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Emotion recognition from audio data holds immense potential in revolutionizing human-

computer interaction (HMI), affective computing, and psychological health monitoring. 

This paper delves into a novel deep learning approach that leverages the strengths of 

multimodal features mined from audio signals. We propose a model that transcends the 

disadvantages of existing methods by combining Mel-Frequency Cepstral Coefficients 

(MFCCs) with high-level representations extracted from a pre-trained DenseNet 

architecture. MFCCs provide a compressed representation of the audio signal's spectral 

characteristics, capturing crucial emotional cues like pitch and intensity. These learned 

patterns can translate to the domain of audio emotion recognition, enabling the model to 

identify subtle emotional nuances that might be difficult to capture with traditional feature 

engineering techniques. Our deep learning model, comprised of dense layers, fosters robust 

performance in accurately classifying emotions across diverse categories. We used a Mel-

spectrograms-based LSTM model for speech emotion recognition that effectively identifies 

various emotions. We rigorously evaluate the proposed approach on the TESS dataset. The 

experimental results are truly compelling, showcasing a staggering accuracy of 100%. This 

exceptional performance signifies the effectiveness of the multimodal approach in extracting 

and interpreting emotional cues from audio data.  

Keywords: 

emotion recognition, deep learning, 

multimodal features, MFCC, DenseNet, 

audio processing 

1. INTRODUCTION

Emotion recognition from audio data, also known as Speech 

Emotion Recognition (SER), has become a widely researched 

field due to its potential applications. It allows computers to 

analyse vocal characteristics and infer the emotional state of a 

speaker. This technology holds promise for improving human-

computer interactions by enabling machines to respond more 

sensitively to user emotions. It can also benefit virtual agents 

by making their responses more natural and emotionally 

appropriate. Additionally, SER has the potential to be a 

valuable tool in mental health assessment by providing 

insights into speech patterns [1]. Earlier approaches to 

recognizing emotions rely on manually-crafted features 

extracted from the audio signal, such as pitch, volume, and 

spectral properties.  

We leverage these features to train ML models like Support 

Vector Machines to classify emotions. However, these 

methods have limitations. Human emotions are complex and 

can be expressed through subtle variations in speech patterns. 

Traditional approaches may struggle to capture these nuances, 

particularly when emotions manifest similarly in certain 

aspects (e.g., pitch) but differ in others (e.g., speech rhythm) 

[2]. To overcome these limitations, this work proposes a model 

that combines the strengths of traditional and deep learning 

techniques. Our method incorporates two key components: 

Mel-Frequency Cepstral Coefficients (MFCCs) and a pre-

trained DenseNet model. MFCCs provide a compressed 

representation of the audio signal's spectral characteristics, 

capturing essential features like pitch and intensity [3]. The 

DenseNet model, on the other hand, is a powerful deep 

learning architecture pre-trained on a massive image dataset. 

This pre-training allows the model to learn complex, high-

level representations that may not be readily apparent in the 

raw audio data. By combining MFCCs with features extracted 

from the DenseNet, our approach aims to achieve more robust 

and accurate emotion recognition, even for subtle emotions 

that traditional methods might struggle with this model. 

Although, LSTM model is used for speech emotion 

recognition (SER), their performance is less compared to our 

method. We have focused on the parameter of LSTM model, 

which is different the existing model that creates the novelty 

of our model. We took 100 epochs for the experiments. 

Initially, the accuracy is just cross 90%, after 61 epochs, our 

model performs well and constantly maintains 100% up to 100 

epochs which create the novelty of our model. 
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1.1 Objectives 

We have the following objectives to make the proposed 

model for the paper. 

• Develop a deep learning model integrating MFCC and

DenseNet features for robust emotion recognition from audio 

data. 

• Evaluate the proposed multimodal approach on the TESS

dataset to assess its effectiveness in accurately classifying 

diverse emotional expressions. 

• To assess the efficacy of the suggested model on an

emotion recognition task. This involves training the deep 

learning model on a suitable dataset, such as the Toronto 

Emotional Speech Set (TESS), and assessing its accuracy, 

precision, recall, and F1-score. 

The major contributions are as follows. 

(a) A multiscale LSTM approach for spontaneous SER is

proposed in this work, taking into account that various spectral 

lengths provide distinct emotional signals when recognising 

particular traits. This is the only work that we are aware of that 

takes this incentive into account and uses multiscale LSTM for 

spontaneous SER. 

(b) The inclusion of numerous LSTMs at the score level,

each of which corresponds to a distinct duration of the image-

like spectrograms generated from each utterance. The 

experimental findings demonstrate that our strategy achieves 

better outcomes than the current best practices. 

Rest of the section is an outline of the paper. In Section 2, 

we explained various methodologies as requirements. In 

section 3, we lay out the specifics of our suggested approach. 

In Section 4, we detail the outcomes of the experiment. Section 

5 contains the discussion and conclusions. 

2. RELATED WORK

The emotion recognition has explored various techniques, 

including feature engineering, machine learning, and deep 

learning. Feature engineering approaches typically involve 

extracting some of the features through audio. Such as 

Frequency of sound, Volume or loudness, and Properties 

related to the distribution of frequencies, which may not 

adequately capture the temporal dynamics of emotions. Deep 

learning methods, particularly those based on recurrent neural 

networks like LSTMs, have shown great potential in learning 

temporal dependencies in sequential data. However, there 

remains a need for robust deep learning models that can 

effectively capture emotional cues from audio signals. Here 

are some previous works related to speech emotion 

recognition. 

The writers introduce F-Emotion, an innovative approach 

for identifying crucial speech characteristics in emotion 

recognition. They utilize a parallel deep learning framework 

to train models specific to each emotion based on these 

features. By amalgamating the outcomes of individual models, 

a final recognition outcome is obtained through decision 

fusion. This approach demonstrates notable accuracy rates 

(82.3% and 88.8%) when applied to the RAVDESS and EMO-

DB datasets. F-Emotion adeptly selects pertinent features, 

with MFCCs proving particularly effective for neutral, happy, 

fear, and surprise emotions, while Mel features excel for anger 

and sadness. Additionally, the utilization of a parallel deep 

learning model architecture further enhances recognition 

precision [4]. In this paper the authors introduced three 

ranking approaches for preference learning, ranging from 

simple to complex, and developed models using SVM, DNN, 

and GBDT. Results show significant improvement over 

conventional classifiers, with LambdaMART performing best. 

Detailed rules enhance performance, especially with 

LambdaMART. Combining LambdaMART and RankNet 

achieves the highest accuracy of 85% on (CREMA-D), 

outperforming baselines by a large margin. they also test 

cross-corpus recognition of emotions, training on CREMA-D 

and testing on SAVEE without perceived labels [5]. The 

authors propose a CRNN-MA for Speech Emotion 

Recognition (SER). This architecture leverages the strengths 

of both CNNs and LSTM networks to capture complementary 

information from speech data. CNNs process Mel-

spectrogram features to extract time-frequency characteristics, 

while LSTMs handle frame-level features to grasp the 

sequential aspect of speech emotions. The effectiveness of the 

CRNN-MA is demonstrated through experiments on standard 

SER datasets. The model outperforms existing methods with 

its superior performance, highlighting the benefits of 

combining convolutional-recurrent architectures Utilizing 

multiple attention mechanisms for recognizing speech 

emotions [6]. This research proposes a system for recognizing 

emotions in faces and voices. It incorporates emotional 

dimensions (think emotional flavors) alongside typical 

categories (happy, sad). For faces, rule-based connections are 

made between expressions and these dimensions, with 

machine learning models trained to identify them. Deep 

learning tackles the audio portion, extracting key features and 

combining them with the visual data using a statistical and 

machine learning approach. Tested on standard datasets, the 

system outperformed those analysing only faces or voices, 

highlighting the effectiveness of combining modalities and 

emotional dimensions for more nuanced emotion recognition 

[7]. This paper proposes a new way to recognize emotions in 

speech by leveraging emotional dimensions. They fine-tuned 

their model on the MSP-Podcast dataset, focusing on 

recognizing emotions based on excitement level, feeling of 

control, and pleasantness. Notably, they employed IEMOCAP 

and MOSI datasets to assess the model's capacity to handle 

variations in the type of data it encounters. According to the 

study, their method achieves SoTA performance in valence 

prediction without relying on explicit linguistic information. 

This is evidenced by the Concordance Correlation Coefficient 

(CCC) achieved a value of 0.638 on the MSP-Podcast dataset.

Their research suggests that transformer-based architectures

outperform a Convolutional Neural Network (CNN) baseline.

Deep learning and machine learning models evaluate image

data using various matrices, as demonstrated in prior studies

[8-11]. The bird speech recognition is developed by Mohanty

et. al. [12].

Additionally, these models exhibit fairness, looking at how 

emotions differ between men and women, without trying to 

recognize individual people [13]. This study explores self-

supervised learning for speech/emotion recognition. They 

proposed two methods: reconstructing faces from audio 

(visual self-supervision) and audio-only self-supervision. 

Combining these approaches leads to richer, more robust audio 

features, especially in noise. They also show that self-

supervised pretraining outperforms fully supervised methods, 

particularly on smaller datasets. Their audio representations 

achieve performance in recognition of emotions (both discrete 

and continuous) and speech recognition tasks. This highlights 

the potential of visual self-supervision and its combination 
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with audio-only methods for learning informative audio 

representations [14, 15]. This study proposes a selective 

enhancement approach to improve emotion recognition in 

speech. It focuses on enhancing only weak features that 

degrade performance, identified by training models on 

individual acoustic features. Weak features are ranked and 

grouped, then selectively enhanced using low-level 

descriptors. Experiments show this method outperforms 

enhancing all features, particularly in noisy conditions [16]. 

 

 

3. METHODOLOGY 

 

We have considered LSTM model to derive speech 

recognition through Mel-spectrogram segmentation from 

audio spectrogram data. The generic speech emotion model is 

mentioned in Figure 1. Different components are used to 

process the audio data to get specific emotional voice as 

follows.  

(a) Input audio dataset: The input dataset comprises audio 

recordings featuring actors expressing seven distinct emotions.  

(b) Preprocessing: The audio data is pre-processed to extract 

MFCC features, which provide a compact representation of the 

spectral characteristics of speech signals. 

(c) Fusion featuring: Fusion involves amalgamating the 

extracted features to form a cohesive feature representation. 

(d) Deep learning approach: Employing a deep learning 

model, like a neural network, trained using the amalgamated 

features to predict emotional labels. 

(e) Emotion prediction: The trained model predicts the 

emotion labels for new audio samples. 

(f) Performance evaluation: A range of metrics is employed 

to thoroughly evaluate the model's accuracy and efficacy in 

recognizing emotions. 

 

 
 

Figure 1. Block and flow diagram of speech emotion 

 

3.1 Mel-spectrograms creation  

 

The Mel-spectrograms creation, like a image, involves a 

multi-step process that transforms audio signals into visual 

representations, facilitating the analysis of their frequency 

content over time. Initially, the audio file is loaded using the 

librosa library in Python, which provides functionalities for 

audio processing. Subsequently, the Mel spectrogram is 

computed from the audio signal using librosa's 

feature.melspectrogram function [17], which partitions the 

audio signal into short-time frames and calculates the energy 

distribution across a set of Mel-frequency bands. To enhance 

visualization and interpretability, the Mel spectrogram is 

converted to decibels using the power_to_db function, 

ensuring that intensity values are represented on a logarithmic 

scale. Finally, the spectrogram is plotted using 

librosa.display.specshow, generating an image-like rendering 

where time is depicted along the axis-x, frequency along the 

axis y in Mel scale, and intensity encoded by color. This 

process enables researchers and practitioners to analyze audio 

data in a format akin to images, facilitating tasks such as 

feature extraction, pattern recognition, and machine learning-

based classification without compromising the integrity of the 

original audio information [18].  

We have considered the Audio Mel-Spectrogram 

Transformer model as shown in Figure 2. In this figure, we 

process the input spectrogram into a split spectrogram and 

process each patch through a linear projection. Next, each 

patch is processed through the model shown in Figure 3. Audio 

classification has typically benefitted from convolutional 

neural networks (CNNs) to analyze audio spectrograms and 

assign labels. This research introduces a paradigm shift by 

proposing the AST, the first model to achieve this task entirely 

through an attention-based approach, bypassing CNNs 

altogether. AST demonstrates the effectiveness of this new 

method by achieving SoTA performance on several audio 

classification benchmarks. 

We have developed the model for speech recognition using 

LSTM techniques as shown in Figure 3. To begin, choose an 

appropriate structure for segment-level Mel-spectrograms of 

varying durations to use as CNN inputs. Following the 

methodology of prior studies [19, 20], we extract three spectral 

channels from the original 1D audio signal, analogous to RGB 

color channels in visual data. 

 

 
 

Figure 2. Audio Mel-spectrogram transformer model 

 

As shown in Figure 4, the specific steps to create three 

channels of Mel-spectrogram segments—"static," "delta," and 

"delta-delta"—to feed into AlexNet are as follows: 64 × 64 × 

3. Because they are derived from acoustic Mel-spectrograms. 

In order to generate segment features at a high level, deep 

convolutional neural network (CNN) models are then fed these. 
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Figure 3. Speech emotional model using LSTM techniques 

 

 
 

Figure 4. The three-channel Mel-spectrogram segments     

 

The three-channel Mel-spectrogram segments (dimensions: 

64 × T × 3) resemble an RGB image. This allows for 

convenient resizing to a format compatible with various deep 

learning models, including DenseNet. Figure 4 illustrates the 

process of generating these segments (e.g., 64 × 64 × 3) for 

use as input. 

 

3.2 LSTM model 

 

We have considered the LSTMs model [21] to extract 

different features from data set and analyze through certain 

feature set theoretically. Long short-term memory (LSTM) 

networks convert a given set of feature representations (x1; 

x2;…; xT) into an output set (y1; y2;…; yT) by iteratively 

applying the following formulas from time t = 1 to time t = T 

as follows. We have considered the following equations [22]: 

 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 +𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) (1) 

 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 +𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓) (2) 

 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (3) 

 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑐𝑜𝑐𝑡−1 + 𝑏𝑜) (4) 

 

ℎ𝑡 = 𝜎𝑡tanh⁡(𝑐𝑡) (5) 

where, the activation vectors of the input gate, forget gate, 

memory cell, and output gate in an LSTM model are it, ft, ct, 

and ot, respectively. The input and hidden vectors, xt and ht, 

respectively, are represented by the subscript t, which stands 

for the tth time step; 𝑊𝛼𝛽 is the weight factor as α and β. In this 

case, the weight matrix from input xt to input gate it is denoted 

as Wxi. The bias term of α is denoted by bα, while the sigmoid 

function 𝜎(𝑥) = 1
1 + 𝑒−𝑥⁄ . The basic softmax classifier can 

forecast emotions using the output sequence (y1, y2, …., yT) of 

LSTMs. 

 

 

4. EXPERIMENTS 

 

4.1 Dataset  
 

We have considered an audio dataset with features 

recording categorized into seven basic emotions taken from 

[23]. This speech emotion recognition dataset is available, 

designed to recognize the different feelings people express 

through the way they speak. Its features include recording of 

200 carefully chosen words, each spoken by two actresses of 

distinct ages (26 and 64) to encompass a wider vocal range. To 

explore the full spectrum of human emotions, each word was 

delivered with seven distinct emotional tones: anger, disgust, 

fear, happiness, surprise, sadness, and neutral. This meticulous 
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approach resulted in a comprehensive dataset of 2800 audio 

files (200 words × 7 emotions × 2 actresses). 

For efficient use, the dataset is meticulously organized. It 

follows a clear structure where each actress has a dedicated 

folder. Within each actress's folder, individual subfolders are 

created for each emotion [24]. Here, all 200 spoken words can 

be found in the widely recognized WAV format, ensuring 

compatibility with most audio processing tools. This well-

structured organization facilitates navigation and exploration 

of the emotional nuances within the dataset. 

4.2 Experimental environment 

This experiment utilizes Google Colab for model 

development. Colab provides a convenient platform equipped 

with ample RAM and GPU resources, making it ideal for 

handling the computationally intensive tasks involved in data 

processing and model training. The included image provides a 

visual representation of the sequential model architecture [22, 

25]. We have considered 100 epochs for LSTMs. We employ 

the Train and Val sets for experiments. We have used Python 

packages such as Numpy, Pandas, Seaborn, Librosa, etc.  

4.3 Result analysis 

We have evaluated the proposed approach on the TESS 

dataset to assess the model's effectiveness. we employed a 

dataset and evaluated the model's success in recognizing 

emotions using different measurements, like accuracy and 

how well it finds all the emotions, including the metrics of 

evaluation. the results of our experiments demonstrate the 

effectiveness of the multimodal approach in accurately 

classifying emotions from audio data. The combination of 

MFCC and DenseNet features significantly improves the 

model's performance compared to using either feature alone. 

Additionally, by examining the confusion matrix, we gained 

granular insights into how the model performed for various 

emotions. There are in total of seven labels: “Angry, Disgust, 

Fear, Neutral, Happy, Sad, and PS”. For every emotion, a 

wave from and a spectrogram are generated. Different 

spectrogram with waveforms of emotion types is shown in 

Figures 5-11. The frequency ratio in Hz with respect to time (t) 

is shown in those figures. 

Figure 5. The wave from and a spectrogram for angry 
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Figure 6. The wave from and a spectrogram for disgust 

Figure 7. The wave from and a spectrogram for neutral 
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Figure 8. The wave from and a spectrogram for sad 

 

 

 
 

Figure 9. The wave from and a spectrogram for fear 
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Figure 10. The wave from and a spectrogram for happy 
 

 
 

Figure 11. The wave from and a spectrogram for PS 
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The outcome provides compelling evidence for the efficacy 

of the multimodal approach we proposed for emotion 

recognition from audio data. By integrating low-level spectral 

features with high-level semantic representations, our model 

achieves robust performance across diverse emotional 

expressions. the discussion of implications of our findings and 

potential applications in real-world scenarios such as virtual 

assistants, emotion-aware systems, and mental health 

monitoring [19, 26]. We have considered the LSTM model 

with a sequential approach as shown in Figure 12. 

Figure 12. Correlation matrix of MFCC features 

We have considered two cases of sequential models for 

comparative performance. We have emphasized parameter-

based performance, which made our model novel. We 

considered two cases of LSTM models for comparative 

parameter analysis, as shown in cases 1 and 2. 

Case 1: Old version of LSTM model 

Total Params: 77,160 (301.41 KB) 

Trainable Params: 77,160 (301.41 KB) 

Non- Trainable Params: 0 (0.00 B) 

Case 2: Proposed LSTM model 

Total Params: 305,799 (1.17 KB) 

Trainable Params: 305,799 (1.17 KB) 

Non- Trainable Params: 0 (0.00 B) 

Since 2nd case is our proposed model which performed 

better than 1st case. During evaluation of our model, we 

observed that after epoch 63, our model constantly performed 

better, which made the novelty of our model. 

Our model is focused on the parameter-based model, which 

performs well in training and validation datasets, as per the 

accuracy and loss performance, which is very important. This 

LSTM model with other parameters does not perform well 

compared to our proposed model. Excluding accuracy and loss 

performance, we have considered confusion metrics 

performance, and statistical evaluation for correlation 

coefficient performance is also considered, which is used for 

MFCC features. 

4.4 Evaluation metrices and performance 

Here, we have considered some commonly employed 

metrics for evaluating emotion recognition models: 

(a) Accuracy: This metric represents the total proportion of

correctly classified emotions. A high accuracy indicates that 

the model is generally successful in identifying the emotions 

present in the audio data. 
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(b) Precision: Tells us how accurate the model is in its

positive predictions. It essentially measures the proportion of 

emotions the model identifies as positive that are actually 

correct for a particular emotion. In this experiment, the model 

achieved a precision of 100% in all emotions, excluding angry. 

(c) Recall: This metric focuses on the model's ability to

capture all relevant instances. It represents the proportion of 

true positive predictions (correctly identified emotions) to the 

total number of actual occurrences of that emotion in the 

dataset. The model's recall in this case was 100% excluding 

fear and Happy. 

(d) F1-Score: This metric takes both precision and recall

into account, providing a more comprehensive view of the 

model's effectiveness by considering both aspects. The F1-

score achieved by the model was 100% excluding fear, anger, 

and happiness. 

Table 1. Evaluation metrics and performance 

Emotion Precision Recall F1-Score 

Sad 100 100 100 

Fear 100 47.08 64.02 

Disgust 100 100 100 

Neutral 100 100 100 

Angry 57.91 100 73.34 

Happy 100 50 66.66 

PS 100 100 100 

By analysing these metrics, we got the various evaluation 

performances as Table 1 for recognizing emotions and 

weaknesses in recognizing different emotions. A well-

performing model would ideally achieve high values for all 

these metrics, indicating accurate and comprehensive emotion 

classification. 

4.4.1 Confusion matrix 

We have used two confusion matrices as shown in Figures 

13-14. In this confusion matrix, we have used all types of

emotion elements.

Rows represent the true emotions (actual labels) of the data 

samples. Columns represent the predicted emotions (labels the 

model assigned to the data). Numbers within the values in each 

cell represent the number of examples where the true label and 

the predicted label match. Diagonal cells (often bolded) 

represent how many samples were accurately categorized 

within each group. This matrix suggests a reasonably 

performing model, with most categories having a majority of 

samples classified correctly. 

4.4.2 Category-specific insights 

We can delve deeper into each emotion category by 

analyzing its corresponding row and column. For instance, the 

model might excel at recognizing neutral emotions (high value 

in the "neutral" row and "neutral" column) and happy 

emotions (similarly high values for "happy"). However, it 

might struggle with sadness and disgust (lower values in their 

respective rows and columns). 

4.4.3 Identifying misclassifications 

Off-diagonal values reveal where the model makes mistakes. 

For example, a high value in the cell where the "fear" row 

intersects the "sad" column indicates the model frequently 

confuses fear with sadness. Similarly, a high value where the 

"sad" row meets the "neutral" column suggests the model 

sometimes misclassifies sad emotions as neutral. 

4.4.4 Accuracy and loss performance 

We have considered the accuracy and loss per the model 

performance evaluation as shown in Figures 15 (a) and (b). 

Accuracy offers a high-level understanding of how many 

predictions the model got right. Loss provides more granular 

details about how far off the model's predictions were from the 

correct values, even for incorrect predictions. The accuracy 

achieved was 100%, showing how well the model performs. 

The 100% accuracy came after the model ran many times. 

As per our experiments, after 63 epochs, 100% accuracy was 

achieved. We tried to achieve the best performance as per our 

proposed model. We haven’t taken another dataset till now. 

We will try to test other datasets in the future. 

Our model is used for recognising the emotion through 

speech only. Speech identification is considered through the 

frequency of speech only. The frequency of speech is 

measured as per the proposed model and identifies or predicts 

the emotion as per the confusion metrics. 

Figure 13. Confusion matrix for the proposed model Figure 14. Normalized confusion matrix 

1362



 
(a) 

 

 
(b) 

 

Figure 15. Accuracy and loss performance 

 

4.5 Comparative result analysis 

 

We have compared the parameter-based LSTM model. If 

the parameter value is changed, its corresponding evaluation 

performance will be changed during execution time. Now, we 

considered the comparative parameter values as shown in 

Figures 12(a) and 12(b) and their performance as shown in 

Table 2. 

Thus, the modified LSTM model has better accuracy as 

shown in Table 2, as per the proposed parameters. 

 

Table 2. Accuracy on the training dataset between the 

traditional and modified LSTM models 

 
Epochs Traditional LSTM Modified LSTM 

1 0.1339 0.5693 

2 0.1806 0.9049 

3 0.1458 0.9395 

4 0.1354 0.9507 

5 0.1736 0.9626 

… … … 

95 0.4201 1.0000 

96 0.3924 1.0000 

97 0.3750 1.0000 

98 0.4097 1.0000 

99 0.4062 1.0000 

100 0.4236 1.0000 

4.6 Discussion 

 

In a studio setting, performers mimic the emotions that are 

expressed in speech.  In this sense, listeners typically classify 

the intended emotions appropriately afterwards. As a result, 

performing well on SER activities typically results from 

detecting performed emotions.  Acted emotions, however, are 

so prone to exaggeration that they are unable to accurately 

capture the traits of emotional speech employed by regular 

people in authentic situations. Conversely, speakers' genuine 

emotions are reflected in their spontaneous speech, which 

happens organically in a real-world situation. Since real 

emotions are hard to pinpoint with precision, naming them is 

challenging in spontaneous feelings.  Therefore, compared to 

acted emotions, spontaneous emotions appear to be more 

difficult to identify. An essential component of a simple SER 

system is feature extraction, which extracts the relevant 

elements describing speakers' emotions. 

Since impulsive emotions in real-world settings are 

challenging to detect than other emotions, affective computing 

has focused a lot of attention on emotion recognition in natural 

settings, including the wild. This research suggests a 

multiscale deep (LSTM) architecture for impulsive speech 

emotion detection, which is motivated by the varied impacts 

of varying audio spectrogram lengths on emotion 

identification. As per spectrograms, deep segment-level 

features are first learned using an LSTM model. Lastly, a 

score-level fusion technique is used to fuse various emotion 

identification results that were acquired by LSTM at various 

lengths of segment-level spectrograms. Thus, the proposed 

model is very useful to identify the emotional speech of a 

person. 

We did not test the speech of noisy audio data or 

multilingual speakers’ data, or abnormal person speech. Our 

model may or may not identify the above dataset. But we will 

focus on multilingual speakers’ data to identify the emotion in 

the future.  

 

 

5. CONCLUSIONS 
 

This paper presents a novel and highly effective LSTM 

approach for emotion recognition in audio data. This approach 

achieves superior performance by combining two key 

strengths: MFCCs and features extracted from a pre-trained 

DenseNet model. MFCCs capture essential spectral 

characteristics of speech, like pitch and intensity, while the 

DenseNet model, pre-trained on a massive image dataset, 

learns complex, high-level emotional representations that 

might not be readily apparent in raw audio. By combining 

these strengths, our model overcomes the limitations of 

traditional methods that rely solely on handcrafted features or 

struggle to capture subtle emotional variations. The proposed 

approach has been demonstrably successful. It achieves an 

exceptional accuracy of 100% on the TESS dataset, 

significantly outperforming models that use only MFCCs or 

DenseNet features in isolation. This accomplishment signifies 

a good contribution to the field of affective computing, 

offering a robust and reliable deep learning model for emotion 

recognition in audio data. Additionally, delving into methods 

to improve model interpretability is crucial. For instance, in 

mental health applications, interpreting the model's decision-

making process could provide valuable insights into a user's 

emotional state. Overall, this work paves the way for the 

development of more sophisticated emotion recognition 
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systems that can benefit various fields, covering areas like how 

people interact with computers, helper programs that 

understand us, and tools to track our emotional state. By 

continuing to refine and expand upon this approach, we can 

create systems that can accurately recognize and develop the 

ability to perceive and respond to human emotions, paving the 

way for emotionally intelligent machines that can interact 

more effectively with users. 
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