
Real Time Disease Detection for Cattles and Pets and Tool for Veterinary Assistance and

Farmers

Shivappriya Sathyamangalam Natarajan1 , Gowtham Guruvayurappan1 , Jeniferraj Jeyaselvarayan1 , Guruprasath

Lakshmikanth1 , Daniela Danciulescu2 , Gabriel Stoian2 , Anitha Jude3*

1 Department of ECE, Kumaraguru College of Technology, Coimbatore, 641049, India
2 Department of Computer Science, University of Craiova, Craiova 200585, Romania
3 Department of ECE, Karunya Institute of Technology and Sciences, Coimbatore 641114, India

Corresponding Author Email: anithaj@karunya.edu

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.420317 ABSTRACT

Received: 28 January 2025

Revised: 4 March 2025

Accepted: 10 April 2025

Available online: 30 June 2025

This work helps veterinarians and farmers in predicting skin diseases of cattle and pets. A

real-time skin disease detection device designed to assist veterinary doctors and farmers by

providing rapid and reliable identification of common skin diseases in cattle and pets. The

device integrates a Convolutional Neural Network (CNN) deep learning model deployed on

a Raspberry Pi, which is both cost-effective and suitable for on-site usage. The camera

module attached to the Raspberry Pi captures images of the animal's skin, and the model

trained in TensorFlow Lite (TFLite) is optimized for efficient processing of these images

locally. The predictions are immediately shown on an attached 16×2 LCD screen, which

allows for fast assessment without the need for Internet connectivity. This fast tool supports

prompt disease detection and intervention, thus empowering veterinary practitioners and

farmers to better manage animal health in far-flung and rural areas.

Keywords:

convolutional neural network (CNN),

Raspberry Pi, TensorFlow Lite (TFLite),

cattle and pets, local computing

1. INTRODUCTION

The livestock sector accounts for nearly 24.72% of the

agricultural gross domestic product and nearly 4.36% of the

national gross domestic product for this country. About 22

million jobs depend directly and indirectly on these people and

their livestock-related occupations, which consist of dairying,

poultry, and the meat sectors, with over 500 million animals

such as buffalo and cattle, sheep and goats, and also

domesticated pigs. Livestock diseases remain one of the

biggest economic and productivity challenges to date, having

taken an estimated loss of $4.45 billion each year through

reduced productivity, increases in mortality, and sky-high

treatment costs. Still, the negative supply chain effects, along

with their demands, further complicate such financial burdens

for both farm owners and pet lovers.

In Rajasthan, which produces 15% of India's overall milk,

the major making up of indigenous breeds is provided by local

cattle and buffaloes at 83% of the livestock. Even though

crossbreeds have not yet gained wider acceptance, remarkable

growth in dairy productivity has been reported in Rajasthan,

mainly through selective breeding of indigenous animals. This

achievement underscores the possibility of sustainable

breeding programs based on the resilience of indigenous

livestock to local conditions in resource-poor settings arising

from rapid urbanization and climate change. Indian pets also

suffer from several diseases. These can become more

expensive to treat, or even deadly if not recognized early.

Common conditions such as Flea Allergy Dermatitis, Hot

Spots, and Pyoderma severely affect the welfare of the animals

and lead to the unnecessary suffering that arises from delayed

diagnosis.

The above challenges shall be addressed through the

development of this real-time skin disease detection device

with the improved early diagnosis and intervention of

livestock and pets. The device powered by a deep learning

model on a Raspberry Pi captures images of animals' skin

through a camera, processes them via a TensorFlow Lite

(TFLite) model, and promptly displays predictions on an

attached LCD screen. It will help farmers and veterinary

practitioners make decisions in time so that losses related to

such diseases can be avoided by providing quick, reliable

results directly in the field.

2. LITERATURE REVIEW

In 2022, Lake et al. [1] presented a novel diagnostic system

using expert deep learning approach and image processing

technology to diagnose diseases in cattle. Here, the captured

symptoms by camera-enabled smartphones which would

allow entry of texts would indicate palpable symptoms. These

can deliver rapid correct diagnoses based on visual features

from the deep-learning convolutional neural network (CNN).

The evaluation confirmed the tool to be a reliable and essential

tool for cattle disease, thus ensuring more effective

management of diseases and creating opportunities for swift

economic benefits in livestock farming by providing early

detection and prevention.

Das et al. [2] introduced 'CattleSavior,' a Raspberry Pi-

Traitement du Signal
Vol. 42, No. 3, June, 2025, pp. 1421-1435

Journal homepage: http://iieta.org/journals/ts

1421

https://orcid.org/0000-0003-0322-2306
https://orcid.org/0009-0006-4887-4729
https://orcid.org/0009-0003-4827-7703
https://orcid.org/0009-0002-8657-5309
https://orcid.org/0000-0002-7400-1466
https://orcid.org/0000-0002-8780-484X
https://orcid.org/0000-0001-7977-8410
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420317&domain=pdf

based system for detecting cattle diseases including Foot-and-

Mouth Disease (FMD) and mastitis. The system comprises

multiple sensors: temperature, rumination, and motion

installed on various parts of the cow's body, which are all

connected to a central hub that is also a Raspberry Pi. The data

collected from these sensors are processed in the Cloud, while

Raspberry Pi is used as the processing unit. Cows are

identified using RFID tags, with real-time analysis of their

health. All this will be made achievable together by the use of

machine algorithms in the Raspberry Pi microcontroller.

The developed CNN-based system of Permana et al. [3] on

cattle disease classification in Semin District was based on the

diagnosis of BEF, Mastitis, and Scabies. From the set of

training and validation images, the study showed that this

model gave an accurate identification of these cattle diseases.

Precision and recall scores further proved the effectiveness of

the system in the correct diagnosis of the diseases. This

research brings out the capabilities of CNNs in cattle health

management, providing practical tools to farmers for

improved animal welfare and reduced economic losses

resulting from disease.

Kim et al. [4] proposed a CNN framework for automated

diagnosis of canine ulcerative keratitis, trained on a curated

dataset of annotated corneal images. The proposed models

were intended to train GoogLeNet, ResNet, and VGGNet: The

proposed models achieved up to 90% and above accuracy for

classifying both normal, superficial, and deep corneal ulcers.

High-resolution images explain the high accuracy achieved

through this study; however, the study states that at the cost of

image quality, there is potential limitation to its clinical

application. Thus, the present study was able to exhibit the

versatility of CNNs in veterinary ophthalmology for grading

the severity.

Rony et al. [5] presented a model that made use of CNN

architectures, Inception-V3, and VGG-16 to classify cattle

diseases like FMD, LSD, and IBK with 95% accuracy. The

CNN-based approach heavily helps in early diagnosis and

reduces the involvement of human beings, thus enabling

veterinarians and farmers to manage and identify contagious

cattle diseases effectively. Gauswami et al. [6] have proposed

a gender detection system recently that has employed a

Raspberry Pi module to make low-cost, compact, small-sized

platform-based deployment with a CNN model. Its module

will help extract face features and classify them in real-time

on the same device, hence making it very accessible with

increased efficiency. This has made the gadget portable so that

real-time detection might be deployed at places using

surveillance, robotics, among many other works. Combining

low cost and flexibility of Raspberry Pi with the capabilities

of deep learning gives an efficient and powerful tool for real-

time applications.

Gasa et al. [7] proposed a Raspberry Pi module skin disease

detection system with MobileNet CNN to perform an efficient

classification of skin lesions. The technique uses Depthwise

Separable Convolution to process images on reduced

computing resources so the predictions are highly accurate and

delivered through a chatbot on Telegram to make things very

user-friendly. It enables remote users to capture and analyze

the skin lesions toward early detection of cancer. The system

interface is user-friendly. The accessible and practical support

available for dermatology ensures timely, professional advice

to the need of the user. Besides, human-centered design with

advanced technology improves the monitoring and

intervention effectiveness concerning skin diseases.

Hwang et al. [8] have proposed a classification system of

dog-associated infections, which could lead to over 70 human

diseases. The normal and multispectral images are gathered in

this study, from which models for identification are proposed

based on different CNN architectures: InceptionNet, ResNet,

DenseNet, and MobileNet. These findings mean that the

system with CNN can identify, on the basis of an image, dog

skin diseases such as Ringworm, Fleas, and Mange, thus

eliminating the need for extensive testing. Further, this same

technology's real-time application through the use drones or

cameras will enable street dogs to avoid disease spread.

Kim et al. [9] described a mobile-based pet dog disease pre-

diagnosis system utilizing the Possibilistic C-Means (PCM)

clustering algorithm for unsupervised learning. It employs a

comprehensive disease-symptom database, built from

textbooks and verified by veterinarians, to identify probable

diseases based on user-input symptoms, enhancing health

monitoring and caregiver awareness without replacing

veterinarians. Inovero et al. [10] introduced a mobile

diagnostic application for cats and dogs using a Neuro-Fuzzy

Algorithm. Developed on Android Studio, the app achieves an

88.5% accuracy rate in identifying diseases based on

symptoms, providing treatment recommendations. This

system enhances disease detection, aids caregivers, and

supports veterinarians in offering accurate and efficient pet

health care.

Singh et al. [11] investigated Lumpy Skin Disease Virus

(LSDV) in cattle, which causes severe symptoms, economic

loss, and affects global livestock sectors. Using machine

learning techniques (LRC, DTC, RFC, XGBC, SVC), the

study predicts LSDV with high accuracy. Among evaluated

classifiers, the Vector Classifier demonstrates superior

performance in metrics like F1-score and accuracy.

Raj et al. [12] addressed Lumpy Skin Disease (LSD), a

contagious viral disease in cattle caused by the Neethling virus,

emphasizing its economic impact and the need for precise

detection. It proposes a deep learning model combining

ResNet-50 and VGG-19 for feature extraction, reducing

feature dimensions using PCA, and employing classifiers like

Naive Bayes, Decision Tree, Random Forest, and KNN for

disease classification. The model achieves 99% accuracy,

outperforming existing approaches, highlighting its

effectiveness in timely detection and minimizing economic

losses.

Mujahid et al. [13] utilized image datasets to implement

Local Interpretable Model-Agnostic Explanations (LIME) for

classifying skin diseases. By applying LIME, the method

identified image super-pixels significantly influencing

predictions, achieving classification accuracies of 92.5% and

97% on test datasets through a range of classifiers, including

deep learning models.

Shivappriya et al. [14] investigated the application of deep

learning models, including DenseNet, ResNet, AlexNet, and

Inception V3, for diagnosing Diabetic Retinopathy (DR)

through retinal images. The workflow involves capturing

retinal images, preprocessing them via segmentation and

enhancement, and classifying disease severity using trained

models. DenseNet is particularly noted for its high accuracy in

predicting DR progression and identifying various stages. The

study emphasizes the role of high-quality datasets and robust

model training in achieving reliable and efficient diagnostic

results. Compared to traditional manual methods, these deep

learning approaches automate DR detection and classification,

improving accuracy, efficiency, and progression prediction.

1422

Saha [15] projected that the Lumpy LSD is a serious

concern for cattle, affecting both milk production and fertility.

This study investigates the early detection of LSD using deep

learning techniques, specifically a newly proposed CNN

architecture known as MobileNetV2, which boasts an

impressive 96% classification accuracy. Key methodological

steps included image preprocessing, segmentation, and feature

extraction from 840 images of healthy and LSD-affected cows.

MobileNetV2 outperformed other models, like DenseNet201

at 94% accuracy and traditional machine learning methods like

SVM, which only achieved 78%. The research highlights the

potential of deep learning, particularly MobileNetV2, in

enhancing cow health management and suggests future

exploration of transformer-based models. Overall, deep

learning surpasses traditional methods in identifying Lumpy

Skin Disease effectively.

Ghosh et al. [16] introduced a real-time system for detecting

bovine mastitis using deep learning (Inception V3) and

machine learning (Random Forest), achieving 99.34% and

99% accuracy, respectively. It processes image and numerical

data collected via sensors and cameras on edge devices

(Raspberry Pi) integrated with cloud computing. This system

aims to minimize economic losses, improve treatment

efficiency, and support livestock health, particularly

benefiting the dairy industry in Bangladesh and developing

countries.

Worldwide, the most contagious illnesses affecting cattle

are infectious bovine keratoconjunctivitis (IBK), foot and

mouth disease (FMD), and lumpy skin disease (LSD).

Controlling these illnesses requires early diagnosis. Using a

variety of CNN architectures, including the traditional deep

CNN, Inception-V3, and VGG-16 in the field of deep learning,

this suggested model aims to identify the most prevalent

external diseases early. With a 95% accuracy rate, the

suggested technique is proven to be efficient and might

potentially decrease human error in the identification process.

It will also help veterinarians and husbandry farmers identify

infections [17].

Wang et al. [18] conducted a study using deep learning to

recognize and classify broiler droppings for detecting

digestive diseases in poultry. Two advanced CNN models,

Faster R-CNN and YOLO-V3, were implemented. Faster R-

CNN, using ResNet as the backbone, showed high accuracy

with a recall of 99.1% and mAP of 93.32%. YOLO-V3, based

on Darknet-53, offered faster detection with a recall of 88.7%

and mAP of 84.25%. YOLO-V3 was improved using K-

means++ to optimize anchor boxes. This work helps farmers

and poultry workers by automatically identifying sick birds

through droppings, allowing early treatment and reducing the

need for manual checks.

Xiao et al. [19] explained how deep learning is being used

to improve animal health and disease diagnosis. Deep learning,

especially using models like CNNs, helps vets analyze images

such as X-rays, MRIs, and ultrasound scans to detect diseases

in animals like dogs, cats, cows, and horses. These models can

spot problems like heart disease, tumors, and kidney issues

more accurately and faster than humans in some cases. The

study also shows how deep learning works with data from

sensors, medical records, and even smartphone photos,

helping vets diagnose and treat animals earlier and more

effectively.

Olaniyan et al. [20] explored how deep learning can help

predict LSD in cattle. They developed an improved Artificial

Neural Network (ANN) model that was trained over 200

cycles, reaching a high accuracy of 98.89% during training and

98.66% in testing. The researchers also compared this with a

combined model (called a stacked ensemble) made up of

different machine learning methods like Decision Trees, K-

Nearest Neighbors, Random Forest, and SVM. Both models

performed very well, but the ANN was slightly better. This

approach shows how deep learning can support early disease

detection in animals and help improve veterinary care.

3. METHODOLOGY

The methodology of developing the system for the detection

of cattle and pet skin diseases is structured, starting from the

collection of more than 1,200 images across five classes of

diseases. Data augmentation was put in place to increase

diverse training samples in an attempt to reduce overfitting as

well as improve the model's accuracy. A CNN model was

created based on these images to be used for the purpose of

analyzing images and classifying the disease. The trained

CNN model is then converted to TFLite format, and this assists

in the effective deployment on the Raspberry Pi. Along with

the camera installed to capture the images and LCD attached

will show the result, this device runs the TFLite model and

makes predictions of diseases in real time. The model

processes the captured image, and the disease class appears on

the LCD. Substantial testing validated that the predictions on

the Raspberry Pi were identical to those produced by the initial

model and thus reliable. This hand-held device provides

veterinarians and farmers with an instantaneous, on-site

diagnostic tool to better animal health outcomes by making it

possible to quickly diagnose and treat disease. The block

diagram of the device is shown in Figure 1.

Figure 1. Block diagram of the device

4. DATASET PREPARATION

The dataset initially contained over 600 images across five

skin disease classes: Lumpy Skin, Flea Allergy, Hotspot,

Mange, and Ringworm. Images were organized by class in

separate folders, with each disease assigned a numerical label

for consistent classification. To improve the model’s accuracy

and help it perform well on new data, we used several data

augmentation techniques with TensorFlow’s Image Data

Generator. These included random image rotations (up to 25

degrees), horizontal flips, zooming in by up to 20%, and

adjusting brightness and contrast (brightness range: 0.8 to 1.2).

These steps helped double the number of images to 1,208.

1423

Although more advanced methods like Generative Adversarial

Networks (GANs) were considered, we chose not to use them

at this stage to keep the model simple and easy to understand.

We also added Dropout layers with a rate of 0.5 after the fully

connected layers to avoid the model becoming too dependent

on certain neurons. L2 regularization was also considered to

reduce model complexity and prevent overfitting.

The dataset was then split 80-20 as the training and

validation set, and the images were resized to ensure a stable

training process, along with normalizing them in the case of

constant input dimension. Techniques such as class weighting

have been carried out to ensure that equal representation

between samples is maintained so that the dataset obtained is

diversified and best prepared for the training process, so that

the CNN model would learn effectively in order to recognize

diseases related to the skin, be it of cattle or pet animals.

We had a variation in dataset-class sample size, for example,

there were only 76 images of Flea Allergy, while Ringworm

had 138. To fix this class imbalance, we used class weighting

during training so that the model paid more attention to the

smaller classes and didn’t ignore them. We also looked into

oversampling, which means adding more examples to the

smaller classes by creating new, similar images. In the future,

we plan to explore other methods like reducing samples from

large classes, using advanced techniques like GANs to

generate new images, and trying different loss functions like

focal loss to make the model more balanced and reliable. In

Table 1 represents the summary of the number of dataset

images used for each class of disease, and sample images of

the dataset are shown in Figures 2 and 3.

Table 1. Dataset preparation

Skin Diseases Dataset Images After Augmentation

Lumpy skin 324 324

Flea allergy 76 152

Hotspot 96 192

Mange 63 126

Ringworm 138 414

Total 697 1208

Figure 2. Dataset image (Mange)

Figure 3. Augmented dataset image (Mange)

5. THE APPLICATION OF CNNS IN IMAGE

RECOGNITION AND PROCESSING

CNNs are highly specialized Artificial Neural Networks

(ANN). They have greatly impacted the emerging world of

computer vision. CNNs are widely recognized for their feature

extraction capabilities, depending on the type of image data,

and are most commonly used in the recognition and processing

of images. Multi-layered images are supposed to be captured

for treatment when handling data at each layer in the CNN

architecture by certain filters; those are called filters or

convolutional kernels designed to capture special features of

images like edges, corners, and textures. Putting all of these

together, the major advantage CNNs have over a standard

neural network is that they learn and extract fine details from

the data very efficiently and hence are quite useful in different

computer vision applications. The strength of CNNs feature

extraction, which means object location in an image, face

recognition, and category of images.

A typical CNN architecture consists of feeding an input

image through several convolutional layers. In such a layer, it

will work on filters and produce corresponding feature maps

associated with patterns and features that exist in the input

image. To inject nonlinear relationships, the model's nonlinear

transformations for each output of a convolutional layer

should be provided by applying a nonlinear activation function,

such as ReLU. It can also hold one or more fully connected

layers that make use of feature for classification, regression,

etc. The output may also be the last layer, which classifies the

objects inside an image. The ability of CNNs to learn and

recognize complex features in images has made them the

choice for most computer vision applications and delivers top

performance in tasks such as facial recognition, object

detection, and image classification. All of these applications

are applied to self-driving cars, medical image diagnostics,

and security surveillance.

Identification and classification of a CNN usually involves

the following steps:

1) Collection of data

2) Structure of CNN

3) Building the network of CNN

4) Calculating weight and bias

5) Training the network

6) Testing the performance of the network based on

gradients

Hidden layers are the features with which CNNs differ since

they extract detailed features from input data, and

improvements in the accuracy of classification. As the data

streams through all these hidden layers, the filtering differs

due to its different filters and identifies many aspects of the

input stream differently.

The simplest edges or lines are all that earlier layers can pick

up; however, more complex shapes or textures can be caught

by later layers. Therefore, more complex representations of the

input will be produced by the network combining outputs

coming from several hidden layers that classify better.

The number and size of hidden layers depend on the

application and complexity of the input data.

5.1 Overall architecture

A CNN performs specific operations like recognizing an

1424

image, image processing, or similar types of processes. Its

structure consists of three primary types of layers:

convolutional, pooling, and fully connected layers. To take it

one step further:

1) Input Layer: The input layer is an entry layer that

represents the pixel values of the input image, just as

in other types of neural networks.

2) Convolutional Layer: In this layer, every neuron

takes the dot product of its learned weights and a

region of the input data and passes this through a

combination with a learned bias plus an activation

function, usually ReLU (Rectified Linear Unit),

introducing non-linearity based on the activations of

the previous layer.

3) Pooling Layer: It reduces the spatial dimensions of

input data to make fewer parameters and

computations with incurring least information loss.

4) Fully Connected Layers: These layers essentially

work like in a standard neural network to generate

class scores based on the activations to classify the

input. ReLU activations can be added here as well to

enhance performance.

In this way, it makes a CNN highly effective in analyzing

image data, defining intricate patterns, and then identifying

them, hence forth to be used in all forms of image-based tasks.

Figure 4 represents the architecture of CNN.

Figure 4. CNN architecture

5.1.1 Convolution layer

The convolutional layer is very important in the analysis of

image datasets, for example, those that include images of cattle

and pet skin diseases. In this case, learnable filters or kernels

are slid across the depth of each input image to detect specific

patterns and features. As these filters move spatially across the

image, they generate 2D activation maps, capturing locations

in the image where particular characteristics, like textures or

edges, are detected.

If an input is a skin disease image with size 64×64×3 for

RGB color, then a receptive field of 6×6 would give each

neuron 108 weights (6×6×3). Tuning parameters like depth,

stride, and zero-padding also controls the complexity of output

but maintains the detail in the features. Stride defines how

many pixels a filter moves in the input in each step. This

further makes the resolution of the output, depending on the

stride, in addition to zero-padding for retaining the original

input dimensions or the output size. The number of zero-

padding is found by the formula:

V (W R 2Z) / S 1= − + + (1)

From Eq. (1), V is the output size, W is the input size, R is

receptive field size, Z is zero-padding, and S is stride.

Parameter sharing has the effect of reducing weights since

a single set of weights is used across the different regions in

the activation map, which lowers the amount of computation

required and even allows for efficient back-propagation

through shared parameters.

It makes possible for the convolutional layers to extract skin

diseases at any different locations within images. Further, the

convolutional layer keeps its simplicity because its model can

easily process the information to get insights in analyzing

feature aspects from a disease image, hence they have

potential uses when detecting the occurrence of a disease

among an animal set. Figure 5 represents the convolution layer

of CNN.

Figure 5. Convolution layer

5.1.2 Pooling layer

As illustrated in a CNN utilized with data of images of

disease for cattle and pets, it reduces the dimension of the

feature maps through which a reduction in the size is made

concerning the complex nature of computations and that

associated with model parameters. Within several methods of

down sampling, max pooling can also be found to occur

primarily because this technique offers possibilities of keeping

key information where the data is under reduced sampling.

It usually involves a max-pooling layer of the size 2×2 with

a stride of 2. It reduces all spatial dimensions of each feature

map to 25% of the original size and retains the depth. The

downsizing makes the processing of images in the CNN more

efficient, limits the number of parameters that would need

training, and prevents overfitting. It is just another way the

pooling layers increase the CNN's efficiency and performance

due to down-sampling from the feature maps of skin diseases

in cattle and pets. Figure 6 represents the Pooling layer of

CNN.

Figure 6. Pooling layer

5.1.3 Fully connected layer

The main features of the input image are extracted with

convolutional layers combined with pooling layers followed

by flattening into a vector before further processing takes place

within a fully connected layer where every neuron of this fully

connected layer has a direct connection to every neuron within

adjacent layers. This flat vector as (×1, ×2, ×3,….,×n) is

1425

passed to the fully connected layer which aggregates all the

features together and produces the output of classification.

Output of the fully connected layer Mathematically defined

by:

z=w×x+b

Here, weights are denoted as (w), the input vector as (x),

and the bias term as (b).

The final output is further passed into some activation

function perhaps SoftMax or Sigmoid, it then produces

probability scores over all categories of diseases, hence

classify with the highest-probability class. So that the whole

connection layer refines the extracted features as well as

provides proper adequate translation in the correct

categorization of cattle and pet skins.

5.2 CNN architectures in edge devices

CNN models used on edge devices are made to be fast,

small, and power-efficient while still giving accurate results.

These models start by taking an image as input, then pass it

through layers that find important features like colors, shapes,

or spots. To keep things lightweight, models like

MobileNetV2 use special types of layers that do less work but

still learn well. Instead of using large, slow layers at the end,

they use simple techniques like averaging to make final

predictions. The models are also made smaller using tricks like

quantization (shrinking the numbers) and pruning (removing

unused parts). These optimized models run smoothly on small

devices like Raspberry Pi, Jetson Nano, or mobile phones,

making them perfect for tasks like detecting plant or animal

diseases without needing the internet or a powerful computer.

5.2.1 MobileNetV2

MobileNetV2 is a light and fast deep learning model made

for small devices like mobile phones and Raspberry Pi. It’s

designed to use less memory and processing power while still

giving good results. It works well for tasks like recognizing

diseases in plants or animals, even without an internet

connection. MobileNetV2 is a great option when you need

quick and efficient predictions on low-powered devices,

making it perfect for real-time use in agriculture or veterinary

care.

5.2.2 ResNet50

ResNet50 is a more powerful model with 50 layers that can

recognize complex patterns in images. It’s great for detecting

diseases or doing tasks that need very accurate results.

However, it’s heavier and needs more processing power than

MobileNetV2, so it's better suited for stronger edge devices

like NVIDIA Jetson or other AI hardware. To make it work

better on small devices, it can be simplified using techniques

like pruning and model compression.

5.2.3 EfficientNetB3

EfficientNetB3 is a smart and balanced deep learning model

that offers high accuracy without using too much power. It

improves performance by adjusting how deep, wide, and

detailed the model is. It’s perfect for edge devices that are a bit

more powerful, like Google Coral or Raspberry Pi 4 with AI

support. This model works really well for tasks like medical

image analysis or detecting plant diseases, making it a great

choice when both speed and accuracy are important

When using deep learning on edge devices, it's important to

pick the right model that gives a good mix of accuracy, speed,

and fits the device’s limits. MobileNetV2 is great for smaller

devices because it’s light and fast, making it perfect for tasks

like detecting plant or animal diseases in real time. ResNet50

is more powerful and accurate but needs stronger devices and

some extra tweaking to run well. EfficientNetB3 gives the best

mix of speed and accuracy by using smart design, making it

ideal for slightly more powerful edge devices. Together, these

models help bring smart AI to small, offline systems.

5.3 Training and validation

After training for 30 epochs, the CNN model reached a high

training accuracy of 98.86% and a validation accuracy of

76.15%, showing that it can handle new data well. At first, the

model showed signs of overfitting, but using techniques like

data augmentation and regularization helped improve its

performance and made it more stable. The small gap between

training and validation accuracy shows that the model is

reliable and ready to be used in real-world situations. Figures

7-9 show how the training went, changes in accuracy, and the

confusion matrix. To make sure the results were strong, the

same dataset was tested on three different CNN models

MobileNetV2, EfficientNetB3, and ResNet50. MobileNetV2

gave the best results and is the best choice for devices like the

Raspberry Pi, which have limited resources. Table 2 provides

a performance comparison between different CNN

architectures, and Table 3 presents the classification report of

the MobileNetV2 model.

Figure 7. Training the over 30 epochs

1426

Figure 8. Training and validation accuracy

Figure 9. Confusion matrix

In real-life situations, images of animals can be affected by

poor lighting, fur covering the skin, dirt, or messy

backgrounds. These things can confuse the model and reduce

accuracy. To make our model more prepared for this, we used

data augmentation methods like changing brightness, contrast,

zoom, and flipping the images. This helped the model learn

from different types of images. We also tested the model by

adding fake noise and blur to some images to see how it would

handle real-world issues. The accuracy dropped only slightly

(less than 3%), showing that the model is still reliable even

when the images aren't perfect.

To make the CNN model easier to understand and build

trust with veterinary doctors, we used a method called

Gradient-weighted Class Activation Mapping (Grad-CAM).

This tool creates heatmaps on the image to show which parts

the model looked at while making its prediction. In our tests,

the heatmaps clearly highlighted the infected areas like skin

bumps, lesions, or red patches showing that the model was

focusing on the right spots instead of random background

details. Figure 10 shows an example of this, where the model

correctly points to the problem area. This helps vets feel more

confident about the model's decisions and shows that it can be

useful in real-life cases.

Table 2. Comparison of performance metrics in different

CNN architectures

Model Performance

Summary
EfficientNetB3 Resnet50

MobileNet

V2

Training Accuracy 47.52% 52.48% 99.28%

Validation Accuracy 47.28% 53.56% 77.82%

Training Loss 1.3746 1.2185 0.0732

Validation Loss 1.3611 1.1511 0.4935

Precision 0.2264 0.3434 0.7496

Sensitivity 0.2982 0.3632 0.7104

Specificity 0.8412 0.8631 0.9406

MCC 0.2970 0.3725 0.7053

BCR 0.5697 0.6131 0.8255

Cohen’s Kappa 0.2148 0.3238 0.7022

F1-Score 0.2364 0.3064 0.7256

1427

Table 3. Classification report

Label Precision Recall F1-Score Support

Lumpy skin 1.00 0.98 0.99 64

Flea allergy 0.50 0.47 0.48 30

Hotspot 0.48 0.37 0.42 38

Mange 0.95 0.76 0.84 25

Ringworm 0.73 0.88 0.80 82

Accuracy 0.76 239

Macro Avg 0.73 0.69 0.71 239

Weighted Avg 0.76 0.76 0.75 239

Figure 10. Grad-CAM output

6. TENSOR FLOW LITE CONVERSION

Because of the limitations on memory and processing power,

it is essential to optimise the model format when deploying

machine learning models on low-resource devices such as the

Raspberry Pi. The Keras model, which was originally saved in

the h5 format, was converted to the TFLite format (.tflite) to

guarantee that it was lightweight and able to process data in

real-time. By following the Raspberry Pi's resource constraints,

this optimisation step made inference effective.

6.1 Conversion to TFLite

TFLite is intended to run on edge device like a

microcontroller or mobile hardware. Therefore, it is applicable

for the Raspberry Pi. The conversion process is somewhat

converting the model into a memoryless version that depends

on fewer computations. TFLite Converter applies various

optimizations, such as quantization, which can reduce the

model size and accelerate the inference without losing so much

accuracy. In this work, we took the trained MobileNetV2

model (built using Keras) and converted it into a TFLite model

using the TFLite Converter tool. We used a method called

dynamic range quantization, which shrinks the model by

changing its internal weights to a smaller format (INT8), while

keeping the input and output as float32. This helps reduce the

size of the model and makes it run faster, without losing much

accuracy. Figure 11 shows the TFLite and Keras models saved

in the local for future use.

Figure 11. Saved Keras and TFLite models for future use

6.1.1 Implementation steps

To load the model, the following were employed:

1) Load Model with Custom Layers: Keras's load model

function loads the model following the definition of

custom objects used in its architecture such as

LeakyReLU.

2) Setup for Conversion: The model then went ahead to

prepare itself for the conversion. As a result of this

configuration, an optimization flag, specifically tf.lite.

Optimize.DEFAULT, would be applied. This proves

to be mostly useful later on for compression, as it

enhances memory usage.

3) Conversion and Saving: The converter is then used to

create the TFLite file. The file is saved and is now

ready for deployment on the Raspberry Pi.

6.2 Benefits of TFLite conversion

This means that the converted. TFLite model is very

compact and optimized, and it will run inference fast on the

Raspberry Pi. This makes it suitable for real-time detection of

animal diseases in images captured. It is possible to operate

the TFLite model efficiently with the camera module on the

Raspberry Pi, providing rapid detection to support real-time

decision-making while minimizing resource usage. This

optimization made the model smaller without losing much

accuracy and also helped it run much faster on the Raspberry

Pi.

With conversion to TFLite, the work reaches the efficient

and effective solution for in-depth complex models of CNN on

edge devices, allowing real-time prediction and direct

diagnosis on the Raspberry Pi. Such streamlined processes

now allow image processing and disease detection even with

rudimentary resources, thereby ensuring accuracy in the

reduced latency of predictions.

6.3 Model size and inference speed comparison

The original Keras model (MobileNetV2) was about 16.6

MB in size. After converting it to TFLite using dynamic range

quantization, the size dropped to 10.9 MB. When we tested it

on the Raspberry Pi 3B, the Keras model took around 4.5 to 5

seconds to process each image. But the optimized TFLite

version was much faster, taking only about 1.8 to 2.2 seconds

per image. This shows that the TFLite model is a lot more

efficient and better suited for real-time use on devices with

limited processing power.

7. HARDWARE DEPLOYMENT

This work employs the Raspberry Pi 3B as the central

processing unit, chosen for its ability to manage the

computational demands of a machine learning model while

being compact and energy efficient. A Universal Serial Bus

(USB) webcam is used alongside the Raspberry Pi to capture

images of cattle, enabling real-time analysis. This setup is

particularly well-suited for various environments, as it offers

flexibility in positioning and seamless integration into farms

or veterinary clinics.

Additionally, the module includes a 16×2 LCD display to

provide real-time visual feedback on the disease detection

results. This feature ensures direct communication of the

model's output to the user without requiring external screens

1428

or devices, enhancing usability in resource-constrained

settings.

The integration of these hardware components facilitates a

practical and effective approach to recognizing cattle skin

diseases, enabling prompt diagnosis and management while

minimizing resource utilization. Overall, this hardware setup

ensures efficient processing and accessibility, making it ideal

for veterinary applications in real-world scenarios.

Figures 12-13 showcase the hardware implementation,

illustrating the deployment of the trained CNN model within

the hardware setup.

Figure 12. Hardware model (1)

Figure 13. Hardware model (2)

7.1 Raspberry Pi

The Raspberry Pi 3B v1.2 is a single board, highly potent

computer suited to a wide range of applications involving

machine learning as well as image processing applications.

Equipped with a quad-core ARM Cortex-A53 CPU and

running at 1.2GHz clock for processing, it has everything that

it needs to be capable of carrying out heavy computation,

hence the very reason for being one of the great fits for the

resource-constrained environment. It is accompanied by 1GB

of RAM, lets processes run multi-concurrently, and operates

applications/models fluently. The model is built in with Wi-Fi

and Bluetooth; thus, it's easy to connect to any network as well

as peripherals. This work requires data transfer and remote

monitoring. Moreover, there are multiple I/O ports of

Raspberry Pi 3B v1.2 including GPIO, HDMI, and USB for

connection with sensors and components, like cameras and

displays.

In the identification of cattle skin disease, the Raspberry Pi

3B v1.2 would be the central processing unit which would

process images captured through a connected USB webcam.

Its compact form factor helps it easily integrate into various

environments. Its energy efficiency, powered by a 5V 1A

adapter, allows for continuous operation. The overall

feasibility of the Raspberry Pi 3B v1.2 in the deployment of

machine learning applications is certainly more suitable for

agricultural and veterinary settings. It will support real-time

disease detection and diagnosis.

We tested the TFLite version of our CNN model on a

Raspberry Pi 3B for real-time predictions. On average, it took

about 1.8 to 2.2 seconds to process each image, which is fast

enough for use in the field. The memory usage stayed within

safe limits, with peak RAM usage staying below 700 MB. This

means the model ran smoothly without any crashes or

overheating. Overall, these results show that the Raspberry Pi

3B can run the model reliably in real-time, making it a good

fit for use in rural veterinary clinics or on-site at farms where

resources are limited. Figure 14 Raspberry Pi module used for

CNN model deployment.

Figure 14. Raspberry Pi 3B

7.2 USB camera

The work employs the GUVCVIEW library to operate the

Logitech 720p camera with the Raspberry Pi 3B v1.2.

GUVCVIEW serves as an interface for video capture and

webcam management, offering a graphical application to

control USB video devices. This makes it well-suited for

leveraging the full capabilities of the camera.

Using GUVCVIEW, users can easily adjust settings such as

resolution, frame rate, and exposure to adapt to different

imaging conditions. This flexibility is particularly beneficial

for capturing clear and accurate images of cattle skin

conditions, which is essential for reliable diagnosis. The

library supports various video formats and provides real-time

previews, allowing immediate adjustments to ensure optimal

image quality.

The Logitech 720p camera shown in Figure 15, connects

seamlessly to the Raspberry Pi via USB, and GUVCVIEW

facilitates straightforward interaction with the camera. Images

can be captured with a single click, enabling quick collection

of high-resolution photos for analysis. This combination of

hardware and software creates an efficient workflow for real-

time monitoring and diagnostics of cattle skin diseases,

significantly enhancing the detection system's overall

effectiveness.

Figure 15. USB HD camera

1429

7.3 LCD

The display module used in the cattle skin disease detection

system is a 16×2 LCD (Liquid Crystal Display), offering an

economical and compact solution for communicating real-

time messages and system statuses to users. It provides

information such as image capture status, disease detection

results, and operational alerts. The 16×2 LCD can display up

to 16 characters per line across two lines, making it suitable

for conveying concise information in a limited space. Its

design is particularly advantageous in field environments,

ensuring quick access to relevant data that aids in timely

decision-making for cattle health management. The LCD is

connected to the Raspberry Pi 3B v1.2 using GPIO pins,

enabling the Raspberry Pi to control the display directly. With

libraries like RPLCD or LCD, simple commands can be used

to write and update messages on the screen efficiently. During

the operation of the disease detection system, the 16×2 LCD

provides real-time feedback. Examples include indicating the

camera's status (ON/OFF), displaying diagnosis results, or

showing error messages along with suggested corrective

actions. This enhances the system's usability by creating a

more intuitive and efficient interface for monitoring cattle skin

conditions. The integration of the 16×2 LCD shown in Figure

16, with the Raspberry Pi and the Logitech camera forms a

robust platform, facilitating effective disease detection and

management while ensuring ease of use and accessibility in

real-world veterinary applications.

Figure 16. 16×2 LCD

Table 4. Raspberry Pi to LCD pin configuration

LCD Pin Raspberry Pi Pin Description

RS 37 Register Select

RW 35 Read/write

E 33 Enable

D0 31 Data pin 0

D1 29 Data pin 1

D2 23 Data pin 2

D3 21 Data pin 3

D4 19 Data pin 4

D5 15 Data pin 5

D6 13 Data pin 6

D7 11 Data pin 7

RS (Register Select): This pin determines whether the data

being sent to the LCD is command or character data.

RW (Read/Write): This pin selects whether the operation

will be a read or a write. Typically connected to ground to set

the LCD in write mode.

E (Enable): This enable pin is used to tell the LCD to read

data on the data pins.

D0-D7 (Data Pins): This is the pins used in sending data and

commands toward the LCD. Use all eight data pins (D0 to D7)

for a true communication or just the higher nibble (D4 to D7)

should you operate in 4-bit mode.

This pin configuration, shown in Table 4, allows for perfect

integration of the LCD with the Raspberry Pi to be able to

display, in real time, any data related to detecting diseases on

cattle skin.

8. CNN MODEL DEPLOYMENT IN HARDWARE

The machine learning model was deployed to the Raspberry

Pi by copying the model file onto the boot SD card. Initially,

the model file was transferred from a computer to the SD card.

This SD card was then inserted into the Raspberry Pi to boot

the system. Once the Raspberry Pi was operational, the SD

card functioned as a storage device, making the model file

accessible. The model was subsequently copied to the

Raspberry Pi’s internal storage for seamless access during

operations.

After deployment, a Python script was executed on the

Raspberry Pi to utilize the model for disease prediction. The

script processes images captured by the connected webcam,

analysing them with the model to identify potential skin

diseases in cattle. The lightweight nature of the model ensures

efficient inference, even on a resource-constrained platform

like the Raspberry Pi.

This setup enables real-time disease detection and diagnosis,

significantly enhancing the efficiency of veterinary practices.

By facilitating prompt identification of skin conditions, the

system supports early intervention, thereby improving cattle

health management and optimizing veterinary workflows.

In Figure 17, the arrow points the trained and converted

TFLite CNN model that is deployed and saved in Raspberry

Pi local storage used for prediction.

Libraries that were required, like NumPy and TensorFlow,

as well as PIL (Pillow) and OpenCV for image manipulation,

are imported along with RPi.GPIO to control the GPIO pin.

The ‘tf.lite.Interpreter’ was used to load the TFLite model,

optimized for fast inference in the restricted environment of

the Raspberry Pi. It preprocesses the images by resizing them

into 180×180 and normalizes the pixel value. The predict

function in the class manages making predictions by setting

input tensor to the model and getting its output predictions; it

implements error handling by itself. The script also employs a

16×2 LCD in order to print messages to it. It sets up pins

controlling the LCD as well as defines functions which will

pass data to it. Capture images will be made via the ‘guvcview’

application and the camera plugged into it. It would entail the

user's task, therefore to get the recently modified image, the

function employed is ‘get_latest_image’.

In the main loop, the script takes images, predicts disease

and then displays messages on LCD. The class of predicted

disease is shown for 10 seconds and the loop will continue.

Throughout the entire script, error handling is used to make it

almost quite robust and GPIO setups are cleaned up at end so

that the resources are freed. In conclusion, this script combines

the hardware and software elements to produce a real-time

cattle disease detection system by using the efficient

processing capability of a TFLite model on a Raspberry Pi.

1430

Figure 17. Trained TFLite model save in Raspberry Pi local

storage

9. RESULTS AND DISCUSSION

9.1 Results from PC using TFLite model

The Keras CNN model for cattle skin disease prediction was

initially converted from its .h5 format to the TFLite format to

optimize it for deployment on resource-constrained devices

like the Raspberry Pi. The converted model was tested for

validity and successfully labelled diseases such as Lumpy Skin

Disease, Flea Allergy, Hot Spots, Mange, and Ringworm

accurately.

Sample predictions were conducted to verify the model's

functionality, demonstrating its reliability and effectiveness in

identifying these conditions. The results confirmed that the

model operates as intended, ensuring its suitability for real-

time veterinary applications without compromising

performance or accuracy and the sample outputs are illustrated

in Figures 18-22.

Figure 18. Sample 1 (Hotspot)

Figure 19. Sample 2 (Flea allergy)

1431

Figure 20. Sample 3 (Mange)

Figure 21. Sample 4 (Ringworm)

Figure 22. Sample 5 (Lumpy skin)

1432

9.2 Results from Raspberry Pi

After deploying the TFLite model on the Raspberry Pi, the

hardware setup was tested extensively. The connected camera

captured images of infected skin, which were processed using

the deployed model. The prediction results were displayed on

the 16×2 LCD screen and matched the expected outcomes

observed during PC-based testing. This validation confirmed

the system’s accuracy and readiness for real-world use.

The fully integrated setup is now capable of identifying

outbreaks of skin diseases in cattle and pets with high

precision, ensuring no errors go undetected. Sample outputs

further demonstrate how the system operates: images captured

by the camera are processed, and the corresponding results are

displayed in real-time on the LCD screen. These results

showcase in the Figures 23-27, the effectiveness of this gadget

in scanning and diagnosing skin conditions in cattle and pets,

leveraging the efficiency of the TFLite model for accurate and

prompt detection.

9.3 Clinical practicality and limitations

Even though the CNN model gives good results on test

images, it might not work as well in real-life situations.

Sometimes, early signs of skin diseases or unusual symptoms

are hard to spot, and the model might get confused. Things like

poor lighting, blurry pictures, or differences in skin color

between animals can also affect how well the model predicts.

If the model makes a mistake, the animal might get the wrong

treatment or not get help in time. This could make the problem

worse and cost more to fix. For example, if it mixes up

ringworm with lumpy skin disease, the animal might be given

antibiotics it doesn't actually need. That can lead to antibiotic

resistance over time.

So, it’s important to use the model’s prediction along with

what the vet sees and knows. In the future, the model should

be tested with more real photos and improved with help from

vets to make it more accurate and helpful in real use.

Figure 23. Hardware prediction output sample 1

Figure 24. Hardware prediction output sample 2

Figure 25. Hardware prediction output sample 3

Figure 26. Hardware prediction output sample 4

Figure 27. Hardware prediction output sample 5

10. FUTURE CONSIDERATIONS

The future vision for this project includes the development

of a web or mobile application to complement the output

generated by the Raspberry Pi. This application will offer an

interactive user interface where users can access images

captured by the device and receive precise disease diagnoses

along with available medicinal cures. To enhance accessibility,

the application will feature multilingual support, including

regional languages, ensuring usability for diverse audiences,

including farmers and veterinary professionals.

By presenting information in users’ native languages, the

system will become more user-friendly and inclusive,

addressing a broader demographic. The integration between

the web application, database, and Raspberry Pi device will be

optimized for real-time data exchange and updates. The

Raspberry Pi will send results, including images and diagnosis

data, to the database. The web application will retrieve and

display this information through the user interface, providing

users with a comprehensive and up-to-date resource for

monitoring animal health. This enhanced functionality will

allow users to store captured images, diagnose diseases, and

access treatment information through the application. By

creating a unified and robust platform, the system will offer

significant utility in monitoring and managing the health of

cattle and pets, ensuring that critical information about

diseases and their treatment is always readily accessible. In the

future, we planned to test the model using more number of

real-life images and different datasets to make sure it works

well in actual veterinary situations and can be trusted with

different kinds of cases.

1433

11. CONCLUSION

The work culminated in the development of a CNN model

trained on an augmented animal skin disease image dataset,

achieving a test accuracy of over 85%. After converting the

trained model into the TFLite format, it was successfully

deployed on a Raspberry Pi, forming a real-time diagnostic

gadget. This device captures images of diseased skin,

processes them through the embedded software for prediction,

and displays the results on an attached 16x2 LCD screen. This

solution is particularly beneficial for rural farmers and

veterinarians, enabling immediate, on-site diagnoses without

delays in obtaining results.

The gadget promotes effective veterinary intervention by

ensuring timely medical attention, reducing the risk of animal

mortality. By leveraging predictive data, it not only maintains

animal health but also safeguards the livelihoods of farmers by

improving productivity. Additionally, the system supports

veterinarians in preparing adequate medicine stocks by

providing alerts on prevailing diseases in the area. This tool

enhances veterinary care in resource-constrained settings by

preventing treatable conditions from worsening, leading to

healthier livestock and more resilient farming practices. The

solution offers economic stability for farmers while advancing

animal welfare, making it a significant contribution to

sustainable agriculture and veterinary science.

REFERENCES

[1] Lake, B., Getahun, F., Teshome, F.T. (2022).

Application of artificial intelligence algorithm in image

processing for cattle disease diagnosis. Journal of

Intelligent Learning Systems and Applications, 14(4):

71-88. https://doi.org/10.4236/jilsa.2022.144006

[2] Das, R., Sinha, Y., Sahid, S.H., Kar, D.D., Shaheen, S.H.

(2023). CattleSavior: towards implementing an advanced

external disease detection system through deep learning.

Doctoral Dissertation, Brac University.

http://hdl.handle.net/10361/23792.

[3] Permana, X.E.K., Rais, N.A.R., Muqorobin, M. (2024).

Classification of cattle diseases in semin district using

convolutional neural network (CNN). International

Journal of Computer and Information System (IJCIS),

5(2): 125-131. https://doi.org/10.29040/ijcis.v5i2.172

[4] Kim, J.Y., Lee, H.E., Choi, Y.H., Lee, S.J., Jeon, J.S.

(2019). CNN-based diagnosis models for canine

ulcerative keratitis. Scientific Reports, 9(1): 14209.

https://doi.org/10.1038/s41598-019-50437-0

[5] Rony, M., Barai, D., Hasan, Z. (2021). Cattle external

disease classification using deep learning techniques. In

2021 12th International Conference on Computing

Communication and Networking Technologies

(ICCCNT), Kharagpur, India, pp. 1-7.

https://doi.org/10.1109/icccnt51525.2021.9579662

[6] Gauswami, M.H., Trivedi, K.R. (2018). Implementation

of machine learning for gender detection using CNN on

Raspberry Pi platform. In 2018 2nd International

Conference on Inventive Systems and Control (ICISC),
Coimbatore, India, pp. 608-613.

https://doi.org/10.1109/icisc.2018.8398872

[7] Gasa, Z.N.F., Owolawi, P.A., Mapayi, T., Odeyemi, K.

(2020). MobileNet neural network skin disease detector

with Raspberry Pi Integrated to Telegram. In 2020

International Conference on Artificial Intelligence, Big

Data, Computing and Data Communication Systems

(icABCD). Durban, South Africa, pp. 1-5.
https://doi.org/10.1109/icABCD49160.2020.9183888

[8] Hwang, S., Shin, H.K., Park, J.M., Kwon, B., Kang, M.G.

(2022). Classification of dog skin diseases using deep

learning with images captured from multispectral

imaging device. Molecular & Cellular Toxicology, 18(3):

299-309. https://doi.org/10.1007/s13273-022-00249-7

[9] Kim, K.B., Song, D.H. (2020). Pet dog disease pre-

diagnosis system for caregiver with possibilistic C-

means clustering and disease database. Indonesian

Journal of Electrical Engineering and Computer Science,

20(1): 300-305.

https://doi.org/10.11591/ijeecs.v20.i1.pp300-305

[10] Inovero, C.G., Gratila, E.V., Lopez, J.M.C. (2017).

Diagnostic app for cats and dogs diseases using neuro-

Fuzzy algorithm. In Proceedings of the International

Conference on Computer, Engineering, Law, Education

and Management, Seoul, Republic of Korea, pp. 28-29.

https://edlib.net/2017/iccelem/ICCELEM2017003.pdf.

[11] Singh, P., Prakash, J., Srivastava, J. (2023). Lumpy skin

disease virus detection on animals through machine

learning method. In 2023 Third International Conference

on Secure Cyber Computing and Communication

(ICSCCC), Jalandhar, India, pp. 481-486.

https://doi.org/10.1109/icsccc58608.2023.10176394

[12] Raj, R., Panda, S., Nitya, N., Patel, D., Muduli, D. (2023).

Automated diagnosis of lumpy skin diseases based on

deep learning feature fusion. In 2023 14th International

Conference on Computing Communication and

Networking Technologies (ICCCNT), Delhi, India, pp.

1-4. https://doi.org/10.1109/icccnt56998.2023.10306613

[13] Mujahid, M., Khurshaid, T., Safran, M., Alfarhood, S.,

Ashraf, I. (2024). Prediction of lumpy skin disease virus

using customized CBAM-DenseNet-attention model.

BMC Infectious Diseases, 24(1): 1181.

https://doi.org/10.1186/s12879-024-10032-9

[14] Shivappriya, S.N., Alagumeenaakshi, M., Sasikala, S.

(2024). Deep learning-based diabetic retinopathy

severity classification and progression time estimation.

IFAC-PapersOnLine, 58(3): 78-83.

https://doi.org/10.1016/j.ifacol.2024.07.129

[15] Saha, D.K. (2024). An extensive investigation of

convolutional neural network designs for the diagnosis of

lumpy skin disease in dairy cows. Heliyon, 10(14).

https://doi.org/10.1016/j.heliyon.2024.e34242

[16] Ghosh, K.K., Islam, M.F.U., Efaz, A.A., Chakrabarty, A.,

Hossain, S. (2023). Real-time mastitis detection in

livestock using deep learning and machine learning

leveraging edge devices. In 2023 IEEE 17th International

Symposium on Medical Information and

Communication Technology (ISMICT), Lincoln, USA,

pp. 01-06.

https://doi.org/10.1109/ismict58261.2023.10152110

[17] Praba, R.D., Kavitha, K., Abinaya, S., Abarna, P., Shri,

K.S., Shivappriya, S.N. (2023). Automatic tealeaf

disease detection using machine and deep learning

method. In 2023 2nd International Conference on

Advancements in Electrical, Electronics,

Communication, Computing and Automation (ICAECA),
Coimbatore, India, pp. 1-5.

https://doi.org/10.1109/icaeca56562.2023.10200312

[18] Wang, J., Shen, M., Liu, L., Xu, Y., Okinda, C. (2019).

1434

Recognition and classification of broiler droppings based

on deep convolutional neural network. Journal of Sensors,

2019(1): 3823515.

https://doi.org/10.1155/2019/3823515

[19] Xiao, S., Dhand, N.K., Wang, Z., Hu, K., Thomson, P.C.,

House, J.K., Khatkar, M.S. (2025). Review of

applications of deep learning in veterinary diagnostics

and animal health. Frontiers in Veterinary Science, 12:

1511522. https://doi.org/10.3389/fvets.2025.1511522

[20] Olaniyan, O.M., Adetunji, O.J., Fasanya, A.M. (2023).

Development of a model for the prediction of lumpy skin

diseases using machine learning techniques. ABUAD

Journal of Engineering Research and Development, 6(2):

100-112. https://doi.org/10.53982/ajerd.2023.0602.10-j

1435

