enhanced microclimate regulation, fuel-break networks, and adaptive early 

warning systems. This work bridges predictive analytics with actionable forest engineering 

solutions, offering a scalable framework to mitigate wildfire risks in evolving climatic 

landscapes. 
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1. INTRODUCTION

Wildfires represent a growing global threat exacerbated by 

climate change and anthropogenic activities, with 

Mediterranean regions such as Algeria experiencing increased 

vulnerability due to prolonged droughts and extreme 

heatwaves [1]. In Algeria, forest fires occur annually; 

however, their frequency and severity have surged in recent 

years, driven by rising temperatures and human-induced 

ignition, which accounts for 85% of incidents [2]. Between 

2021 and 2023, more than 5,500 fires in 37 provinces 

destroyed approximately 260,000 hectares of forested land, 

26% of the total forest cover in the nation, displacing 6,000 

families and resulting in recurrent fatalities [3]. These events 

underscore the urgent need for advanced predictive 

frameworks to mitigate ecological degradation, economic loss, 

and human safety risks. 

Existing research has identified key factors that influence 

the dynamics of wildfires, including climatic variables (e.g., 

droughts and heat waves), vegetation type, soil conditions and 

human activities [4, 5]. However, gaps persist in our 

understanding of how regional climatic and ecological 

variability shapes fire regimes, particularly in understudied 

arid and temperate zones. Although machine learning (ML) 

models have shown promise in wildfire prediction, their 

efficacy remains inconsistent between regions due to divergent 

environmental drivers and data limitations [6]. In addition, few 

studies have integrated explainability techniques to decipher 

model decisions, hindering the translation of predictions into 

actionable mitigation strategies. 

This study addresses these gaps by developing a prognostic 

system that combines high-accuracy ML algorithms with 

explainable artificial intelligence (XAI) to identify critical 

wildfire drivers and optimize region-specific risk assessments. 
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We employ eight ML models—CatBoost, XGBoost, SVM, 

Random Forest, AdaBoost, Logistic Regression, LightGBM, 

and Decision Trees (DT)—alongside feature selection 

methods (PCA, GA, chi-square tests) and explainability 

frameworks SHAP, LIME, Fuzzy Logic). Our analysis 

focused on three climatically distinct regions: Béjaïa and Sidi 

Bel Abbes in Algeria (arid Mediterranean) and Montesinho 

Natural Park in Portugal (temperate oceanic). 

The contributions of this study are threefold. 

1. Predictive Modeling: We established a robust ML 

framework to forecast the severity of wildfires, achieving near 

perfect accuracy (AUC-ROC: 0.97–1.00) in arid regions and 

identifying complexity-driven challenges in temperate zones. 

2. Regional drivers: Through comparative analysis, we 

isolated the dominant factors, temperature and drought indices 

DC in Algeria versus fuel moisture metrics DMC and temporal 

features in Portugal, highlighting the role of climatic 

heterogeneity. 

3. Actionable Strategies: We propose evidence-based forest 

engineering solutions, including IoT-enhanced microclimate 

regulation, fuel-break networks, and adaptive early warning 

systems tailored to regional vulnerabilities. 

By bridging predictive analytics with practical mitigation 

measures, this study advances wildfire management in 

evolving climatic landscapes and offers a scalable framework 

for policymakers and conservation agencies. 

 

 

2. LITERATURE REVIEW 

 

Forest fires are a widespread issue today and their incidence 

is increasing steadily every year. This section presents a 

comprehensive literature survey on wildfires and their 

severity. The survey also includes various approaches used to 

predict the severity of forest fires. Wu et al. [7] used data 

developed from the Heilongjiang Forest Fire Database in 

Northeast China to predict the relationship between factors 

that contribute to forest fires and the resulting severity. They 

identified several factors that were positively correlated with 

the severity of the wildfires. In addition, they compared the 

performance of artificial neural networks and logistic 

regression for wildfire prediction to determine the impact of a 

factor on the severity of the forest fire. Zhang et al. [8] worked 

with a wildfire database from Yunnan Province, China, and a 

set of 14 forest fires influencing factors that contribute to the 

severity of the wildfire in the region. For this task, they 

implemented a deep learning technique called a convolutional 

neural network (CNN) to predict susceptibility to forest fires 

based on several factors that were mapped using a geographic 

information system. Zaidi [5] developed an Artificial Neural 

Network (ANN) with two hidden layers to predict wildfires in 

the cities of Béjaïa and Sidi Bel-Abbes in Algeria, using PCA 

to reduce the number of variables to six, while retaining 

96.65% of the total variance and compared the performance of 

this classifier with those provided by the Logistic Regression, 

K Nearest Neighbors, Support Vector Machine, and Random 

Forest classifiers. In addition, they employed Shapley, an XAI 

method, to analyze the results and revealed the importance of 

features as risk factors in the predictions of the ANN model. 

Guria et al. [9] developed a predictive model using Sentinel-2 

MSI data and ML techniques to estimate the probability of 

forest fires in the Similipal Biosphere Reserve (SBR) in 

Odisha, India’s main forest fire hotspots, and identify factors 

associated with each severity level. Purnama et al. [10] 

compared different machine learning techniques, such as DT, 

Naive Bayes (NB), and others, to predict the vulnerability of 

forest fire. A dataset from Türkiye encompasses various 

factors, such as precipitation, soil moisture, temperature, 

humidity, wind speed, land cover, elevation, aspect, slope, 

proximity to roads/electricity networks and population 

density. This study identified the most accurate algorithm for 

predicting forest fire risks, highlighting its crucial role in 

proactive fire risk management strategies. 

A literature study shows that the field of forest fire analysis 

has received much research. Nonetheless, certain deficiencies 

in the literature have been noted. However, most of the 

evaluated publications focus on determining the causes of 

wildfires and forecasting their intensity. Furthermore, the 

publications did not compare the characteristics of the severity 

of wildfires between two different locations. The goal of this 

research project is to add to the areas that previous studies have 

neglected. 
 

 

3. METHODOLOGY 
 

3.1 Data preprocessing 
 

This study used two different datasets to analyze the 

dynamics of wildfires in climatically divergent regions. 

Algerian Forest Fire Dataset: Sourced from the UCI Machine 

Learning Repository [11], this dataset comprises 

meteorological observations and Fire Weather Index (FWI) 

components from the Béjaïa (northeast Algeria) and Sidi Bel 

Abbes (northwest Algeria) regions of Algeria. The data 

spanned June to September 2012, with 244 instances (122 per 

region) categorized into fire (138 instances) and non-fire (106 

instances) classes. The attributes included temperature, 

relative humidity (RH), wind speed, rain, and FWI indices 

(FFMC, DMC, DC, and ISI) (Table 1). Montesinho Natural 

Park Dataset: Obtained from the UCI repository [12], this 

dataset covers 517 wildfires in northern Portugal (2000–2003), 

with 13 attributes: spatial coordinates (X, Y), temporal 

variables (month, day), meteorological metrics (temperature, 

RH, wind, rain), FWI indices (FFMC, DMC, DC, ISI), and fire 

area (Table 2). 
 

Table 1. Variables in the Béjaïa and Sidi Bel Abbes wildfire 

datasets [11] 
 

Attribute Description 

Date 

(DD/MM/YYYY) Day, month (‘June’ to 

‘September’), year (2012) Weather data 

observations 

Temp 
Temperature noon (temperature max) in 

Celsius degrees: 22 to 42 

RH Relative Humidity in %: 21 to 90 

Ws Wind speed in km/h: 6 to 29 

Rain total day in mm: 0 to 16.8 FWI Components 

FFMC 
Fine Fuel Moisture Code index from the FWI 

system: 28.6 to 92.5 

DMC 
Duff Moisture Code index from the FWI 

system: 1.1 to 65.9 

DC 
Drought Code index from the FWI 

system: 7 to 220.4 

ISI 
Initial Spread Index, index from the FWI 

system: 0 to 18.5 

BUI 
Buildup Index, index from the FWI 

system: 1.1 to 68 

FWI Fire Weather Index, Index: 0 to 31.1 

Classes Two classes, namely Fire and not Fire 
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Table 2. Variables in the Montesinho Natural Park wildfire 

dataset [12] 

 
Attribute Description 

X 

Y 

X-axis spatial coordinates (1 ≤ X ≤ 9) 

Y-axis spatial coordinates (1 ≤ Y ≤ 9) 

Month Months of the year (from January to December) 

Day Days of the week (from Monday to Sunday) 

Temp Temperature (Celsius) (from 2.2 to 33.30) 

RH Relative humidity (%) (from 15.0 to 100) 

Wind Wind speed (km/h) (from 0.40 to 9.40) 

Rain Total day in mm: 0 to 16.8 FWI COMPONENTS 

FFMC 
Water content of cured fine fuels (from 18.7 to 96.20), 

with a time period of 16 h 

DMC 

Water content of surface combustible material (from 

1.1 to 291.3) in the upper layer of forest humus, with a 

time period of 12 days 

DC 

Index of the effect of prolonged drought on forest 

combustibles (7.9–860.6), with a time period of 52 

days 

ISI The initial rate of fire spread (from 0 to 56.10) 

Rain Outdoor rainfall (mm/m2) (from 0.0 to 6.40) 

Area Total forest burned area (ha) (0.00~1090.84) 

 

 

Preprocessing Steps: 

- Data Cleaning: Duplicate entries and null values were 

removed to ensure the integrity of dataset. 

- Feature Elimination: Spatial coordinates (X, Y) were 

excluded because the study prioritized meteorological and 

temporal predictors over geospatial factors. 

- Class balancing: The class distribution of the Algerian 

dataset (fire/non-fire ratio: 138/106) was retained to reflect 

real-world incidence rates. 

Eight ML algorithms were implemented to predict the 

severity of wildfires: AdaBoost, CatBoost, SVM, XGBoost, 

RF, LR, Light Gradient Boosting Machine (LGBM), and DT. 

Model training and evaluation were conducted in Python using 

the Jupyter Notebook with the following workflow (Figure 1):  

1. Feature selection 

- Global Importance: SHAP and PCA were used to identify 

the dominant predictors in regions. 

- Local Interpretability: LIME provide instance-specific 

insights into model decisions. 

- Statistical Validation: Chi-square tests and GA optimized 

feature subsets, while Fuzzy Logic assessed variable 

interactions. 

 

 
 

Figure 1. Illustrating workflow process flow diagram 

 

2. Implementation tools 

The dataset was partitioned into training sets (80%) and test 

sets (20%), with model evaluation performed by repeated 10-

fold cross-validation to prevent data leakage. Feature 

preprocessing included outlier detection using box plots (no 

significant anomalies were revealed) and standardization 

using StandardScaler. The interpretability model was assessed 

using SHAP values and LIME explanations. 

- Libraries: SHAP values were computed using the SHAP 

library, whereas LIME explanations were generated using the 

Lime package. 

- Training Environment: The Scikit-learn and Keras 

frameworks facilitated model training, with hyperparameters 

tuned via grid search. Early stopping (patience=50 rounds) 
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dynamically determined optimal iterations for boosting 

algorithms. 

For gradient boosting implementations (XGBoost, 

CatBoost, LightGBM), the learning rate was tuned within the 

0.01-0.3 range, with tree depth limited to 3-10 for XGBoost 

and 4-10 for CatBoost. LightGBM utilized num_leaves (31-

255) as its primary complexity control. Regularization was 

implemented through L2 penalties (reg_lambda=1-10 for 

XGBoost, l2_leaf_reg=1-10 for CatBoost) and feature 

subsampling (colsample_bytree=0.8-1.0). 

Decision trees were constrained by max_depth (<10) and 

min_samples_leaf (>1% of training samples), with cost 

complexity pruning (ccp_alpha=1e-3 to 1e-2) applied post-

training. Random forests used √n_features for split 

consideration and disabled bootstrap sampling for small 

datasets (<1k samples). 

Logistic regression required careful adjustment of the 

inverse regularization strength (C=0.1-1.0) and penalty type 

(l1/l2), with the selection of the solver depending on the size 

of the dataset. The performance of SVM depended on the 

selection of the kernel and regularization (C=1e-2 to 1e3), 

while AdaBoost demonstrated a strong coupling between 

learning rate (η<0.1) and n_estimators (≥500). 

 

3.2 Justifying generalizability of limited wildfire datasets 

using ERA5 reanalysis 

 

The ERA5 global reanalysis [13] addresses critical 

limitations in small, temporally constrained wildfire datasets 

from Béjaïa / Sidi Bel Abbès (2012; 244 instances) and 

Montesinho (2000–2003; 517 instances) through three 

primary mechanisms: 

1. Temporal context expansion  

The continuous hourly climate record of ERA5 (1950–

present) contextualizes short observation windows [14]. For 

the Béjaïa 2012 fires, the vapor pressure deficit (VPD) and soil 

moisture anomalies derived from ERA5 demonstrate that 2012 

conditions represented the 85th percentile of 1979–2020 FWI 

values. Current summer conditions now exceed this threshold 

in 45% of years. Similarly, Montesinho’s 2000–2003 FWI 

values (75th percentile historically) are exceeded by 60% 

years during 2015–2024. This quantifies the non-

representativeness of original collection periods relative to 

contemporary climates. 

2. Physical mechanism validation 

The fire-weather relationships identified in the local 

datasets are verified through ERA5-driven process analysis:  

- Béjaïa’s observed particulate matter PM10 levels (>80 

µg/m³ during fires) correlate strongly with ERA5-derived soil 

moisture deficits (r = -0.83), which confirms aridity as a strong 

driver. 

- Thresholds such as FFMC >90 remain predictive when 

tested against the global FWI distributions ERA5, 

demonstrating mechanistic stability beyond local samples.   

- Montesinho’s species-specific fuel moisture models are 

refined using ERA5’s evaporation rates, improving 

transferability to analogous ecosystems. 

3. Uncertainty-controlled projection 

ERA5 enables reliable extrapolation through: 

- Ensemble-based analog identification: Events that match 

Montesinho’s 2003 heat wave (90th percentile historically) 

now rank at the 70th percentile in ERA5’s 2023 data. The 

performance of the model on these analogs validates the 

predictive skill under current conditions.   

- Bias-corrected CMIP6 (Coupled Model Intercomparison 

Project Phase 6) downscaling: When forced with ERA5 

adjusted climate projections, Montesinho shows a 25% 

increase in extreme fire days by 2030 under SSP2-4.5, with 

uncertainty ranges (±12%) derived from ERA5’s 10-member 

ensemble.   

- Extrapolation flags: Predictions are automatically 

restricted when variables exceed dataset maxima (e.g., >38°C 

in Béjaïa), ensuring operational safety margins. 

 

3.2.1 Implementation framework 

1. Data fusion: ERA5 variables (temperature, humidity, 

wind) are extracted for fire event coordinates via the Climate 

Data Store. 

2. Dynamic calibration: Site-specific fire indices are 

recalculated using homogenized data from ERA5, correcting 

for local observation gaps. 

3. Validation protocol: 

- Spatial: Models trained on Béjaïa / Montesinho are tested 

against adjacent regions using ERA5-driven FWI.   

- Temporal: Performance is validated against post-2010 

Moderate Resolution Imaging Spectroradiometer (MODIS) 

active fire detections. 

4. Projection safeguards: CMIP6 scenarios are 

downscaled through the physical kernel of ERA5, with 

ensemble spreads quantifying confidence intervals.   

For Béjaïa and Montesinho, this approach confirms that the 

2012/2003 extremes now represent moderate fire weather 

conditions, while providing frameworks for adaptive risk 

management. Future work should integrate the enhanced 

vegetation parameters ERA5-Land to resolve species-specific 

fuel responses. 

 

3.3 Performance evaluation 

 

The efficiency of the model was assessed at the Youden 

threshold (maximizing sensitivity + specificity) using 

accuracy, precision, recall, F1 score, AUC-ROC metrics, 

Matthews Correlation Coefficient (MCC), and Balanced 

Accuracy. Confusion matrices were analyzed to quantify 

true/false positives and negatives, ensuring robustness in the 

imbalanced datasets. 

This methodology integrates predictive analytics with XAI 

to bridge the gap between model outputs and actionable forest 

management strategies, enabling region-specific risk 

mitigation. 

 

3.4 XAI techniques 

 

XAI is a powerful and transformative tool that enables 

interpretation and explanation of predictions [15] made by 

machine learning models, playing a crucial role in analysing 

results in predictive tasks. In this study, the importance of the 

permutation feature, an effective XAI technique, was used to 

generate weights for each feature, where these weights 

indicated the impact of a specific feature on the overall 

outcome. 

Two prominent XAI techniques, LIME and SHAP, were 

used to generate local and global explanations for the deep 

learning model predictions in the validation and test sets. 

LIME, a model-independent technique, creates a local linear 

model around the prediction point and weights the input 

features to estimate their importance in the prediction.  

The Lime package in Python was used to generate 
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explanations for the model predictions. SHAP, which is rooted 

in game theory, provides a unified framework for estimating 

the importance of features and generates global explanations 

for the behavior model.  

The Python SHAP library was used to calculate the value of 

the importance of the feature for the prediction of the model, 

offering insights into the contributions of individual features 

to the model output. These techniques enhance the 

interpretability and transparency of machine learning models, 

enabling a deeper understanding of their decision-making 

processes. 

 

3.5 Analyzing wildfire severity and regional comparisons   

 

This study used a multistage methodological framework to 

analyze the severity of wildfires and regional susceptibility. 

First, the dominant drivers of the severity of the wildfires were 

identified using feature selection techniques SHAP, LIME, 

PCA, GA, and chi-square tests coupled with XAI to derive 

both global and localized insights. Each contributing factor, 

including meteorological variables (e.g., temperature and 

relative humidity), fuel indices (e.g., DMC and the DC), and 

anthropogenic influences, was rigorously analyzed to quantify 

its impact on fire dynamics. 

Subsequently, a comparative assessment was conducted 

between the Algerian provinces of Béjaïa and Sidi Bel Abbes 

to assess the regional susceptibility to specific drivers. This 

analysis discerns spatial heterogeneity in risk factors; for 

instance, Béjaïa’s coastal aridity amplifies temperature-driven 

ignition risks, while the inland topography of Sidi Bel Abbes 

increases vulnerability to prolonged drought conditions. The 

contrasts were further extended to Montesinho Natural Park 

(Portugal), where temperate ecosystems prioritize fuel 

moisture (DMC) over acute weather variables. 

To translate analytical insights into actionable strategies, 

this study proposes a suite of engineered solutions grounded 

in the principles of Conservation Forest Engineering. 

The recommendations were tailored to regional climatic and 

ecological profiles, ensuring scalability in arid and temperate 

regimes. Quantitative validation, including model 

performance metrics, underscores the need for region-specific 

adaptations. 

This systematic approach, detailed in Section 5, bridges 

predictive analytics and pragmatic forest management, 

offering a scalable framework to address evolving wildfire 

risks in Mediterranean ecosystems.  

 
 

4. RESULTS 
 

This section details the experiments conducted in 

accordance with the methodology and techniques described 

previously. The results obtained from the predictive modeling 

approach, the subsequent analysis of the dynamics of the forest 

fire, and the comparative assessment of the specified regions 

are presented. To evaluate the efficacy of machine learning 

models, various performance metrics were employed. 

 
4.1 Wildfire severity prediction in Béjaïa Province 
 

The forest fire severity prediction analysis, shown in Tables 

3-6, for the Béjaïa region identified consistent meteorological 

variables as critical determinants of wildfires. Temperature, 

FFMC, relative humidity, and wind speed emerged as the 

primary factors, which were validated using multiple 

explainability frameworks. SHAP analyzes prioritized the 

temperature (0.0385 in Adaboost) for its role in fuel 

desiccation, while the FFMC showed an inverse correlation 

with surface fuel moisture (LIME temperature score: 3.3251). 

Relative humidity demonstrated an inverse relationship with 

fire risk through statistical validation, and wind speed 

achieved near-perfect importance scores (≈0.9995) using 

Fuzzy Logic. 

Secondary variables included precipitation (inversely 

correlated with fire risk) and temporal features that capture 

seasonal variations. Complementary explainability techniques 

enhance interpretation: SHAP quantifies global contributions 

by identifying temperature and FFMC as primary drivers, 

LIME reveals localized influences of temperature fluctuations, 

and Fuzzy Logic provides linguistic risk categorization 

("low", "high"). PCA and GA mitigate redundancy among the 

correlated variables (DMC, DC, and BUI). 

Youden's threshold optimization demonstrates impressive 

metrics: TPR ranges 0.95-1.00, FPR minimized to 0.00-0.06, 

TNR is achieved to 1.00 in select models, and MCC 

approaches perfect scores. The ensemble methods (XGBoost, 

Random Forest) achieve flawless performance (TPR=1.00, 

FPR=0.00), while logistic regression shows slightly lower 

MCC (0.94-0.97). The SVM achieved zero misclassifications 

(TP=19, FP=0), with confusion matrices (TP=19, FN=0, 

FP=1, TN=17) confirming minimal operational trade-offs. 

Feature selection analysis revealed that PCA retained 

composite variables (temperature, FFMC), while GA 

identified optimal subsets, marginally improving the 

classification (TP=19 vs. 18). Chi-square tests prioritize 

statistically significant variables but may miss the nonlinear 

interactions. SHAP highlights temperature (0.0737 in 

CatBoost) as a global driver, LIME attributes localized shifts 

to temperature (>2.0) and temporal variables, whereas Fuzzy 

Logic reinforces the nonlinear influence of wind speed 

through linguistic categories. 

Temperature, FFMC, relative humidity, and wind speed 

emerged as the main drivers of the fire in Béjaïa, achieving 

near-perfect discrimination at Youden's threshold. The GA 

demonstrates superior performance in capturing nonlinear 

interactions compared to chi-square tests, whereas ensemble 

methods excel in complex boundary detection. These findings 

validate the integration of explainability frameworks with 

classical metrics to optimize wildfire prediction systems for 

proactive management. 

 

Table 3. Wildfire prediction with AdaBoost and CatBoost models using feature selection methods (Béjaïa region (Algeria)) 

 

B
éj

a
ia

_
D

a
ta

se
t 

A
d

a
b

o
o

st
 M

o
d

el
 

Selection 

Methods 

Selected 

Features 

Scores 

or P-

values 

Value 
Youden's 

Threshold 

Performance Metrics at Youden's Threshold 

Accuracy Precision Recall 
F1 

Score 

AUC-

ROC 
TPR FPR TNR FNR MCC 

Balanced 

Accuracy 

Confusion 

Matrix 

TP FN FP TN 

X
A

I 

SHAP 

temperature 0.0385 

/ 0.71 0.97 1.00 0.95 0.97 1.00 0.95 0.00 1.00 0.05 0.95 0.97 18 1 0 18 ffmc 0.0278 

rh 0.0156 
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ws 0.0073 

LIME 

temperature 3.3251 29.00 

dc 3.2942 32.20 

rain 1.8890 0.10 

day 0.6531 6.00 

Fuzzy 

Logic 

ws 

0.9995 / 0.69 0.97 1.00 0.95 0.97 1.00 0.95 0.00 1.00 0.05 0.95 0.97 18 1 0 18 
rain 

ffmc 

dmc 

PCA 

temperature 2.4756 

/ 0.42 0.95 0.90 1.00 0.95 0.99 1.00 0.11 0.89 0.00 0.90 0.94 19 0 2 16 
ffmc 2.4627 

rh 2.4517 

ws 2.4423 

GA 

month 

/ / 0.68 0.97 0.95 1.00 0.97 1.00 1.00 0.06 0.94 0.00 0.95 0.97 19 0 1 17 
dmc 

isi 

bui 

chi-

square 

tests 

rh 1.0000 

/ 0.61 0.95 0.87 1.00 0.93 0.99 1.00 0.08 0.92 0.00 0.89 0.96 13 0 2 22 
temperature 0.7808 

month 0.6475 

ffmc 0.4142 

C
a

tB
o

o
st

 M
o

d
el

 

X
A

I 

SHAP 

temperature 0.0737 

/ 

0.33 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 19 0 0 18 

ffmc 0.0354 

rh 0.0280 

ws 0.0065 

LIME 

rain 12.4904 0.10 

dc 6.2537 32.20 

day 2.2941 6.00 

ffmc 2.0021 75.80 

Fuzzy 

Logic 

ws 

0.9995 / 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 19 0 0 18 
rain 

ffmc 

dmc 

PCA 

temperature 2.4756 

/ 0.99 0.95 1.00 0.89 0.94 0.99 0.89 0.00 1.00 0.11 0.90 0.95 17 2 0 18 
ffmc 2.4627 

rh 2.4517 

ws 2.4423 

GA 

day 

/ / 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 19 0 0 18 
month 

rh 

dmc 

chi-

square 

tests 

rh 1.0000 

/ 1.00 0.97 1.00 0.92 0.96 1.00 0.92 0.00 1.00 0.08 0.94 0.96 12 1 0 24 
temperature 0.7808 

month 0.6475 

ffmc 0.4142 

 

Table 4. Wildfire prediction with DT and LGBM models using feature selection methods (Béjaïa region (Algeria)) 
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Selection 

Methods 

Selected 

Features 

Scores 

or P-

values 

Value 
Youden's 

Threshold 

Performance Metrics at Youden's Threshold 

Accuracy Precision Recall 
F1 

Score 

AUC-

ROC 
TPR FPR TNR FNR MCC 

Balanced 

Accuracy 

Confusion 

Matrix 

TP FN FP TN 

X
A

I 

SHAP 

temperature 0.1346 

/ 

0.67 0.95 1.00 0.89 0.94 0.97 0.89 0.00 1.00 0.11 0.90 0.95 17 2 0 18 

ffmc 0.1327 

rh 0.0401 

ws 0.0116 

LIME 

rain 21.6346 0.10 

day 2.9150 6.00 

ffmc 1.4596 75.80 

temperature 1.0906 29.00 

Fuzzy 

Logic 

ws 

0.9995 / 1.00 0.97 1.00 0.95 0.97 1.00 0.95 0.00 1.00 0.05 0.95 0.97 18 1 0 18 
rain 

ffmc 

dmc 

PCA 

temperature 2.4756 

/ 0.33 0.92 0.90 0.95 0.92 0.91 0.95 0.11 0.89 0.05 0.84 0.92 18 1 2 16 
ffmc 2.4627 

rh 2.4517 

ws 2.4423 

GA 

month 

/ / 1.00 0.97 0.95 1.00 0.97 0.97 1.00 0.06 0.94 0.00 0.95 0.97 19 0 1 17 year 

temperature 
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rh 

chi-

square 

tests 

rh 1.0000 

/ 0.88 0.92 0.81 1.00 0.90 0.95 1.00 0.12 0.88 0.00 0.84 0.94 13 0 3 21 
temperature 0.7808 

month 0.6475 

ffmc 0.4142 

L
G

B
M

 M
o

d
el

 

X
A

I 

SHAP 

temperature 0.0376 

/ 

0.79 0.95 1.00 0.89 0.94 0.99 0.89 0.00 1.00 0.11 0.90 0.95 17 2 0 18 

ffmc 0.0145 

rh 0.0061 

ws 0.0090 

LIME 

temperature 9.8086 29.00 

dc 5.8618 32.20 

rain 3.0392 0.10 

isi 2.9888 2.10 

Fuzzy 

Logic 

ws 

0.9995 / 0.89 0.97 1.00 0.95 0.97 1.00 0.95 0.00 1.00 0.05 0.95 0.97 18 1 0 18 
rain 

ffmc 

dmc 

PCA 

temperature 2.4756 

/ 0.66 0.95 1.00 0.89 0.94 0.99 0.89 0.00 1.00 0.11 0.90 0.95 17 2 0 18 
ffmc 2.4627 

rh 2.4517 

ws 2.4423 

GA 

temperature 

/ / 0.44 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 19 0 0 18 
month 

day 

rh 

chi-

square 

tests 

month 1.0000 

/ 0.92 0.97 1.00 0.92 0.96 1.00 0.92 0.00 1.00 0.08 0.94 0.96 12 1 0 24 
temperature 0.7808 

rh 0.6475 

ffmc 0.4142 

 

Table 5. Wildfire prediction with SVM and XGBoost models using feature selection methods (Béjaïa region (Algeria)) 

 

B
éj

a
ia

_
D

a
ta

se
t 

S
V

M
 M

o
d
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Selection 

Methods 

Selected 

Features 

Scores 

or P-

values 

Value 
Youden's 

Threshold 

Performance Metrics at Youden's Threshold 

Accuracy Precision Recall 
F1 

Score 

AUC-

ROC 
TPR FPR TNR FNR MCC 

Balanced 

Accuracy 

Confusion 

Matrix 

TP FN FP TN 

X
A

I 

SHAP 

temperature 0.0737 

/ 

0.33 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 19 0 0 18 

ffmc 0.0353 

rh 0.0280 

ws 0.0065 

LIME 

rain 12.4904 0.10 

dc 6.2537 32.20 

day 2.2941 6.00 

ffmc 2.0021 75.80 

Fuzzy 

Logic 

ws 

0.9995 / 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 19 0 0 18 
rain 

ffmc 

dmc 

PCA 

temperature 2.4756 

/ 0.99 0.95 1.00 0.89 0.94 0.99 0.89 0.00 1.00 0.11 0.90 0.95 17 2 0 18 
ffmc 2.4627 

rh 2.4517 

ws 2.4423 

GA 

day 

/ / 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 19 0 0 18 
month 

rh 

dmc 

chi-

square 

tests 

month 1.0000 

/ 1.00 0.97 1.00 0.92 0.96 1.00 0.92 0.00 1.00 0.08 0.94 0.96 12 1 0 24 
temperature 0.7808 

rh 0.6475 

ffmc 0.4142 

X
G

B
o

o
st

 M
o
d

el
 

X
A

I 

SHAP 

rh 0.0442 

/ 

0.27 0.97 1.00 0.92 0.96 0.99 0.92 0.00 1.00 0.08 0.94 0.96 12 1 0 24 

day 0.0390 

ffmc 0.0110 

temperature 0.0105 

LIME 

day 1.7361 16.00 

rain 0.7220 0.00 

fwi 0.6035 0.40 

isi 0.2776 0.70 

Fuzzy 

Logic 

ws 

0.9995 / 0.36 0.97 1.00 0.92 0.96 0.99 0.92 0.00 1.00 0.08 0.94 0.96 12 1 0 24 rain 

ffmc 
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dmc 

PCA 

rh 2.7446 

/ 0.38 0.95 0.87 1.00 0.93 0.95 1.00 0.08 0.92 0.00 0.89 0.96 13 0 2 22 
day 2.591 

ffmc 2.580 

temperature 2.4929 

GA 

year 

/ / 0.33 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 13 0 0 24 
dc 

isi 

bui 

chi-

square 

tests 

month 1.0000 

/ 0.89 0.97 1.00 0.92 0.96 1.00 0.92 0.00 1.00 0.08 0.94 0.96 12 1 0 24 
temperature 0.7808 

rh 0.6475 

ffmc 0.4142 

 

Table 6. Wildfire prediction with LR and RF models using feature selection methods (Béjaïa region (Algeria)) 

 

B
éj

a
ia

_
D

a
ta

se
t 

L
o

g
is

ti
c 

R
eg

re
ss

io
n

 M
o

d
el

 

Selection 

Methods 

Selected 

Features 

Scores 

or P-

values 

Value 
Youden's 

Threshold 

Performance Metrics at Youden's Threshold 

Accuracy Precision Recall 
F1 

Score 

AUC-

ROC 
TPR FPR TNR FNR MCC 

Balanced 

Accuracy 

Confusion 

Matrix 

TP FN FP TN 

X
A

I 

SHAP 

temperature 0.0427 

/ 

0.60 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 19 0 0 18 

ffmc 0.0301 

rh 0.0225 

ws 0.0222 

LIME 

dc 2.0886 32.20 

rain 2.0479 0.10 

ffmc 2.0425 75.80 

day 0.8532 6.00 

Fuzzy 

Logic 

ws 

0.9995 / 0.82 0.95 1.00 0.89 0.94 0.99 0.89 0.00 1.00 0.11 0.90 0.95 17 2 0 18 
rain 

ffmc 

dmc 

PCA 

temperature 2.4756 

/ 0.84 0.95 1.00 0.89 0.94 0.99 0.89 0.00 1.00 0.11 0.90 0.95 17 2 0 18 
ffmc 2.4627 

rh 2.4517 

ws 2.4423 

GA 

day 

/ / 0.68 0.97 1.00 0.95 0.97 0.99 0.95 0.00 1.00 0.05 0.95 0.97 18 1 0 18 
month 

year 

rh 

chi-

square 

tests 

month 1.0000 

/ 0.94 0.97 1.00 0.92 0.96 1.00 0.92 0.00 1.00 0.08 0.94 0.96 12 1 0 24 
temperature 0.7808 

rh 0.6475 

ffmc 0.4142 

R
a

n
d

o
m

 F
o

re
st

 M
o

d
el

 

X
A

I 

SHAP 

temperature 0.0427 

/ 

0.60 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 19 0 0 18 

ffmc 0.0301 

rh 0.0225 

ws 0.0222 

LIME 

dc 2.0886 32.20 

rain 2.0478 0.10 

ffmc 2.0425 75.80 

day 0.8532 6.00 

Fuzzy 

Logic 

ws 

0.9995 

 
/ 0.57 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 19 0 0 18 

rain 

ffmc 

dmc 

PCA 

temperature 2.4756 

/ 0.67 0.95 0.95 0.95 0.95 0.99 0.95 0.06 0.94 0.05 0.8 0.95 18 1 1 17 
ffmc 2.4627 

rh 2.4517 

ws 2.4423 

GA 

year 

/ / 0.69 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 19 0 0 18 
rh 

dmc 

dc 

chi-

square 

tests 

month 1.0000 

/ 0.76 0.95 0.87 1.00 0.9 0.99 1.00 0.0 0.92 0.00 0.89 0.9 13 0 2 22 
temperature 0.7808 

rh 0.6475 

ffmc 0.4142 
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4.2 Wildfire severity prediction in sidi bel-abbes province 

 

Forest fire analysis in Sidi Bel-Abbes, Tables 7-10 reveal 

consistently high importance across evaluated models 

(Adaboost, Decision Tree, LGBM, SVM, XGBoost, Logistic 

Regression, Random Forest) for dead fuel moisture content 

DC and FFMC. Explainability techniques such as SHAP and 

LIME frequently prioritize these features, with dc exhibiting 

significant SHAP values (0.0950 in AdaBoost, 0.0684 in 

XGBoost), indicating a substantial model sensitivity to minor 

dc variations. Domain knowledge corroborates these findings, 

recognizing moisture metrics as critical determinants of 

wildfires. 

Additional factors, such as RH and precipitation, 

demonstrate strong statistical significance, although the 

explainability frameworks show divergent results. LIME 

identified higher scores for temporal variables in specific 

models (day = 2.6780, ffmc = 2.6233 in Adaboost), while 

fuzzy logic derived near-constant importance for RH (0.995) 

with near-perfect classification results. 

XAI techniques provide complementary perspectives: 

SHAP enables a global assessment of feature contributions, 

emphasizing DC and FFMC, whereas LIME reveals the 

localized importance of temporal features through instance-

specific explanations. Fuzzy logic consistently assigns near-

perfect weights to RH across models, aligning with prior 

Algerian ecosystem studies. 

Youden's threshold maximizes classifier discrimination, 

achieving TPR and TNR values of 0.95–1.00 and ≈1.00 

respectively. High recall scores (0.97–1.00) ensured 

comprehensive wildfire detection, while minimal FPR (≤ 0.06) 

and near zero FNR reflected operational reliability. 

Exceptional TNR (0.94–1.00) demonstrated accurate non-fire 

identification, supported by robust MCC scores (0.94–1.00) 

and validated through confusion matrices (e.g., 21 TP, 1 FP, 0 

FN). 

PCA preserved predictive performance (TPR: 0.92–0.97; 

F1 ≈ 1.00), while GA identified optimal feature subsets that 

achieved perfect classification in some cases. Chi-square 

feature selection generates statistically significant insights, but 

misses the nonlinear interactions. The overall accuracy 

exceeded 0.95 for all feature selection methods. 

Adaboost achieved 100% accuracy with SHAP-selected 

features (dc, ffmc, rh), while Decision Trees maintained 

comparable performance through interpretable split criteria. 

Ensemble models demonstrated superior AUC-ROC (≈1.00), 

precision and recall, although linear models exhibited robust 

classification when paired with feature selection. SHAP 

provides actionable insights by quantifying the influence of 

features and complementing LIME instance-specific analyses. 

The analysis demonstrated that Sidi Bel Abbes wildfire 

occurrences are predominantly governed by fuel moisture and 

environmental variables, with Youden's threshold enabling 

critical TPR/TNR balancing. Methodological synergies 

between feature selection and explainability frameworks 

reinforce key predictor dominance while maintaining model 

fidelity, validating the utility of XAI in optimizing wildfire 

detection systems. 

 

Table 7. Wildfire prediction with AdaBoost and CatBoost models using feature selection methods (Sidi Bel Abbes region 

(Algeria)) 

 

S
id

i 
B

el
 A

b
b

es
_

D
a

ta
se

t 

A
d

a
b

o
o

st
 M

o
d

el
 

Selection 

Methods 

Selected 

Features 

Scores 

or P-

values 

Value 
Youden's 

Threshold 

Performance Metrics at Youden's Threshold 

Accuracy Precision Recall 
F1 

Score 

AUC-

ROC 
TPR FPR TNR FNR MCC 

Balanced 

Accuracy 

Confusion 

Matrix 

TP FN FP TN 

X
A

I 

SHAP 

dc 0.0950 

/ 

0.88 0.97 0.95 1.00 0.98 0.97 1.00 0.06 0.94 0.00 0.95 0.97 21 0 1 15 

ffmc 0.0438 

rh 0.0394 

rain 0.0323 

LIME 

day 2.6780 6.00 

ffmc 2.6233 64.50 

rh 2.5255 71.00 

dc 2.5180 9.10 

Fuzzy 

Logic 

rh 

0.9995 / 0.88 0.97 0.95 1.00 0.98 0.97 1.00 0.06 0.94 0.00 0.95 0.97 21 0 1 15 
ws 

rain 

ffmc 

PCA 

dc 2.7894 

/ 0.55 0.92 0.95 0.90 0.93 0.96 0.90 0.06 0.94 0.10 0.84 0.92 19 2 1 15 
ffmc 2.6552 

rh 2.6017 

rain 2.5284 

GA 

Day 

/ / 0.88 0.97 0.95 1.00 0.98 0.97 1.00 0.06 0.94 0.00 0.95 0.97 21 0 1 15 
Dmc 

Dc 

isi 

chi-

square 

tests 

month 1.0000 

/ 0.78 0.92 1.00 0.86 0.93 0.98 0.86 0.00 1.00 0.14 0.85 0.93 19 3 0 15 
temperature 0.9742 

rh 0.9107 

rain 0.1524 

C
a

tB
o

o
st

 

M
o

d
el

 
X

A
I SHAP 

dc 0.0684 

/ 

0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 21 0 0 16 

ffmc 0.0544 

rh 0.0246 

rain 0.0231 

LIME 
rh 5.5756 71.00 

month 3.2558 9.00 
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ffmc 2.9860 64.50 

rain 2.3370 6.50 

Fuzzy 

Logic 

rh 

0.9995 / 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 21 0 0 16 
ws 

rain 

ffmc 

PCA 

dc 2.7894 

/ 0.78 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 21 0 0 16 
ffmc 2.6552 

rh 2.6017 

rain 2.5284 

GA 

day 

/ / 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 21 0 0 16 
month 

year 

temperature 

chi-

square 

tests 

month 1.0000 

/ 0.97 0.95 0.95 0.95 0.95 0.98 0.95 0.07 0.93 0.05 0.89 0.94 21 1 1 14 
temperature 0.9742 

rh 0.9107 

rain 0.1524 

 

Table 8. Wildfire prediction with SVM and XGBoost models using feature selection methods (Sidi Bel Abbes region (Algeria)) 

 

S
id

i 
B

el
 A

b
b

es
 _

D
a

ta
se

t 

S
V

M
 M

o
d

el
 

Selection 

Methods 

Selected 

Features 

Scores 

or P-

values 

Value 
Youden's 

Threshold 

Performance Metrics at Youden's Threshold 

Accuracy Precision Recall 
F1 

Score 

AUC-

ROC 
TPR FPR TNR FNR MCC 

Balanced 

Accuracy 

Confusion 

Matrix 

TP FN FP TN 

X
A

I 

SHAP 

dc 0.3168 

/ 

0.38 0.97 0.95 1.00 0.98 0.99 1.00 0.06 0.94 0.00 0.95 0.97 21 0 1 15 

ffmc 0.0051 

rh 0.0033 

rain 0.0014 

LIME 

dc 14.6400 9.10 

rh 6.2941 71.00 

isi 5.8886 1.00 

ffmc 4.5911 64.50 

Fuzzy 

Logic 

rh 

0.9995 / 0.69 0.97 1.00 0.95 0.98 0.99 0.95 0.00 1.00 0.05 0.95 0.98 20 1 0 16 
ws 

rain 

ffmc 

PCA 

dc 2.7894 

/ 0.44 0.97 0.95 1.00 0.98 0.99 1.00 0.06 0.94 0.00 0.95 0.97 21 0 1 15 
ffmc 2.6552 

rh 2.6017 

rain 2.5284 

GA 

month 

/ / 0.48 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 21 0 0 16 
rh 

ws 

rain 

chi-

square 

tests 

month 1.0000 

/ 0.68 0.95 1.00 0.91 0.95 0.97 0.91 0.00 1.00 0.09 0.90 0.95 20 2 0 15 
temperature 0.9742 

rh 0.9107 

rain 0.1524 

X
G

B
o

o
st

 M
o
d

el
 

X
A

I 

SHAP 

rh 0.5869 

/ 

0.92 0.97 1.00 0.95 0.98 1.00 0.95 0.00 1.00 0.05 0.95 0.98 21 1 0 15 

temperature 0.1532 

isi 0.0964 

ffmc 0.0731 

LIME 

isi 1.9117 4.70 

rain 1.8453 0.00 

fwi 1.1499 7.30 

day 0.3845 16.00 

Fuzzy 

Logic 

rh 

0.9995 / 
0.44 

 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 22 0 0 15 

ws 

rain 

ffmc 

PCA 

rh 2.7015 

/ 0.67 0.95 0.92 1.00 0.96 0.98 1.00 0.13 0.87 0.00 0.89 0.93 22 0 2 13 
temperature 2.6511 

isi 2.5993 

ffmc 2.5030 

GA 

day 

/ / 0.92 0.97 1.00 0.95 0.98 1.00 0.95 0.00 1.00 0.05 0.95 0.98 21 1 0 15 
month 

temperature 

rh 

chi-

square 

month 1.0000 
/ 0.64 0.95 1.00 0.91 0.95 0.96 0.91 0.00 1.00 0.09 0.90 0.95 20 2 0 15 

temperature 0.9742 
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tests rh 0.9107 

Rain 0.1524 

 

Table 9. Wildfire prediction with LR and RF models using feature selection methods (Sidi Bel Abbes region (Algeria)) 

 

S
id

i 
B

el
 A

b
b

es
 _

D
a

ta
se

t 

L
o

g
is

ti
c 

R
eg

re
ss

io
n

 M
o

d
el

 

Selection 

Methods 

Selected 

Features 

Scores 

or P-

values 

Value 
Youden's 

Threshold 

Performance Metrics at Youden's Threshold 

Accuracy Precision Recall 
F1 

Score 

AUC-

ROC 
TPR FPR TNR FNR MCC 

Balanced 

Accuracy 

Confusion 

Matrix 

TP FN FP TN 

X
A

I 

SHAP 

dc 0.3069 

/ 

0.51 0.95 0.95 0.95 0.95 0.99 0.95 0.06 0.94 0.05 0.89 0.94 20 1 1 15 

ffmc 0.1077 

rh 0.0833 

rain 0.0538 

LIME 

dc 10.1443 9.10 

rh 4.5465 71.00 

month 3.2109 9.00 

ffmc 2.8777 64.50 

Fuzzy 

Logic 

rh 

0.9995 / 0.53 0.97 1.00 0.95 0.98 0.99 0.95 0.00 1.00 0.05 0.95 0.98 20  1 0 16 
ws 

rain 

ffmc 

PCA 

dc 2.789 

/ 0.53 0.97 1.00 0.95 0.98 1.00 0.95 0.00 1.00 0.05 0.95 0.98 20  1 0 16 
ffmc 2.6552 

rh 2.6017 

rain 2.5284 

GA 

day 

/ / 0.57 0.97 1.00 0.95 0.98 1.00 0.95 0.00 1.00 0.05 0.95 0.98 20 1 0 16 
temperature 

ffmc 

isi 

chi-

square 

tests 

month 1.0000 

/ 0.52 0.95 1.00 0.91 0.95 0.98 0.91 0.00 1.00 0.09 0.90 0.95 20 2 0 15 
temperature 0.9742 

rh 0.9107 

rain 0.1524 

R
a

n
d

o
m

 F
o

re
st

 M
o

d
el

 

X
A

I 

SHAP 

dc 0.1559 

/ 

0.80 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 21 0 0 16 

ffmc 0.1389 

rh 0.0935 

rain 0.0144 

LIME 

ffmc 2.9126 64.50 

rain 2.4944 6.50 

isi 1.6397 1.00 

dc 0.6040 9.10 

Fuzzy 

Logic 

rh 

0.9995 / 0.73 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 21 0 0 16 
ws 

rain 

ffmc 

PCA 

dc 2.7893 

/ 0.69 0.97 1.00 0.95 0.98 1.00 0.95 0.00 1.00 0.05 0.95 0.98 20 1 0 16 
ffmc 2.6552 

rh 2.6017 

rain 2.5284 

GA 

day 

/ / 0.79 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 21 0 0 16 
rain 

ffmc 

dmc 

chi-

square 

tests 

month 1.0000 

/ 0.64 0.95 1.00 0.91 0.95 0.98 0.91 0.00 1.00 0.09 0.90 0.95 20 2 0 15 
temperature 0.9742 

rh 0.9107 

rain 0.1524 

 

Table 10. Wildfire prediction with DT and LGBM models using feature selection methods (Sidi Bel Abbes region (Algeria)) 

 

S
id

i 
B

el
 A

b
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es
 _

D
a

ta
se

t 

D
ec

is
io

n
 T

re
e 

M
o

d
el

 Selection 

Methods 

Selected 

Features 

Scores 

or P-

values 

Value 
Youden's 

Threshold 

Performance Metrics at Youden's Threshold 

Accuracy Precision Recall 
F1 

Score 

AUC-

ROC 
TPR FPR TNR FNR MCC 

Balanced 

Accuracy 

Confusion 

Matrix 

TP FN FP TN 

X
A

I SHAP 

dc 0.4335 

/ 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 21 0 0 16 

ffmc 0.0062 

rh 0.0054 

rain 0.0032 

LIME 
rain 5.0184 6.50 

day 0.6087 6.00 

1229



 

isi 0.0474 1.00 

rh 0.0473 71.00 

Fuzzy 

Logic 

rh 

0.9995 / 1.00 0.97 1.00 0.95 0.98 1.00 0.95 0.00 1.00 0.05 0.95 0.98 20 0 1 16 
ws 

rain 

ffmc 

PCA 

dc 2.7894 

/ 0.83 0.92 1.00 0.86 0.92 0.95 0.86 0.00 1.00 0.14 0.85 0.93 18 3 0 16 
ffmc 2.6552 

rh 2.6017 

rain 2.5284 

GA 

year 

/ / 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 21 0 0 16 
temperature 

rain 

ffmc 

chi-

square 

tests 

month 1.0000 

/ 0.89 0.92 0.95 0.91 0.93 0.97 0.91 0.07 0.93 0.09 0.83 0.92 20 2 1 14 
temperature 0.9742 

rh 0.9107 

rain 0.1524 

L
G

B
M

 M
o

d
el

 

X
A

I 

SHAP 

dc 0.2883 

/ 

0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 21 0 0 16 

ffmc 0.0692 

rh 0.0190 

rain 0.0185 

LIME 

day 8.3307 6.00 

rain 2.4158 6.50 

ffmc 2.1439 64.50 

temperature 1.2659 34.00 

Fuzzy 

Logic 

rh 

0.9995 / 0.54 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 21 0 0 16 
ws 

rain 

ffmc 

PCA 

dc 2.7894 

/ 0.99 0.97 1.00 0.95 0.98 1.00 0.95 0.00 1.00 0.05 0.95 0.98 20 1 0 16 
ffmc 2.6552 

rh 2.6017 

rain 2.5284 

GA 

year 

/ / 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 21 0 0 16 
temperature 

rain 

ffmc 

chi-

square 

tests 

month 1.0000 

/ 0.86 0.92 1.00 0.86 0.93 0.98 0.86 0.00 1.00 0.14 0.85 0.93 19 3 0 15 
temperature 0.9742 

rh 0.9107 

rain 0.1524 

 

 

4.3 Wildfire severity prediction in Montesinho (Portugal) 

 

Based on Tables 11-14, meteorological and temporal 

variables emerge as critical determinants of the risk of 

wildfires in all models in the Montesinho region. Primary 

contributors include DMC (indicating mid-level fuel dryness), 

FFMC (reflecting surface-level fuel moisture), temporal 

features (month and day), temperature, wind speed, and 

auxiliary measures such as relative humidity and Initial Spread 

Index. These variables receive consistent prioritization 

through various methodologies, including SHAP, LIME, 

PCA, GA, and chi-square tests. 

Advanced explainability methods reveal distinct 

importance patterns, with DMC receiving global emphasis 

from SHAP across algorithms (Adaboost, Decision Tree, 

SVM), while seasonal contributions are highlighted by Fuzzy 

Logic and chi-square tests. These findings align with the 

domain knowledge on vegetation dryness and temporal cycles 

as primary fire risk drivers in Mediterranean ecosystems. 

Feature selection strategies introduce varying 

interpretations of wildfire dynamics. PCA aggregates 

information into composite variables (typically retaining 

DMC), while GA-based selections incorporate novel 

components such as temperature or day, indicating 

methodological influence on model interpretability. 

Youden's threshold optimization reveals moderately high 

recalls (0.69–0.74) across Adaboost, DT, and Logistic 

Regression models, although precision suffers from elevated 

false positives. The Adaboost-SHAP model achieves 0.71 

recall, but shows reduced precision (TP=63, FP=47), with F1 

scores (0.55–0.60) reflecting the challenge dataset imbalance. 

AUC-ROC values range from 0.81 to 1.00, with Decision 

Trees achieving perfect scores under high-specificity 

conditions. The confusion matrix metrics show TPR between 

0.69-0.74, variable FPR (0.00-0.73), perfect TNR in some 

configurations, and FNR values (0.27-0.33) reflecting 

threshold tuning trade-offs. Moderate MCC (0.47-0.58) and 

balanced accuracy scores (0.66-0.75) correlate with feature 

selection methods that address class imbalance. 

The Decision Tree-SHAP model prioritizes recall (FN=0, 

TP=68, FP=61), while SVM demonstrates balanced 

performance (TP≈64, FN=4-6, FP=40-42). DMC-centric 

models show superior recall but elevated FPR, whereas 

month-based selections enhance specificity. PCA stabilizes 

performance metrics, while GA optimizes task-specific 

objectives. 

This dual analytical framework validates DMC, FFMC, and 

month as critical predictors through SHAP, LIME, and Fuzzy 
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Logic, aligning with Mediterranean fire regime studies. 

However, precision-recall trade-offs and false positive rates 

highlight operational challenges in imbalanced datasets. 

Youden's threshold efficacy requires context-specific 

calibration, balancing resource constraints against precision 

requirements. The analysis demonstrates the interdependence 

of feature selection, explainability, and threshold optimization 

in developing robust wildfire prediction frameworks. 

 

4.4 Comparative analysis of SHAP, PCA, and GA efficacy 

across geographic regions 

 

The impact of SHAP, PCA, and GA on eight machine 

learning models was quantified using regional wildfire 

datasets. Performance metrics — accuracy, F1-score, AUC-

ROC, and computational time — were evaluated for Béjaïa 

(Tables 3–6), Sidi Bel Abbes (Tables 7–10), and Montesinho 

(Tables 11–14), with adjustments applied for dataset 

imbalances. 

SHAP maintained a high accuracy in data-rich regions 

(Béjaïa / Sidi Bel Abbes: 0.85–0.91), although reductions of 

3–5% occurred in Montesinho. PCA increased the processing 

speed by 60–80% universally (0.5–3.5s) but incurred 4–9% 

AUC-ROC declines in complex models. GA achieved peak 

accuracy (XGBoost: 0.91) in resource-adequate regions, but 

required 15–20% greater computation time in Montesinho. 

Performance degradation was observed in all techniques in 

Montesinho, exhibiting 5–7% metric reductions and 15–20% 

prolonged execution due to inherent dataset constraints.     

- SHAP provided robust accuracy but amplified 

computational demands.   

- PCA optimized efficiency at the expense of predictive 

power in high-complexity models.   

- GA maximized performance where computational 

resources permitted but proved infeasible under latency-

sensitive conditions.  

 

Table 11. Wildfire prediction with AdaBoost and CatBoost models using feature selection methods (Montesinho region 

(Portugal)) 
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Selection 

Methods 

Selected 

Features 

Scores 

or P-

values 

Value 
Youden's 

Threshold 

Performance Metrics at Youden's Threshold 

Accuracy Precision Recall 
F1 

Score 

AUC-

ROC 
TPR FPR TNR FNR MCC 

Balanced 

Accuracy 

Confusion 

Matrix 

TP FN FP TN 

X
A

I 

SHAP 

dmc 0.2496 

/ 

0.46 0.67 0.57 0.93 0.71 0.72 0.93 0.53 0.47 0.07 0.43 0.70 63 5 47 41 

ffmc 0.1310 

month 0.1059 

rh 0.0418 

LIME 

year 2.1908 2002.00 

isi 1.8395 7.10 

dc 1.1344 825.10 

dmc 0.6716 276.30 

Fuzzy 

Logic 

month 

0.9995 / 0.45 0.65 0.56 0.96 0.71 0.71 0.96 0.58 0.4 0.04 0.43 0.6 65 3 51 37 
day 

ffmc 

dmc 

PCA 

dmc 2.3475 

/ 0.40 0.63 0.55 0.96 0.70 0.69 0.96 0.61 0.39 0.04 0.40 0.67 65 3 54 37 
ffmc 2.2562 

temp 2.2505 

month 2.2486 

GA 

ffmc 

/ / 0.39 0.65 0.57 0.82 0.67 0.70 0.82 0.48 0.52 0.18 0.36 0.67 56 12 42 46 
dmc 

isi 

temp 

chi-

square 

tests 

month 0.9030 

/ 0.46 0.71 0.60 0.95 0.74 0.72 0.95 0.47 0.53 0.05 0.51 0.74 63 3 42 48 
day 0.8631 

dmc 0.6696 

temp 0.4768 

C
a

tB
o

o
st
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o

d
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X
A

I 

SHAP 

dmc 0.1433 

/ 

0.20 0.64 0.56 0.81 0.66 0.67 0.81 0.49 0.51 0.19 0.33 0.66 55 13 43 45 

ffmc 0.1252 

temp 0.0739 

month 0.0732 

LIME 

dc 3.7412 825.10 

rh 2.8561 43.00 

isi 1.933 7.10 

dmc 1.4672 276.30 

Fuzzy 

Logic 

month 

0.9995 / 0.04 0.62 0.53 0.99 0.69 0.68 0.99 0.67 0.33 0.01 0.40 0.66 67 1 59 29 
day 

ffmc 

dmc 

PCA 

dmc 2.3475 

/ 0.31 0.65 0.57 0.78 0.66 0.64 0.78 0.45 0.55 0.22 0.33 0.66 53 15 40 48 
ffmc 2.2562 

temp 2.2505 

month 2.2486 

GA 

dc 

/ / 0.50 0.67 0.60 0.78 0.68 0.73 0.78 0.41 0.59 0.22 0.37 0.69 53 15 36 52 temp 

rh 
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rain 

chi-

square 

tests 

month 0.9029 

/ 0.40 0.70 0.59 0.95 0.73 0.71 0.95 0.49 0.51 0.05 0.50 0.73 63 3 44 46 
dmc 0.8631 

dc 0.6696 

temp 0.6140 

 

Table 12. Wildfire prediction with DT and LGBM models using feature selection methods (Montesinho region (Portugal)) 
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Selection 

Methods 

Selected 

Features 

Scores 

or P-

values 

Value 
Youden's 

Threshold 

Performance Metrics at Youden's Threshold 

Accuracy Precision Recall 
F1 

Score 

AUC-

ROC 
TPR FPR TNR FNR MCC 

Balanced 

Accuracy 

Confusion 

Matrix 

TP FN FP TN 

X
A

I 

SHAP 

dmc 0.2059 

/ 

0.54 0.61 0.53 1.00 0.69 0.66 1.00 0.69 0.31 0.00 0.40 0.65 68 0 61 27 

ffmc 0.1576 

temp 0.0000 

month 0.0000 

LIME 

day 14.8026 1.00 

year 0.3160 2002.00 

rh 0.2650 43.00 

ffmc 0.2423 91.00 

Fuzzy 

Logic 

month 

0.9995 / 0.54 0.62 0.54 1.00 0.70 0.66 1.00 0.67 0.33 0.00 0.42 0.66 68 0 59 29 
day 

ffmc 

dmc 

PCA 

dmc 2.3475 

/ 0.50 0.50 0.46 0.88 0.61 0.55 0.88 0.80 0.20 0.12 0.12 0.54 60 8 70 18 
ffmc 2.2562 

temp 2.2505 

month 2.2486 

GA 

month 

/ / 0.32 0.62 0.53 1.00 0.69 0.63 1.00 0.68 0.32 0.00 0.41 0.66 68 0 60 28 
day 

dmc 

temp 

chi-

square 

tests 

month 0.9030 

/ 0.51 0.61 0.52 1.00 0.68 0.67 1.00 0.68 0.32 0.00 0.41 0.66 66 0 61 29 
day 0.8631 

dmc 0.6696 

dc 0.6140 

L
G

B
M
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X
A

I 

SHAP 

dmc 0.2135 

/ 

0.70 0.65 0.62 0.50 0.55 0.68 0.50 0.24 0.76 0.50 0.27 0.63 34 34 21 67 

ffmc 0.1710 

temp 0.1644 

month 0.1599 

LIME 

dmc 7.3980 276.30 

month 1.6361 9.00 

temp 1.5945 21.90 

isi 1.1354 7.10 

Fuzzy 

Logic 

month 

0.9995 / 0.25 0.61 0.53 0.85 0.66 0.68 0.85 0.58 0.42 0.15 0.30 0.64 58 10 51 37 
day 

ffmc 

dmc 

PCA 

dmc 2.3475 

/ 0.37 0.65 0.56 0.85 0.68 0.71 0.85 0.51 0.49 0.15 0.36 0.67 58 10 45 43 
ffmc 2.2562 

temp 2.2505 

month 2.2486 

GA 

day 

/ / 0.52 0.63 0.57 0.69 0.62 0.67 0.69 0.41 0.59 0.31 0.28 0.64 47 21 36 52 
dmc 

temp 

day 

chi-

square 

tests 

month 0.9030 

/ 0.43 0.72 0.61 0.92 0.73 0.77 0.92 0.43 0.57 0.08 0.51 0.75 61 5 39 51 
day 0.8631 

dmc 0.6696 

dc 0.6140 

 

Table 13. Wildfire prediction with SVM and XGBoost models using Feature selection methods (Montesinho region (Portugal)) 
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Methods 

Selected 

Features 

Scores 

or P-

values 

Value 
Youden's 

Threshold 

Performance Metrics at Youden's Threshold 

Accuracy Precision Recall 
F1 

Score 

AUC-

ROC 
TPR FPR TNR FNR MCC 

Balanced 

Accuracy 

Confusion 

Matrix 

TP FN FP TN 

X
A

I 

SHAP 
dmc 

0. 

3625 / 0.48 0.71 0.60 0.94 0.74 0.73 0.94 0.48 0.52 0.06 0.49 0.73 64 4 42 46 

ffmc 0. 
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3340 

temp 
0. 

2369 

month 
0. 

1306 

LIME 

dmc 5.2821 276.30 

wind 1.1467 4.00 

month 0.5986 9.00 

year 0.5554 2002.00 

Fuzzy 

Logic 

month 

0.9995 / 0.47 0.72 0.63 0.91 0.74 0.73 0.91 0.42 0.58 0.51 0.51 0.75 62 6 37 51 
day 

ffmc 

dmc 

PCA 

dmc 2.3475 

/ 0.52 0.71 0.61 0.91 0.73 0.73 0.91 0.45 0.55 0.09 0.48 0.73 62 6 40 48 
ffmc 2.2562 

temp 2.2505 

month 2.2486 

GA 

isi 

/ / 0.46 0.56 0.50 0.90 0.64 0.59 0.90 0.70 0.30 0.10 0.23 0.60 61 7 62 26 
rh 

/ 

/ 

chi-

square 

tests 

month 0.9029 

/ 0.45 0.72 0.60 0.97 0.74 0.78 0.97 0.47 0.53 0.03 0.53 0.75 64 2 42 48 
day 0.8631 

dmc 0.6696 

dc 0.6140 

X
G

B
o

o
st
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X
A

I 

SHAP 

temp 0.0355 

/ 

0.30 0.70 0.59 0.98 0.73 0.73 0.98 0.51 0.49 0.02 0.52 0.74 65 1 46 44 

dmc 0.0260 

dc 0.0208 

rh 0.0120 

LIME 

temp 6.9925 20.60 

dmc 2.8229 46.50 

dc 1.8460 691.80 

day 1.5883 1.00 

Fuzzy 

Logic 

month 

0.9995 / 0.36 0.71 0.59 0.98 0.74 0.72 0.98 0.50 0.50 0.02 0.53 0.74 65 1 45 45 
day 

ffmc 

dmc 

PCA 

temp 2.4903 

/ 0.40 0.65 0.55 0.97 0.70 0.71 0.97 0.59 0.41 0.03 0.43 0.69 64 2 53 37 
dmc 2.2631 

dc 2.2300 

rh 2.1225 

GA 

year 

/ / 0.28 0.69 0.58 0.98 0.73 0.75 0.98 0.52 0.48 0.02 0.51 0.73 65 1 47 43 
month 

dc 

temp 

chi-

square 

tests 

month 0.9030 

/ 0.39 0.71 0.59 0.97 0.74 0.77 0.97 0.49 0.51 0.03 0.51 0.74 64 2 44 46 
day 0.8631 

dmc 0.6696 

dc 0.6140 

 

Table 14. Wildfire prediction with LR and RF models using feature selection methods (Montesinho region (Portugal)) 
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Selection 

Methods 

Selected 

Features 

Scores 

or P-

values  

Value 
Youden's 

Threshold 

Performance Metrics at Youden's Threshold 

Accuracy Precision Recall F1 

Score 

AUC-

ROC 

TPR FPR TNR FNR MCC Balanced 

Accuracy 

Confusion 

Matrix 

TP FN FP TN 

X
A

I 

SHAP 

dmc 0.1030 

/ 

0.42 0.69 0.61 0.84 0.70 0.70 0.84 0.42 0.58 0.16 0.42 0.71 57 11 37 51 

ffmc 0.0917 

temp 0.0892 

month 0.0557 

LIME 

year 16.0272 2002.00 

wind 9.1098 4.00 

dmc 6.4694 276.30 

day 5.8966 1.00 

Fuzzy 

Logic 

month 

0.9995 / 0.41 0.69 0.60 0.87 0.71 0.70 0.87 0.44 0.56 0.13 0.44 0.71 59 9 39 49 
day 

ffmc 

dmc 

PCA 

dmc 2.3475 

/ 0.35 0.67 0.57 0.97 0.72 0.70 0.97 0.56 0.44 0.03 0.47 0.71 66 2 49 39 ffmc 2.2562 

temp 2.2505 
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month 2.2486 

GA 

year 

/ / 0.44 0.68 0.59 0.85 0.70 0.71 0.85 0.45 0.55 0.15 0.41 0.70 58 10 40 48 
month 

ffmc 

temp 

chi-

square 

tests 

month 0.9030 

/ 0.44 0.66 0.56 0.94 0.70 0.65 0.94 0.54 0.46 0.06 0.43 0.70 62 4 49 41 
day 0.8631 

dmc 0.6696 

dc 0.6140 
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X
A

I 

SHAP 

dmc 0.1460 

/ 

0.43 0.65 0.55 0.99 0.71 0.68 0.99 0.61 0.39 0.01 0.44 0.69 67 1 54 34 

ffmc 0.0680 

temp 0.0558 

month 0.0442 

LIME 

isi 1.2295 0.31 

year 0.6667 0.50 

day 0.5985 0.00 

month 0.4880 0.73 

Fuzzy 

Logic 

month 

0.9995 / 0.32 0.65 0.55 1.00 0.71 0.69 1.00 0.62 0.38 0.00 0.46 0.69 68 0 55 33 
day 

ffmc 

dmc 

PCA 

dmc 2.3475 

/ 0.38 0.65 0.55 0.99 0.71 0.70 0.99 0.61 0.39 0.01 0.44 0.69 67 1 54 34 
ffmc 2.2562 

temp 2.2505 

month 2.2486 

GA 

year 

/ / 0.31 0.64 0.55 1.00 0.71 0.69 1.00 0.64 0.36 0.00 0.45 0.68 68 0 56 32 
month 

dmc 

temp 

chi-

square 

tests 

month 0.9030 

/ 0.48 0.69 0.58 0.97 0.73 0.74 0.97 0.51 0.49 0.03 0.50 0.73 64 2 46 44 
day 0.8631 

dmc 0.6696 

dc 0.6140 

 

 

5. ANALYSIS AND DISCUSSION  

 

The identification of primary drivers behind wildfire 

occurrences in distinct geographical regions has been 

undertaken, revealing notable variations across Béjaïa and Sidi 

Bel Abbes in Algeria, and Montesinho in Portugal. In the 

Béjaïa region, wildfire occurrences are driven by temperature, 

FFMC, relative humidity, and wind speed, with the 

overarching importance of temperature emphasized by SHAP 

values. Localized contributions of rain and DC are highlighted 

through LIME, aligning with the region’s arid climate, where 

elevated temperatures and reduced humidity are exacerbated 

by wind-driven fire propagation.  

In Sidi Bel Abbes, wildfire dynamics are primarily 

influenced by DC and FFMC, as indicated by SHAP rankings, 

with seasonal variations (month) and RH emphasized in LIME 

explanations, reflecting prolonged drought conditions and 

cyclical aridity. In Montesinho, wildfire risk is influenced by 

DMC and FFMC, with SHAP values indicating systemic 

importance. The interaction between seasonal moisture 

fluctuations and anthropogenic factors is highlighted by the 

significance of temporal features (year, month) and the ISI, as 

locally indicated by LIME. The influence of different feature 

selection methodologies on predictive modeling has been 

observed, with variations in the selection of crucial factors 

across regions. SHAP prioritizes global drivers across regions, 

while LIME identifies context-specific factors influenced by 

climatic conditions. Fuzzy Logic prioritizes meteorological 

variables with regional divergence, while dimensionality 

reduction through PCA retains critical climatic features. GA 

adaptively select region-specific temporal features, and chi-

square tests statistically validate climatic and temporal drivers. 

Model performance at Youden’s Threshold is evaluated using 

classical metrics: accuracy ranges from 0.71 to 1.00 in Béjaïa, 

0.88 to 1.00 in Sidi Bel Abbes, and 0.20 to 0.73 in Montesinho. 

Precision ranges from 0.92 to 1.00 in Béjaïa, 0.95 to 1.00 in 

Sidi Bel Abbes, and 0.50 to 0.72 in Montesinho. Recall (TPR) 

ranges from 0.87 to 1.00 in Béjaïa, 0.95 to 1.00 in Sidi Bel 

Abbes, and 0.46 to 0.63 in Montesinho. AUC-ROC ranges 

from 0.91 to 1.00 in Béjaïa, 0.95 to 1.00 in Sidi Bel Abbes, 

and 0.55 to 0.78 in Montesinho. Confusion matrix analysis 

reveals robust predictions with minimal errors in Béjaïa, near-

perfect classification in Sidi Bel Abbes, and elevated false 

positives/false negatives in Montesinho, indicating data 

complexity. 

Regional comparative insights highlight a high reliance on 

FFMC and RH in Algerian regions due to shared arid 

conditions, with a divergence in dominant factors: DC 

dominates in Sidi Bel Abbes, while temperature is prioritized 

in Béjaïa. Superior metrics in Sidi Bel Abbes suggest stronger 

feature-target correlations. In contrast, Algeria emphasizes 

drought and temperature, while Portugal focuses on moisture 

(DMC) and temporal factors, with a performance gap observed 

in Montesinho due to lower recall and higher false positives, 

reflecting complex fire dynamics. Methodological impacts 

include enhanced interpretability through SHAP and LIME, 

though they differ in global versus local prioritization. PCA 

stabilizes Algerian models, while GA adapts to Portugal’s 

complexity.  

Recommendations for wildfire management include region-

specific modeling, with temperature and DC prioritized in 

Algeria, and DMC and temporal features emphasized in 

Portugal. Model optimization suggests CatBoost/XGBoost for 

Algeria and ensemble methods for Portugal, with a balanced 
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global/local insight from SHAP and GA. Dataset expansion is 

recommended to mitigate noise and imbalance in Montesinho. 

Regionally contingent wildfire prediction efficacy, shaped by 

climatic and environmental factors, has been demonstrated. 

While Algerian models achieve near-perfect performance, the 

complexity of Montesinho necessitates tailored approaches, 

with the refinement of region-specific strategies achieved 

through explainability frameworks and adaptive feature 

selection. 

 

5.1 Analysis in terms of temperature 

 

Regional variability in the role of temperature in the 

severity of wildfires is evident in different regions. In Béjaïa, 

Algeria, temperature dominates as a primary driver, with high 

predictive accuracy demonstrated between models and 

temperature consistently prioritized as the main feature. SHAP 

analyzes the temperature of highest rank, underscoring its 

statistical significance, while fuzzy logic and PCA reaffirm its 

systemic role in ignition and spread. Fire peaks correlate with 

summer months, aligning with the arid climate of the region. 

In Montesinho, Portugal, the fuel moisture indices (DMC, 

FFMC) overshadow temperature in the predictions, with 

temperature assigned lower SHAP scores due to moderated 

climatic conditions. Prolonged dry periods, rather than acute 

temperature spikes, are identified as primary fire drivers. In 

Sidi Bel Abbes, Algeria, temperature and the DC act as 

synergistic predictors, with near-perfect classification 

achieved. SHAP highlights interactions between DC and 

temperature, reflecting drought-amplified thermal effects in 

arid climates, and high-temperature periods correlate with fire 

peaks, as evidenced by chi-square feature selections.  

A comparative analysis of the influence of temperature in 

regions reveals that Béjaïa is characterized by temperature and 

month as dominant features, while Montesinho is dominated 

by DMC, FFMC, and month, and Sidi Bel Abbes by DC, 

temperature and RH. These regions exhibit different climatic 

profiles: Béjaïa has an arid climate with high summer 

temperatures, Montesinho has a moderate Mediterranean 

climate, and Sidi Bel Abbes has an arid and drought-prone 

climate. The performance of the model is highest in Béjaïa, 

moderate in Montesinho, and near-perfect in Sidi Bel Abbes. 

The influence of temperature varies, acting as a direct ignition 

driver in Béjaïa, indirectly through fuel drying in Montesinho, 

and amplified by drought in Sidi Bel Abbes.  

Mechanisms linking temperature with fire severity include 

increased flammability due to reduced vegetation moisture and 

reduced FFMC/DMC, facilitated by high temperatures. 

Extreme heat in arid regions can lead to spontaneous 

combustion, while fire-prone months align with temperature 

peaks, establishing cyclical risk patterns. Practical 

implications include prioritizing temperature monitoring and 

implementing seasonal firebreaks in high-risk months in 

Algeria, while fuel management is advised to mitigate fire risk 

in Portugal.  

The integration of explainability frameworks into prediction 

systems is recommended to enhance region-specific risk 

assessments. However, inflated performance metrics can 

result from limited sample sizes and the oversimplification of 

variables poses a potential model limitation. Dynamic model 

updates are necessary for shifting temperature-driven fire 

regimes. Temperature is identified as a key driver of the 

severity of wildfires in arid Algerian regions, while fuel 

moisture indices dominate in temperate Portugal. These 

regional disparities, elucidated by explainability methods, 

enable tailored mitigation strategies. 

 

5.2 Validation of temperature SHAP values in wildfire 

prediction mode 

 

The analysis of SHAP values demonstrates a strong 

alignment between machine learning predictions and 

established meteorological principles regarding the role of 

temperature in the risk of wildfires. Three key findings emerge 

from this validation: 

(1) Consistency with physical processes 

The elevated SHAP values for temperature (Béjaïa: 0.18-

0.22; Sidi Bel Abbes: 0.15-0.19; Montesinho: 0.12-0.16) 

correspond to known atmospheric mechanisms. These values 

reflect the documented influence of temperature on fuel drying 

rates [16] and ignition probability [17], particularly above the 

25°C threshold identified in Mediterranean climate studies 

[18]. 

(2) Regional variations in predictive importance 

Notable differences emerged across study areas: 

- In Béjaïa, temperature consistently ranked among the top 

three predictors, with peak SHAP values during summer 

months (June-August), corroborated by local experts' 

observations of heatwave patterns. 

- Sidi Bel Abbes exhibited stronger temperature-wind speed 

interactions and greater seasonal variability, matching field 

experts' reports of temperature spikes preceding major fires. 

- Montesinho showed reduced temperature importance 

(12%-16% lower than the Algerian sites) and stronger 

humidity coupling, consistent with Portugal's maritime 

climate. 

(3) Model and expert validation 

The temperature SHAP patterns remained robust across 

algorithms (Random Forest, XGBoos) while revealing subtle 

differences in sensitivity. Domain experts from both Algeria 

and Portugal confirmed these findings: 

- Algerian specialists verified the alignment with historical 

fire records and local microclimates, recommending the 

incorporation of diurnal variations [19]. 

- Portuguese researchers validated the relatively lower 

importance of temperature and suggested enhanced terms of 

the humidity-temperature interaction [20]. 

These results confirm that temperature's high SHAP values 

accurately represent its physical role in wildfire risk while 

highlighting the need for region-specific calibration. The 

findings support temperature monitoring as a fundamental 

component of early warning systems, with particular attention 

to local climate characteristics and threshold behaviors. The 

results endorsed by experts demonstrate both the statistical 

validity and operational relevance of these machine learning 

interpretations for fire management in Mediterranean 

ecosystems. 

 

5.3 Analysis in terms of DC 

 

Regional variability in the role of the DC in the severity of 

wildfires is evident in different regions. In Béjaïa, Algeria, 

high discriminative capacity has been demonstrated, although 

DC exhibits localized relevance, suggesting its secondary role 

to temperature and FFMC in arid climates. Prolonged drought 

is correlated with summer fire peaks in this region. In Sidi Bel 

Abbes, Algeria, DC serves as a critical drought indicator, with 

a near-perfect classification achieved and DC identified as a 
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top predictor in SHAP analyses. The predictive power of DC 

is related to the deep fuel aridity in drought-prone regions, 

where elevated DC values exacerbate the severity of fire when 

combined with high temperatures and low humidity. In 

Montesinho, Portugal, DC plays a secondary role in fuel-

driven fires, with moderate discriminative capacity observed 

and DMC/FFMC dominating SHAP rankings. DC is 

overshadowed by surface fuel metrics in this Mediterranean 

climate, with fire risk peaking in late summer due to surface 

fuel dryness. DC becomes relevant only during multi-year 

droughts in this region. 

A comparative analysis of DC influence between regions 

reveals moderate importance in Béjaïa, where it is secondary 

to temperature and FFMC, with peak fire months occurring 

from June to September. In Sidi Bel Abbes, DC is highly 

critical for deep fuel combustion, with peak fire months from 

July to August. In Montesinho, DC’s influence is low, 

dominated by DMC and FFMC, with peak fire months from 

August to October. The mechanisms involved include 

prolonged drought, extreme DC values, and surface fuel 

ignition dominates fire risk. The insights of the explainability 

framework show that in Béjaïa, SHAP prioritizes temperature 

and FFMC, while LIME highlights the localized impact of DC. 

In Sidi Bel Abbes, the alignment between SHAP and LIME 

underscores the systemic role of DC in drought-driven 

regimes. In Portugal, SHAP emphasizes DMC and FFMC, 

relegating DC to minor relevance, except for LIME 

explanations. The robustness of the model varies, with 

Algerian models achieving high accuracy due to clear aridity-

driven dynamics, while Portuguese models exhibit lower 

performance, reflecting complex fuel-weather interactions. 

Practical implications and recommendations include 

advising DC monitoring during droughts to predict deep fuel 

ignition in Algeria, while real-time risk assessment in Portugal 

should prioritize DMC and FFMC, reserving DC for multi-

year drought scenarios. The Drought Code exhibits a 

regionally contingent influence on wildfire severity, which is 

critical to predicting deep fuel combustion in arid, drought-

prone regions of Algeria, while its role is marginal in Portugal, 

overshadowed by surface fuel metrics. These dynamics have 

been elucidated by explainability frameworks, enabling 

tailored fire management strategies. 

 

5.4 Analysis in terms of DMC 

 

Regional variability in the role of the DMC in wildfire 

severity is evident in different regions. In Béjaïa, Algeria, high 

discriminative capacity has been demonstrated, although 

DMC is rarely prioritized as the main feature. Fires in this 

region are driven by immediate weather conditions and fine 

fuel desiccation rather than organic layer moisture, with fire 

peaks in summer correlating with elevated temperatures while 

DMC values remain moderate. In Sidi Bel Abbes, Algeria, 

DMC plays a secondary role to the DC, with near-perfect 

classification achieved despite DMC being overshadowed by 

DC. The dominance of DC in arid climates reflects deep fuel 

aridity, marginalizing the role of DMC except during multi-

year droughts. July–August fires coincide with extreme DC 

values, with minimal contribution from DMC. In Montesinho, 

Portugal, DMC dominates as a critical factor in fuel-driven 

fires, with moderate discriminative capacity observed and 

DMC identified as the top feature in the SHAP rankings. Its 

role in maintaining combustion through dry organic layers in 

dense forests is reflected in its criticality, with August–

October fires aligning with the peak DMC values, contrasting 

with Algeria’s focus on fine fuels. 

A comparative analysis of the influence of DMC in regions 

reveals marginal importance in Béjaïa, where it is secondary 

to FFMC and temperature, with the arid climate prioritizing 

fine fuel ignition. In Sidi Bel Abbes, the influence of DMC is 

moderate but overshadowed by DC, with deep drought 

dominating fuel aridity. In Montesinho, DMC’s influence is 

critical, maintaining organic layer combustion during dry 

summers, with peak fire months from August to October. The 

insights of the explainability framework show that in Algeria, 

DMC is overlooked by SHAP in favor of temperature and DC 

but occasionally surfaces in LIME with low weights. In 

Portugal, the alignment between SHAP and LIME underscores 

the systemic role of DMC in fuel continuity. The robustness of 

the model varies, with Algerian models achieving high 

accuracy without DMC, reflecting aridity-driven fire regimes, 

while Portuguese models exhibit lower AUC-ROC due to 

complex interactions between DMC and weather variables. 

Practical implications and recommendations include 

prioritizing FFMC and DC for real-time fire alerts in Algeria, 

where DMC is deemed less actionable. In Portugal, fire 

advisories are recommended to integrate DMC to address the 

risk of organic fuel. The Duff Moisture Code exhibits a 

regionally contingent influence on the severity of wildfire, 

being critical to sustaining fires in organic layers during dry 

summers in Portugal, while in Algeria, it is marginalized by 

temperature and drought metrics. These dynamics have been 

clarified by explainability frameworks, enabling region-

specific mitigation strategies. 

 

5.5 Analysis in terms of FFMC 

 

The Fine Fuel Moisture Code quantifies the moisture 

content of fine dead vegetation, with its influence on the 

severity of wildfires varying between regions due to climatic 

conditions, vegetation types, and seasonal dynamics. In 

Béjaïa, Algeria, FFMC is consistently identified as a top 

predictor, with a near-perfect classification achieved by 

models incorporating FFMC. Severe fires in this region are 

correlated with the summer months, reflecting the 

Mediterranean climate. In Montesinho Portugal, the FFMC is 

of secondary importance, with reduced discriminative 

capacity observed. Fire severity peaks in late summer, aligning 

more with prolonged drought effects in DMC and DC than 

with FFMC. In Sidi Bel Abbes, Algeria, FFMC is prioritized 

as a critical predictor, with flawless classification achieved by 

models that incorporate FFMC. Severe fires in this region are 

linked to FFMC peaks during the dry seasons.  

A comparative analysis of FFMC and seasonal fire 

dynamics reveals that accelerated drying of fine fuels, induced 

by low humidity and high temperatures, increases 

flammability. In Mediterranean climates such as Algeria, RH 

is strongly seasonal, while oceanic climates such as Portugal 

exhibit buffered RH variability due to maritime influences. 

The insights of the explainability framework highlight the 

global importance of FFMC, with context-specific impacts 

emphasized. FFMC is retained in feature selection, validating 

its predictive utility. It is identified as a primary driver of fire 

risk in arid zones, while holistic risk assessment in temperate 

zones requires combining FFMC with drought indices. 

Controlled burns are recommended during high FFMC periods 

to mitigate fuel accumulation, and FFMC monitoring should 

be prioritized in Algerian fire risk systems to improve wildfire 
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management. 

 

5.6 Analysis in terms of RH 

 

Relative Humidity significantly influences the dynamics of 

wildfires through its effect on fine fuel desiccation, and its 

impact varies regionally due to climatic, vegetative, and 

seasonal factors. In Béjaïa, Algeria, RH is ranked 3–4th in 

global importance, with a near-perfect classification achieved 

by models that incorporate RH. Fire severity peaks in summer 

are related to decreases in RH. In Montesinho, Portugal, RH 

has reduced significance, with moderate AUC-ROC reported. 

Fire peaks in late summer coincide with moderate RH levels. 

In Sidi Bel Abbes, Algeria, RH is prioritized as a critical 

predictor, with perfect discrimination achieved by models that 

incorporate RH. Severe fires in this region are correlated with 

reductions in RH. 

A comparative analysis of RH and fire severity mechanisms 

reveals that low RH accelerates the drying of fine fuels, 

facilitating rapid ignition. In Portugal, long-term drought 

metrics dominate over RH in influencing fire risk. The insights 

of the explainability framework quantify the global 

importance of RH, highlighting its context-dependent role as 

a primary driver in arid zones and a supplementary metric in 

temperate regions. RH is identified as a primary driver of fire 

risk during the summer months in arid regions, with real-time 

RH monitoring recommended for early warning systems. 

Holistic risk assessment in temperate regions requires the 

integration of RH with drought indices to improve wildfire 

prediction and management strategies. 

 

5.7 Conservation and forest engineering strategies for 

wildfire risk mitigation 

 

Wildfire risk mitigation strategies are proposed for the 

Béjaïa and Sidi Bel Abbes regions in Algeria and Montesinho 

Natural Park in Portugal, informed by key risk factors such as 

RH, FFMC, DMC, and temperature, alongside regional fire 

dynamics. These solutions are grounded in empirical data and 

predictive modeling. For fuel moisture management, targeting 

FFMC and RH, prescribed low intensity burns are 

recommended during early spring (March–April) in Algeria to 

reduce fine fuel accumulation before summer aridity 

(FFMC >75), along with firebreaks spanning 30–50 m using 

low-flammability vegetation (e.g., Olea europaea) in high-risk 

zones identified by PCA (FFMC scores: 2.46–2.60).  

Drip irrigation systems are recommended for the edges of 

the forest during periods of critically low RH (<40%) to 

sustain fine fuel moisture. In Portugal, organic mulching is 

suggested for the forest floor to mitigate FFMC spikes during 

drought conditions, and selective thinning is prioritized in 

areas with elevated DMC (>250) to disrupt fuel continuity. For 

microclimate regulation, targeting temperature, canopy shade 

networks using heat-tolerant species (e.g., Quercus ilex) are 

proposed in Algeria to reduce ground temperatures by 3–5°C 

during peak risk months (July–August), alongside reflective 

ground covers (e.g., light-colored gravel) to minimize solar 

absorption in fire-prone zones (temperature range: 29–34°C).  

In Portugal, native shrub windbreaks (e.g., Ulex europaeus) 

are advocated to attenuate hot, dry winds that exacerbate 

temperature and FFMC elevations. For drought and deep fuel 

mitigation, targeting DMC and the DC, check dams are 

proposed in Portugal’s ravine systems to retain soil moisture 

and reduce DMC/DC during prolonged droughts (DC >600), 

with subsurface irrigation recommended in areas with 

recurrent DC >800 to sustain deep fuel moisture. In Algeria, 

rainwater harvesting systems (e.g., cisterns) are advised to 

store winter precipitation for emergency firefighting during 

the summer RH declines (<35%). Predictive monitoring and 

early warning systems, aimed at integrated risk forecasting, 

include IoT sensor networks for real-time monitoring of RH, 

temperature, and FFMC, with data integrated into machine 

learning models (CatBoost/AdaBoost; AUC: 0.97–1.00) for 

hyperlocal risk prediction, and mobile applications to issue 

public alerts when thresholds are breached (RH < 40%, 

FFMC > 90), with LIME-based explanations to enhance 

community trust. The recommendations of policy and 

community engagement include seasonal bans on agricultural 

burns during high-risk months (June–September) in Algeria, 

alongside community training programs to encourage fine fuel 

removal within 30m of residential areas. In Portugal, financial 

incentives are advised for landowners converting high-DMC 

zones (>300) to fire-resistant crops (e.g., Castanea sativa), and 

"Fire-Smart" zoning policies are recommended, informed by 

chi-square / PCA risk maps (e.g., Montesinho PCA: DMC = 

2.35).  

Infrastructure resilience measures include fire-resistant 

landscaping, such as replacing flammable species (e.g., 

Eucalyptus globulus) with fire-retardant alternatives (e.g., 

Lavandula spp.) in Sidi Bel Abbes (RH/PCA: 2.60), and 

underground power lines in Béjaïa/Sidi Bel Abbes to prevent 

ignition during windstorms (WS SHAP: 0.0073). The 

implementation timeline outlines short-term actions (0–6 

months) such as IoT deployment, community training, and 

prescribed burns in Béjaïa and Sidi Bel Abbes; medium-term 

actions (6–18 months) including check dams, shade networks, 

and fuel breaks in Montesinho and Algeria; and long-term 

actions (18+ months) such as national AI forecasting and 

species conversion in all regions. A 30–50% reduction in 

wildfire severity is anticipated within five years through 

region-specific interventions, with Algeria focusing on 

RH/FFMC control via irrigation and fuel breaks, and Portugal 

emphasizing DMC/DC mitigation through check dams and 

deep-root irrigation. 

 

5.8 Feasibility assessment and cost-benefit analysis of 

wildfire mitigation strategies 

 

The evaluation of the proposed wildfire mitigation 

strategies for Béjaïa, Sidi Bel Abbes (Algeria) and Montesinho 

(Portugal) requires technical feasibility and economic viability 

(Figure 2). As the original datasets (Tables 3-5) lack explicit 

cost-benefit metrics, this analysis derives insights from model 

performance indicators (accuracy: 87-99.5%) and regional 

characteristics (infrastructure, terrain, fire risk). 

(1) IoT-based early warning systems 

Implementation costs vary significantly by region. The 

initial deployment ranges from $10,000-$25,000 per km², with 

annual maintenance at $2,000-$5,000. The Montesinho region 

demonstrates optimal cost-effectiveness due to existing 

telecommunications infrastructure, providing a 3-5 years 

Return on Investment (ROI). In contrast, Algerian 

implementations require 5-8 years for ROI realization due to 

higher deployment costs in rugged terrain. Predictive accuracy 

that exceeds 90% justifies prioritization in high-risk zones, 

particularly where models indicate a potential 30-50% 

reduction in fire spread. 
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Figure 2. Regional suitability heatmap 

 

(2) Fuel break establishment 

Cost structures reflect regional labor markets and 

environmental regulations. Algerian implementation costs 

range $1,500-$4,000 per kilometer, while Portuguese projects 

cost $3,000-$6,000 due to stricter environmental compliance. 

When strategically placed in high-risk corridors identified by 

predictive models, fuel breaks demonstrate 40-60% 

effectiveness in slowing fire propagation. Economic analysis 

suggests that these interventions prevent $3-$10 million in 

potential damages per kilometer over a decade. 

(3) Aerial surveillance systems 

Drone-based monitoring proves to be cost prohibitive for 

Algerian regions ($70,000-$140,000 annually) but warrants 

consideration in Montesinho, where asset protection justifies 

the expenditure. Thermal imaging capabilities improve 

detection speed in remote forest areas, complementing 

ground-based sensor networks. 

(4) Community-based fire management 

For budget-constrained Algerian regions, community 

programs ($40,000-$50,000 initial cost) provide a viable 

alternative. Training local responders achieves a 10-20% 

improvement in early response capability, particularly 

valuable when technological solutions face implementation 

barriers. 

 

5.9 Regional implementation priorities 

 

Montesinho's superior infrastructure and higher model 

accuracy (95-99.5%) support a comprehensive technological 

deployment. Algerian regions require phased approaches: 

initial focus on community programs and strategic fuel breaks, 

with subsequent IoT integration in highest-risk areas. Funding 

strategies should take advantage of international grants for 

capital-intensive components while utilizing local budgets for 

labor-intensive measures. 

Sensitivity analysis indicates that Algerian projects face 

greater financial risk from cost overruns (a 20% increase 

extends ROI by 2-3 years) and fire frequency variability. Pilot 

programs covering 10% of high-risk zones are recommended 

to validate cost assumptions before full-scale implementation. 

The analysis recommends immediate initiation of Tier 1 

interventions in all regions, with subsequent expansion 

contingent on the results of the pilot program and the 

availability of funding. The technical deployment should be 

aligned with high-risk corridors predicted by the model to 

maximize cost-effectiveness. 

 

5.10 Wildfire risk projections under climate change 

scenarios 

 

The study evaluated wildfire management strategies using 

Shared Socioeconomic Pathways (SSPs) of the 

Intergovernmental Panel on Climate Change (IPCC) in three 

Mediterranean regions: Béjaïa and Sidi Bel Abbes in Algeria 

and Montesinho in Portugal. Current wildfire models typically 

assume stable climate conditions, but incorporating dynamic 

SSP projections improves the accuracy of long-term planning. 

(1) Climate scenario impacts 

Under sustainable development pathways (SSP1-2.6), the 

frequency of extreme fire weather could decrease by 30-40% 

by the mid-century. This scenario enables comprehensive fuel 

management through ecological restoration and supports 

advanced early warning systems. In contrast, regional conflict 

scenarios (SSP3-7.0) project 50-70% increases in burned areas 

due to institutional fragmentation and reduced prevention 

capabilities. Fossil-fuelled development pathways (SSP5-8.5) 

show the most severe outcomes, with 80-120% more 

megafires despite technological advances in suppression. 

(2) Prevention and mitigation approaches 

Sustainable pathways facilitate prescribed burning in 15-

20% of high-risk areas, supported by drone monitoring and 

native vegetation restoration. Early detection systems 
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combining AI-powered cameras and satellite monitoring 

achieve 90% detection rates in 15 minutes. Community patrols 

complement technological solutions for comprehensive 

coverage. 

(3) Operational enhancements, recovery and adaptation 

Strategic resource prepositioning under SSP1-2.6 optimizes 

the effectiveness of fire response. Autonomous water systems 

and real-time fire behavior modeling improve suppression 

outcomes. Building codes mandating fire-resistant materials 

and underground utilities significantly reduce the risks of 

ignition in vulnerable communities. 

Post-fire rehabilitation prioritizes native species 

revegetation and erosion control within 30 days of 

containment. Mental health support and economic 

diversification programs improve the resilience of the 

community. Insurance mechanisms are being redesigned to 

incentivize risk reduction measures. 

(4) Policy directions implementation considerations 

The challenges of cross-jurisdictional coordination and 

funding misalignment with long-term risk reduction remain 

significant barriers. The reliability of the detection system 

during extreme weather events and resource limitations during 

concurrent megafires present ongoing operational challenges. 

Recommended measures include investment landscape-

scale fuel management and regional fire management 

agreements. Climate-adapted staffing models and 

infrastructure hardening are essential for effective adaptation. 

Future research should focus on drone swarm technologies, 

improved fire spread prediction models, and understanding the 

long-term ecosystem impacts of changing fire regimes. 

The analysis demonstrates that the outcomes of wildfire 

management will vary substantially in climate scenarios, with 

sustainable development pathways offering the most effective 

framework for ecosystem and community protection.  

 

5.11. Comparative analysis of data-driven and ecology-

driven approaches in wildfire management  

 

The disparities between data-driven and ecology-driven 

wildfire management strategies were examined in three 

regions: Béjaïa and Sidi Bel Abbes in Algeria and Montesinho 

in Portugal. This comparative analysis accounted for 

confounding factors such as dataset imbalance, particularly the 

lower recall observed in Montesinho's monitoring systems. 

(1) Data-driven wildfire management 

The data-driven approach used quantitative data collection 

through satellite imagery, IoT sensors, and drone surveillance, 

supported by machine learning algorithms for predictive 

modeling [21]. In Algerian regions, these systems enabled 

rapid fire detection and resource allocation through real-time 

data analysis, although occasionally false positives occurred 

due to sensor limitations. Montesinho's implementation faced 

challenges from incomplete historical datasets, which reduced 

prediction accuracy during critical periods. 

(2) Ecology-driven wildfire management 

Ecology-driven strategies prioritized forest health and 

natural fire regimes. In Algeria, controlled burns and native 

vegetation restoration were employed to reduce fuel loads, 

while Montesinho focused on habitat conservation and 

biodiversity-based fire mitigation. However, the slower 

implementation of these methods and lack of integrated data 

systems hindered rapid response capabilities during fire 

outbreaks. 

Tables 3-6 (Béjaïa) and Tables 7-10 (Sidi Bel Abbes) 

demonstrated that data-driven tools improved early detection 

but sometimes overlooked ecological factors like species 

vulnerability. In contrast, Tables 11-14 (Montesinho) revealed 

that ecology-driven approaches improved long-term 

resilience, but struggled with scalability due to limited data 

integration.  

(3) Hybrid strategies 

Significant operational disparities were observed between 

the approaches to wildfire management in Algeria and 

Portugal. In Algeria, technological systems achieved a 

reduction of 72% in response times compared to conventional 

methods. However, ecological impact assessments were 

underestimated by 23% due to insufficient incorporation of 

biodiversity parameters [22] within predictive algorithms. 

In contrast, Portuguese ecologically centered methods 

maintained 18% higher biodiversity preservation but incurred 

41% implementation delays. These delays stemmed from the 

reliance on field-based evaluations and technological 

integration constraints. 

Hybrid frameworks demonstrated superior efficacy, 

combining artificial intelligence forecasting with traditional 

ecological knowledge to achieve an overall improvement of 

33%. 

This integration enhanced both the temporal efficiency and 

the ecological preservation, resolving the core limitations of 

isolated approaches. The convergence of computational 

prediction and indigenous practices established an optimized 

balance between rapid intervention and the maintenance of 

ecosystem integrity. 

Future deployments require enhanced dataset curation to 

mitigate regional disparities, particularly addressing 

Montesinho's identified data gaps. Cross-disciplinary 

integration is essential for addressing complex environmental 

challenges. 

The synergistic application of satellite-guided prescribed 

burns and AI-monitored biodiversity corridors exemplifies 

optimal resource allocation: technological tools provide 

scalable precision, while ecological principles ensure long-

term resilience. This integration transforms methodological 

limitations into complementary strengths, establishing a 

replicable framework for global adaptation to wildfire 

management despite climatic variability. 

 

 

6. CONCLUSION AND FUTURE PERSPECTIVES 

 

This paper demonstrates significant advances in the 

protection of forest safety, particularly in the Algerian 

provinces of Béjaïa and Sidi Bel Abbes. Using artificial 

intelligence and innovative techniques such as XAI, including 

Local Interpretable Model-agnostic Explanations) and 

Shapley Additive explanations, the research successfully 

highlights the potential of predictive modeling in assessing 

forest fire severity. These methods not only identify critical 

risk factors such as temperature, Fine Fuel Moisture Code, 

relative humidity, and wind speed, but also provide actionable 

insights into the dynamics of wildfire occurrences.  

From a Conservation Forest Engineering perspective, this 

work is novel in its ability to pinpoint vital factors driving 

wildfires and offer region-specific, practical recommendations 

for mitigating fire risks. These include strategies such as fuel 

moisture management, microclimate regulation, and 

integrating IoT-based early warning systems, all of which 

contribute to reducing and controlling the severity of forest 
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fires 

The results highlight the crucial role of combining AI-based 

predictive analytics with conventional forest management 

strategies to adopt a proactive approach to preventing 

wildfires. Although this study represents a notable 

advancement, it also paves the way for numerous future 

research and development opportunities. A particularly 

promising path involves merging satellite, UAV, and IoT data 

analyzed through ensemble real-time ML to improve the 

precision and reliability of wildfire predictions, offering a 

more comprehensive understanding and potentially yielding 

more dependable and widely applicable outcomes. This 

layered system connects different scales (ranging from 

regional MODIS to sub-meter UAV data) and facilitates 

adaptive management in areas susceptible to fires. 

Furthermore, employing advanced deep learning methods, 

such as convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), could enhance the capacity to 

identify complex, nonlinear patterns within the data, especially 

in regions with intricate fire dynamics like Montesinho, 

Portugal.  

This study lays a strong foundation for the use of AI and 

XAI in wildfire prediction and mitigation, offering practical 

solutions tailored to the unique challenges of Béjaïa, Sidi Bel 

Abbes, and Montesinho. By addressing the limitations and 

exploring the future perspectives outlined above, this research 

has the potential to make substantial contributions to forest 

safety, not only in the studied regions, but also in other fire-

prone areas worldwide. The continued evolution of AI-driven 

approaches, coupled with interdisciplinary collaboration, 

promises to revolutionize wildfire management, safeguarding 

ecosystems, communities, and biodiversity for future 

generations.  
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