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Although Turkey ranks first in the world in terms of raisin exports, it ranks fourth in revenue. 

The main reason for this problem is that the quality of exported raisins does not meet the 

desired level. In this study, an intelligent real-time system was developed to determine 

suitability for export by classifying raisins according to color and capstem amount according 

to the criteria of TS 3411. A dataset of 2336 Sultana raisins was created and expanded to 

10,544 images using data augmentation techniques such as exposure adjustment, rotation, 

and noise addition. These techniques not only increased the dataset size but also significantly 

improved the model performance, as evidenced by the remarkable success of the CNN 

models with an average mAP of 98.8%. The images were evaluated in real time in the 

developed GUI software and their compliance with the standard was determined. The study 

is the first of its kind to classify and detect raisins according to the standard TS 3411 using 

an intelligent real-time system. 

Keywords: 

object detection, classification, raisin, 

convolutional neural networks (CNN) 

1. INTRODUCTION

Grapes are one of the most widely produced fruits globally, 

with an annual production of approximately 75 million tons. 

Of this production, 53% is pressed for wine production, 44% 

is consumed as fresh table grapes, and 3% is discarded as 

unusable. Approximately 81% of the unpressed grapes are 

consumed as table grapes, while the remaining 19% are 

processed into raisins [1]. According to 2021 data, Turkey 

ranks first globally in raisin exports. Turkey holds a 28.5% 

share of the global raisin market, followed by the US and Iran 

with shares of 13.5% and 11.2%, respectively. However, 

Turkey ranks fourth in revenue per ton of raisins, generating 

$1862, behind the US, Greece, and Afghanistan [2]. Excessive 

pesticide use and the low quality of grapes are among the 

primary reasons for Turkey’s lower export revenue per unit 

compared to other countries. The quality of raisins is further 

impacted by deterioration during the drying stage and the 

presence of foreign substances during harvest [3]. 

In Turkey, the classification criteria for seedless raisins, as 

well as the details of sampling, control, and marketing, are 

specified by the TS 3411 standard [4]. According to TS 3411, 

raisins chemically bleached before or after drying are referred 

to as "natural raisins." The intensity of light yellow, brown, 

and black colors in natural raisins significantly influences their 

quality. In export markets, light yellow raisins are generally 

preferred over other colors. Another important factor in 

exported seedless raisins is the amount of grape capstem or 

non-herbal substances. The standard additionally defines the 

permissible amount of grape capstem or non-herbal substances 

in 100 grams of seedless raisin samples. 

Because raisins produced in Turkey are not consistently 

classified according to TS 3411 standards, the desired 

revenues cannot be achieved despite high export volumes. 

Finding technological solutions to address this issue is crucial. 

For instance, the moisture content of raisins is typically 

assessed through laboratory tests. However, the assessment of 

color, grape capstem, or non-herbal substances currently relies 

on manual evaluation in the field and factories. Developing 

intelligent systems to classify raisins according to specific 

standards could reduce costs and enhance export revenues. 

In recent years, deep learning-based architectures have 

proven successful in classifying and detecting agricultural 

products. The size of agricultural products is a critical variable 

affecting the success of these architectures. Studies in the 

literature highlight applications on smaller products, such as 

grapes [5], soybean seeds [6], and olives [7], as well as on 

larger fruits, including melons [8], potatoes [9], and 

cucumbers [10]. Detecting small objects using deep learning-

based architectures can be challenging due to difficulties in 

distinguishing them from other classes or background 

elements in the image [11]. This highlights the need to develop 

specialized solutions for small object detection. 

Distinguishing studies that use image processing techniques 

from those based on deep learning highlights the superior 

performance of deep learning architectures. Mollazade et al. 

[12] classified raisins into four categories: green, green with

tail, black, and black with tail, using images captured by a

color CCD camera. Among the methods compared artificial

neural networks (ANNs), support vector machines (SVMs),

decision trees (DTs), and Bayesian networks (BNs)-ANNs

achieved the highest accuracy at 96.33%. Yu et al. [13]

conducted experiments on 480 images captured by an

industrial camera to classify raisins based on their color and
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texture properties. Using the least squares support vector 

machine (LSSVM), they achieved an accuracy of 

approximately 95%. Çınar et al. [14] developed a computer 

vision system that distinguished between common food and 

goat raisin varieties in Turkey. Among logistic regression (LR), 

multi-layer perceptron (MLP), and SVM models compared, 

MLP demonstrated the best performance with an accuracy of 

86.44%. Khojastehnazhand and Ramezani [15] evaluated the 

performance of bulk raisin systems by combining various 

texture feature algorithms with different modeling methods. 

The dataset was divided into three groups: good raisins, bad 

raisins, and other waste. Experiments were performed on 

combinations of these groups, resulting in 6 and 15 classes. 

The study concluded that the SVM classifier combined with 

gray level run length matrix (GLRM) features produced the 

most accurate classification results. Zhao et al. [16] proposed 

a deep learning-based segmentation algorithm to estimate the 

number of raisins. The primary strength of this algorithm is its 

ability to estimate the number of stuck raisins. The random 

forest (RF) and SVM models they employed for estimating 

raisin counts performed worse than the deep learning-based 

segmentation model. 

The objective of this study is to develop a deep learning-

based system to classify raisins by their color and capstem 

quantity in compliance with the TS 3411 seedless raisin 

standard. The proposed system seeks to automate quality 

control processes, improve export quality, and increase 

industrial efficiency. The specific contributions of this paper 

are as follows: 

• This study is the first to apply a deep learning-based 

intelligent system specifically designed to classify 

raisins in accordance with the TS 3411 seedless raisin 

standard, addressing a critical industry need. 

• A novel dataset of 2,636 raisin images was created, 

carefully labeled, and expanded to 10,544 samples 

through advanced data augmentation techniques, 

enabling robust training and evaluation of the 

proposed system. 

• State-of-the-art object detection models, including 

YOLOv5, YOLOv6, YOLOv7, YOLOX, FCOS, and 

TOOD, were thoroughly evaluated, achieving an 

outstanding mean average precision (mAP) of 98.8%. 

• A real-time classification system was developed and 

integrated into a conveyor belt setup, demonstrating 

its practical utility for industrial applications. This 

system automates manual quality control processes, 

significantly enhancing efficiency and accuracy. 

• The system not only categorizes raisins into 1st class, 

2nd class, and capstem groups but also offers 

actionable insights to improve export quality, 

addressing Turkey’s ongoing challenge of low 

revenue per unit in raisin exports. 
 

 

2. MATERIALS AND METHODS 

 

The processes depicted in Figure 1 were implemented to 

classify raisins in accordance with the TS 3411 standard. 

During the data collection and preparation phase, raisin 

samples captured using an industrial camera were individually 

cropped. This process resulted in a dataset containing 2,336 

images of raisins. Subsequently, the dataset was expanded to 

10,544 images using data augmentation techniques. Next, the 

performance of various state-of-the-art models (YOLOv5, 

YOLOv6, YOLOv7, YOLOX, FCOS, and TOOD) was 

evaluated. The experiments conducted with these models 

utilized the backbone networks and training parameters 

outlined in Figure 1. Upon completing the training process, the 

model achieving the highest performance was selected. 

Custom software was developed for the selected model, 

enabling real-time monitoring of the detected raisins. In the 

final phase of the study, a real-time system was integrated into 

the conveyor belt to classify raisins. These processes, which 

are part of the general experimental workflow, are elaborated 

upon in the following subsections. 
 

2.1 Data collection and preparation 
 

The raisins used in this study were sourced from a factory 

in Manisa, a province in Turkey's Aegean region. This factory 

processes export-quality Sultana raisins supplied by multiple 

farmers from across the region. Raisins were selected from 

batches delivered to the factory, ensuring a diverse 

representation of the Sultana raisin variety and avoiding bias 

toward any specific farm or producer. 

During the imaging process, raisins were randomly placed 

on a white conveyor belt in 100-gram batches. The samples 

were mixed to simulate real-world conditions, ensuring the 

presence of both raisins and capstems. An industrial camera 

was positioned 25 cm above the conveyor belt to capture high-

quality images. Fixed lighting conditions were used to ensure 

consistency and standardization throughout the imaging 

process. The captured images, originally sized at 1920x1080 

pixels, were cropped to 240×135 pixels. This process resulted 

in a total of 2,636 cropped raisin images. 

 

 
 

Figure 1. General operating diagram for experimental studies 
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Table 1. Number of classes in the dataset 

 

Classes 
Data Augmentation 

Technique 

Original 

Data 

Augmented 

Data 

1st class Exposure, rotation, noise 600 2400 

2nd class  1168 4672 

Capstem  868 3472 
 Total 2636 10544 

 

The dataset was labeled using Roboflow [17], an online 

platform for data annotation and augmentation. Roboflow 

supports multiple labeling formats, including COCO, Pascal 

VOC, and YOLO. For this study, YOLO format was used to 

train YOLOv5, YOLOv6, and YOLOv7 models, while the 

COCO format was employed to train FCOS, TOOD, and 

YOLOX models. 

Data augmentation techniques are widely used in object 

detection applications within agricultural studies [18, 19]. 

These techniques improve estimation performance and help 

develop models that are less prone to overfitting [20]. Data 

augmentation was applied to each class of the dataset, and the 

resulting image counts are presented in Table 1. The original 

dataset consisted of 2,336 images distributed among three 

classes: 600 images of 1st class raisins, 1,168 images of 2nd 

class raisins, and 868 images of capstems. This distribution 

reflects the natural variability in Sultana raisins and was 

carefully designed to maintain balanced representation across 

all classes. Data augmentation techniques-such as exposure 

adjustment, rotation, and noise addition-were employed to 

expand the dataset to 10,544 images, preserving balanced class 

distributions. 

In this study, the dataset was divided into three groups 

following data augmentation, with a ratio of 80-10-10 for 

training, validation, and testing, respectively. Similar ratios 

have been commonly applied in agricultural studies focused 

on disease detection [21-23]. 

 

2.2 Training of the CNN models 

 

A general CNN structure consists of two main blocks: 

feature learning and fully connected layers. The feature 

learning block includes convolutional and pooling layers, 

where various matrix operations are performed to extract 

features from the input image. In the fully connected layers, 

the class of the input image is predicted through artificial 

neural network operations. CNN architectures were first 

introduced with LeNet-5 [24], followed by AlexNet [25], and 

subsequently evolved into numerous architectures that 

successfully address object detection problems. These 

architectures incorporate various convolutional operations, 

pooling methods, and diverse activation functions. 

In this study, experiments were conducted using six state-

of-the-art CNN models: YOLOv5, YOLOv6, YOLOv7, 

YOLOX, FCOS, and TOOD. Each model was tested with at 

least two different backbone networks. The best-performing 

networks are listed in Table 2 in Section 3. 

The construction and training of the state-of-the-art models 

were implemented in Python 3.9 using PyTorch 1.12. The 

Adam optimizer and cross-entropy loss function were used for 

network training. The experiments were conducted on a 

workstation equipped with an Intel Xeon CPU, a 16GB Nvidia 

Quadro RTX5000GPU, and 16GB RAM. All input images 

were resized to match the network's input size requirements 

before training. 

 
 

Figure 2. Confusion matrices of all the CNN models  

(a) YOLOv5 (Backbone: CSPDarknet-x), (b) YOLOv6 

(Backbone: EfficientRep-l), (c) YOLOv7 (Backbone: E-

ELAN-x), (d) YOLOX (Backbone: CSPDarknet-x), (e) 

FCOS (Backbone: ResNeXt101), (f) TOOD (Backbone: 

ResNeXt101 

 

The dataset was split into training, validation, and testing 

sets. First, 90% of the augmented data was randomly allocated 

as the training set, and the remaining 10% was used as the test 

set. From the training set, 10% was further separated to create 

a validation set. The data was then imported into the proposed 

network, and training parameters were configured. The 

model's parameters were as follows: batch size, 32; number of 

iterations, 50; initial learning rate, 0.0125; optimizer, SGD 

(Stochastic Gradient Descent); momentum, 0.9. Training was 

terminated after 400 epochs, and the network's accuracy and 

loss rates were calculated. Finally, a confusion matrix was 

generated to analyze the performance on the input data. 

The performance of the state-of-the-art models was 

evaluated using classification metrics derived from the 

confusion matrix, as illustrated in Figure 2. 

The confusion matrix was used to evaluate how effectively 

the state-of-the-art models classified classes 1, 2, and Capstem 

in the raisin images. A higher total sum of True Positive (TP) 

and True Negative (TN) values (highlighted in colored cells in 

Figure 2) indicates better model performance. In the confusion 

matrix, each column represents the instances of an actual raisin 

class, while each row represents the instances of a predicted 

raisin class. 

While the confusion matrix provides valuable insights, it 

does not fully capture the performance of the models. By 

utilizing the values of TP, TN, False Positive (FP), and False 

Negative (FN) within the confusion matrix, performance 

metrics such as Accuracy, Precision, and Recall can be 

calculated. These metrics are defined in Eq. (1), Eq. (2), and 

Eq. (3), respectively, and provide a more comprehensive 

understanding of model performance. 
 

Accuracy=
TP+TN

TP+TN+FP+FN
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 
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Measuring object detection performance differs from 

evaluating classification performance. In this study, average 

precision (AP) was chosen to assess the performance of the 

models for the three different raisin classes. AP, as defined in 

Eq. (4), is widely utilized in the literature for object detection 

problems in agriculture [26-28]. 

 

𝐴𝑃 =
1

10
(𝐴𝑃.50 + 𝐴𝑃.55 + 𝐴𝑃.60 +⋯+ 𝐴𝑃.95) (4) 

 

AP provides performance metrics for a single class. When 

there are multiple classes, mean average precision (mAP) is 

used instead of AP [29]. In this study, raisin classification 

involved three classes; therefore, the mAP value was 

employed to evaluate classification success. As illustrated in 

Figure 3, the ratio of the intersection of the ground truth (G) 

and default boxes (D) to their union is referred to as the 

intersection over union (IoU). 

IoU takes values between 0 and 1, with higher values 

indicating better overlap between the ground truth (GT) and 

default boxes (DB). In this study, various mAP values were 

calculated for all state-of-the-art models, as presented in Table 

2 in Section 3. Among these, the best results were achieved 

with mAP IoU=0.50. 

 
 

Figure 3. Matching of default boxes with ground-truth 

 

2.3 Experimental setup 

 

A conveyor belt system was designed for the real-time 

classification of raisins. The conveyor belt is 170cm long and 

30cm wide, with an adjustable speed ranging from 1cm/s to 

25cm/s across five levels. As illustrated in Figure 4, 100-gram 

raisin samples can be placed at intervals along the conveyor 

belt. 

 

 
 

Figure 4. General operating diagram for experimental studies 

 

 
 

Figure 5. Inside the light box 
 

The light box integrated with the conveyor belt houses an 

Image Source DFK 37BUX290 industrial camera, a Fujinon 

DF6HA-1S 6mm lens, and two 24 V LED strip light sources. 

Industrial cameras with a high frame rate (Frames Per Second, 

FPS) are essential for capturing moving objects effectively. 

The camera used in this study operates at 140 FPS, ensuring 

that image quality is maintained even as the conveyor belt 

speed increases. According to the TS3411 standard, the quality 

criteria for 100-gram raisin samples must be met. Therefore, 

the camera lens was chosen with a field of view (FOV) capable 

of capturing 100-gram raisin samples. The camera in the 

lighting box is positioned 25 cm above the conveyor belt, as 

shown in Figure 5. 

The conveyor belt operates based on a laser-guided system. 

A laser with a wavelength of 650nm directs light to a Light 

Dependent Resistor (LDR) sensor, as depicted in Figure 6. 

When the raisins reach the designated position, the light 

connection between the laser and the LDR is interrupted. At 

this point, the camera captures the raisin image and transmits 

it to the GUI software. The LDR sensor and the conveyor 

motor are managed by an Arduino Mega 2560 board. 
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Figure 6. Outside view of the light box 

 

 

3. RESULT AND DISCUSSION 

 

The confusion matrices of the state-of-the-art models with 

the highest classification accuracy are presented in Figure 2. 

The lowest accuracy value obtained among the models is 

96.8%, indicating that all models perform exceptionally well. 

In the confusion matrices, the columns and rows are labeled I, 

II, and III, representing 1st class, 2nd class, and capstem 

categories, respectively. Misclassifications are represented by 

cells outside the blue-colored squares. Notably, all models 

successfully identified capstems without any 

misclassifications. This demonstrates that the models perfectly 

distinguish raisins with capstems. 

Some misclassifications occurred where the models labeled 

2nd class raisins as 1st class. However, these instances are 

minimal across the entire dataset. The least accurate model is 

FCOS (Backbone: ResNeXt101) with 31 misclassified 

samples, whereas the most accurate model is TOOD 

(Backbone: ResNeXt101) with only 1 misclassified sample. 

The 2nd class raisins have a darker color compared to 1st class 

raisins. The lighter color of certain raisins made it challenging 

for the models to classify them correctly. Another significant 

observation is that all models accurately classified every 1st 

class raisin with a light yellow color. 

The training loss curves are shown in Figure 7, where the 

coordinates represent the epoch and loss values. The epoch 

number in this study was limited to 400. During the training 

process of a successful CNN model, the loss is expected to 

decrease gradually while accuracy increases progressively. 

Increasing the number of epochs can reduce fluctuations in the 

loss curve; however, this comes at the cost of extended training 

time. As illustrated in Figure 7, the loss curves of the models 

show a steep initial decline, which continues until a certain 

value is reached, after which the loss value stabilizes. 

Among the loss graphs, the highest fluctuation at the end of 

400 iterations is observed in the TOOD (ResNeXt101) model. 

The FCOS (ResNeXt101) and TOOD (ResNeXt101) models 

show a downward trend in loss until approximately 150 

iterations, after which the loss value remains nearly constant. 

In contrast, the other models maintain their downward trend 

until the 400th iteration. However, this continued decrease is 

not substantial enough to significantly impact the results. At 

the end of training, YOLOv7 (E-ELAN-x) achieved the lowest 

loss value among all models, demonstrating its effectiveness 

in learning the features of the raisin images. 

Precision-recall (P-R) curves illustrate the tradeoff between 

precision and recall as the model's threshold changes. To 

ensure all defects are detected, recall should be maximized; 

however, this often results in an increase in misclassified 

samples, thereby reducing precision. Ideally, the upper-right 

corner of the curve (where both recall and precision reach 

100%) represents a perfect result [30]. The P-R curves of all 

models are shown in Figure 8, including curves for the 1st 

class, 2nd class, and capstem, as well as the average curve. For 

all models, the curves approach 100% on both the precision 

and recall axes. However, the P-R curve for the 2nd class in 

the YOLOX (CSPDarknet-x) model exhibits lower values 

compared to the others. 

The models used in this study were compared based on 

different backbone networks, as presented in Table 2. The best 

results were achieved with an IoU threshold of 0.50. Across 

14 different models, the mean mAP for IoU=0.50 was 

calculated as 98.8%. Among the models, the highest mAP 

value for IoU=0.50 was obtained with YOLOX (CSPDarknet-

s), while the lowest mAP value was observed with FCOS 

(ResNetXt101). The 3.5% difference between the highest and 

lowest mAP values for IoU=0.50 indicates that the 

performance of the models is relatively consistent. 

The size of the raisins and capstems detected in this study is 

most relevant to IoU=s. In experiments conducted with IoU=s, 

the mean mAP value was calculated as 76.4%. Among the 

models, the highest mAP value for IoU=s was achieved with 

FCOS (ResNet50), whereas the lowest mAP value was 

observed with YOLOv6 (EfficientRep-1). 

To evaluate the robustness of the models without data 

augmentation, we conducted multiple training runs for each 

model-backbone combination using five different random 

seeds (42, 100, 2023, 7, 99). The mean mAP and standard 

deviation (±) values were calculated to assess the consistency 

of the models' performance across different initialization 

conditions. These values are reported in Table 2. 

With data augmentation, multiple training runs were 

performed for each model-backbone combination using five 

random seeds (42, 100, 2023, 7, 99). The resulting mean mAP 

and standard deviation (±) values are presented in Table 3. 

The experimental results presented in Table 2 (without data 

augmentation) and Table 3 (with data augmentation) 

demonstrate the significant impact of data augmentation 

techniques on model performance. Without data augmentation, 

the mean mAP (IoU=0.5) values were generally lower across 

all model-backbone combinations. For instance, YOLOv5 

with the CSPDarknet-x backbone achieved a mean mAP of 

90.1% without augmentation, compared to 99.1% with 

augmentation. Similarly, YOLOv7 with the E-ELAN-x 

backbone improved from 91.3% to 99.3% after applying data 

augmentation. 

These results indicate that data augmentation techniques, 

including exposure adjustment, rotation, and noise addition, 

not only expanded the dataset size but also enhanced the 

diversity of training samples, enabling the models to 

generalize better. This improvement is particularly evident in 

challenging cases, such as small object detection (mAP IoU=s), 

where performance gains were more pronounced. 

Sample results obtained from the best-performing model are 

presented in Figure 9. 
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(a) The loss curve of YOLOv5 (CSPDarknet-x) (b) The loss curve of YOLOv6 (EfficientRep-l) 

  
(c) The loss curve of YOLOv7 (E-ELAN-x) (d) The loss curve of YOLOX (CSPDarknet-x) 

  

  
(e) The loss curve of FCOS (ResNeXt10) (f) The loss curve of TOOD (ResNeXt101) 

 

Figure 7. The loss curves of all models 

 

  
(a) The P-R curve of YOLOv5 (CSPDarknet-x) (b) The P-R curve of YOLOv6 (EfficientRep-l) 
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(c)The P-R curve of YOLOv7 (E-ELAN-x) (d) The P-R curve of YOLOX (CSPDarknet-x) 

 
 

(e) The P-R curve of FCOS (ResNeXt10) (f) The P-R curve of TOOD (ResNeXt101) 

 

Figure 8. The P-R curve of the best models on the test set 

 

Table 2. Performance comparison of state-of-the-art models without augmented data 

 

 Backbone 
MAP 

IoU=.50:.5:.95 

MAP 

IoU=.50 

MAP 

IoU=.75 

MAP 

IoU=s 

MAP 

IoU=m 

MAP 

IoU=l 
Std(±) 

YOLOv5 CSPDarknet-s 74.3 89.2 81.0 68.1 73.2 77.0 0.22 
 CSPDarknet-x 78.4 90.1 83.7 70.5 74.8 79.1 0.25 

YOLOv6 EfficientRep-s 72.6 89.0 83.0 60.4 72.3 76.8 0.18 
 EfficientRep-l 75.0 88.3 81.5 58.2 71.0 74.9 0.20 

YOLOv7 E-ELAN-s 76.2 91.5 83.0 65.3 70.5 77.4 0.15 
 E-ELAN-x 78.8 91.3 84.5 68.7 73.1 79.5 0.17 

YOLOX CSPDarknet-s 75.2 92.3 84.0 69.2 72.9 77.3 0.19 
 CSPDarknet-x 75.5 90.0 84.3 70.5 72.5 78.1 0.22 

FCOS ResNet50 77.1 90.8 84.0 73.5 74.6 80.3 0.24 
 ResNet101 70.5 90.0 82.5 65.2 70.4 74.1 0.28 
 ResNeXt101 68.2 89.1 80.0 65.0 69.0 72.5 0.25 

TOOD ResNet50 71.8 87.5 80.2 72.0 69.5 75.5 0.20 
 ResNet101 70.0 88.1 81.5 71.2 68.3 73.9 0.22 
 ResNeXt101 76.0 89.5 83.2 73.0 71.0 76.0 0.23 
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Table 3. Performance comparison of state-of-the-art models with augmented data 

 

 Backbone 
MAP 

IoU=.50:.5:.95 

MAP 

IoU=.50 

MAP 

IoU=.75 

MAP 

IoU=s 

MAP 

IoU=m 

MAP 

IoU=l 
Std(±) 

YOLOv5 CSPDarknet-s 84.6 99.0 92.1 78.2 81.2 84.3 0.15 
 CSPDarknet-x 88.7 99.1 93.0 79.2 83.1 86.1 0.17 

YOLOv6 EfficientRep-s 82.6 99.1 93.9 67.3 82.1 85.0 0.12 
 EfficientRep-l 84.1 98.3 91.3 63.5 79.2 84.6 0.14 

YOLOv7 E-ELAN-s 83.5 99.2 92.3 75.1 80.2 85.3 0.08 
 E-ELAN-x 85.5 99.3 93.5 78.3 82.1 86.4 0.09 

YOLOX CSPDarknet-s 83.5 99.7 93.5 78.6 82.5 85.2 0.11 
 CSPDarknet-x 83.7 99.1 93.6 82.1 82.9 87.5 0.14 

FCOS ResNet50 85.8 99.0 94.0 84.6 85.1 89.1 0.16 
 ResNet101 82.3 99.2 92.4 72.1 80.1 82.2 0.19 
 ResNeXt101 79.8 96.2 90.8 73.2 80.2 82.8 0.15 

TOOD ResNet50 82.8 98.0 91.3 79.7 80.8 86.3 0.09 
 ResNet101 80.1 98.9 93.0 78.2 80.3 83.2 0.12 
 ResNeXt101 85.1 99.1 94.3 79.6 82.3 85.1 0.17 

 

 
 

Figure 9. Sample results of raisin images detected by the best model 

 

 
 

Figure 10. GUI for the developed system 
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The original image, the detected image, and the GUI 

software displaying database records are shown in Figure 10. 

For each 100-gram raisin sample, a record is created in the 

database, documenting the numbers of 1st class, 2nd class, and 

capstem raisins in the sample. 

This study aims to classify raisins based on their color and 

the amount of capstem and non-herbal substances, in 

compliance with the TS 3411 seedless raisin standard. The 

current study has certain limitations that should be addressed 

in future work. One limitation is the manual placement of 

raisins on the conveyor belt in 100-gram samples, which may 

introduce variability in sample preparation and does not fully 

replicate automated industrial processes. Additionally, while 

the system successfully classifies raisins into three categories 

(1st class, 2nd class, and capstem), it lacks a physical 

mechanism to sort these categories in real-time, limiting its 

direct applicability in production lines. The camera height was 

optimized at 25cm to balance the field of view and image 

clarity; however, this fixed setup may not be suitable for 

different conveyor belt designs or raisin sizes. Furthermore, 

detecting smaller objects such as capstems in highly cluttered 

samples remains challenging, indicating a need for further 

refinement in training strategies and data augmentation 

techniques. 

Future research could focus on addressing the limitations 

identified in the current study to enhance the system's 

applicability and performance. One potential direction is the 

integration of an automated feeding mechanism to replace 

manual sample placement, ensuring consistent and 

reproducible results. Additionally, incorporating a real-time 

sorting mechanism to physically separate raisins into 

categories would significantly improve the system's industrial 

usability. Expanding the dataset by including samples from 

diverse regions or other raisin varieties could further enhance 

the model's generalization capability. Furthermore, adapting 

the system to comply with other international standards or 

applying it to similar agricultural products would broaden its 

application scope. Finally, exploring advanced model 

architectures or improved data augmentation techniques could 

address challenges related to small object detection in 

cluttered environments, making the system more robust and 

effective. 

 

4. CONCLUSIONS 

 

In this study, foreign matter in Sultana-type raisins was 

identified according to the TS3411 quality standard, and 

quality classification was performed based on color. 

Additionally, a real-time system was developed to evaluate the 

suitability of raisin samples for export. A dataset comprising 

2,636 raisin images was created, categorized into 1st class, 2nd 

class, and Capstem classes. Six different CNN models were 

trained using various backbone networks. The highest 

performance values were observed at IoU=0.50, with an 

overall mean mAP of 98.8% across all models. 

The lighter color of certain raisins posed a challenge for the 

models, making detection more difficult. However, a notable 

outcome of the study is that all models accurately classified all 

1st class raisins with a light yellow color, demonstrating their 

robustness in distinguishing this category. 
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