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This work helps veterinarians and farmers in predicting skin diseases of cattle and pets. A 

real-time skin disease detection device designed to assist veterinary doctors and farmers by 

providing rapid and reliable identification of common skin diseases in cattle and pets. The 

device integrates a Convolutional Neural Network (CNN) deep learning model deployed on 

a Raspberry Pi, which is both cost-effective and suitable for on-site usage. The camera 

module attached to the Raspberry Pi captures images of the animal's skin, and the model 

trained in TensorFlow Lite (TFLite) is optimized for efficient processing of these images 

locally. The predictions are immediately shown on an attached 16×2 LCD screen, which 

allows for fast assessment without the need for Internet connectivity. This fast tool supports 

prompt disease detection and intervention, thus empowering veterinary practitioners and 

farmers to better manage animal health in far-flung and rural areas. 
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1. INTRODUCTION

The livestock sector accounts for nearly 24.72% of the 

agricultural gross domestic product and nearly 4.36% of the 

national gross domestic product for this country. About 22 

million jobs depend directly and indirectly on these people and 

their livestock-related occupations, which consist of dairying, 

poultry, and the meat sectors, with over 500 million animals 

such as buffalo and cattle, sheep and goats, and also 

domesticated pigs. Livestock diseases remain one of the 

biggest economic and productivity challenges to date, having 

taken an estimated loss of $4.45 billion each year through 

reduced productivity, increases in mortality, and sky-high 

treatment costs. Still, the negative supply chain effects, along 

with their demands, further complicate such financial burdens 

for both farm owners and pet lovers. 

In Rajasthan, which produces 15% of India's overall milk, 

the major making up of indigenous breeds is provided by local 

cattle and buffaloes at 83% of the livestock. Even though 

crossbreeds have not yet gained wider acceptance, remarkable 

growth in dairy productivity has been reported in Rajasthan, 

mainly through selective breeding of indigenous animals. This 

achievement underscores the possibility of sustainable 

breeding programs based on the resilience of indigenous 

livestock to local conditions in resource-poor settings arising 

from rapid urbanization and climate change. Indian pets also 

suffer from several diseases. These can become more 

expensive to treat, or even deadly if not recognized early. 

Common conditions such as Flea Allergy Dermatitis, Hot 

Spots, and Pyoderma severely affect the welfare of the animals 

and lead to the unnecessary suffering that arises from delayed 

diagnosis. 

The above challenges shall be addressed through the 

development of this real-time skin disease detection device 

with the improved early diagnosis and intervention of 

livestock and pets. The device powered by a deep learning 

model on a Raspberry Pi captures images of animals' skin 

through a camera, processes them via a TensorFlow Lite 

(TFLite) model, and promptly displays predictions on an 

attached LCD screen. It will help farmers and veterinary 

practitioners make decisions in time so that losses related to 

such diseases can be avoided by providing quick, reliable 

results directly in the field. 

2. LITERATURE REVIEW

In 2022, Lake et al. [1] presented a novel diagnostic system 

using expert deep learning approach and image processing 

technology to diagnose diseases in cattle. Here, the captured 

symptoms by camera-enabled smartphones which would 

allow entry of texts would indicate palpable symptoms. These 

can deliver rapid correct diagnoses based on visual features 

from the deep-learning convolutional neural network (CNN). 

The evaluation confirmed the tool to be a reliable and essential 

tool for cattle disease, thus ensuring more effective 

management of diseases and creating opportunities for swift 

economic benefits in livestock farming by providing early 

detection and prevention. 

Das et al. [2] introduced 'CattleSavior,' a Raspberry Pi-
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based system for detecting cattle diseases including Foot-and-

Mouth Disease (FMD) and mastitis. The system comprises 

multiple sensors: temperature, rumination, and motion 

installed on various parts of the cow's body, which are all 

connected to a central hub that is also a Raspberry Pi. The data 

collected from these sensors are processed in the Cloud, while 

Raspberry Pi is used as the processing unit. Cows are 

identified using RFID tags, with real-time analysis of their 

health. All this will be made achievable together by the use of 

machine algorithms in the Raspberry Pi microcontroller. 

The developed CNN-based system of Permana et al. [3] on 

cattle disease classification in Semin District was based on the 

diagnosis of BEF, Mastitis, and Scabies. From the set of 

training and validation images, the study showed that this 

model gave an accurate identification of these cattle diseases. 

Precision and recall scores further proved the effectiveness of 

the system in the correct diagnosis of the diseases. This 

research brings out the capabilities of CNNs in cattle health 

management, providing practical tools to farmers for 

improved animal welfare and reduced economic losses 

resulting from disease. 

Kim et al. [4] proposed a CNN framework for automated 

diagnosis of canine ulcerative keratitis, trained on a curated 

dataset of annotated corneal images. The proposed models 

were intended to train GoogLeNet, ResNet, and VGGNet: The 

proposed models achieved up to 90% and above accuracy for 

classifying both normal, superficial, and deep corneal ulcers. 

High-resolution images explain the high accuracy achieved 

through this study; however, the study states that at the cost of 

image quality, there is potential limitation to its clinical 

application. Thus, the present study was able to exhibit the 

versatility of CNNs in veterinary ophthalmology for grading 

the severity. 

Rony et al. [5] presented a model that made use of CNN 

architectures, Inception-V3, and VGG-16 to classify cattle 

diseases like FMD, LSD, and IBK with 95% accuracy. The 

CNN-based approach heavily helps in early diagnosis and 

reduces the involvement of human beings, thus enabling 

veterinarians and farmers to manage and identify contagious 

cattle diseases effectively. Gauswami et al. [6] have proposed 

a gender detection system recently that has employed a 

Raspberry Pi module to make low-cost, compact, small-sized 

platform-based deployment with a CNN model. Its module 

will help extract face features and classify them in real-time 

on the same device, hence making it very accessible with 

increased efficiency. This has made the gadget portable so that 

real-time detection might be deployed at places using 

surveillance, robotics, among many other works. Combining 

low cost and flexibility of Raspberry Pi with the capabilities 

of deep learning gives an efficient and powerful tool for real-

time applications. 

Gasa et al. [7] proposed a Raspberry Pi module skin disease 

detection system with MobileNet CNN to perform an efficient 

classification of skin lesions. The technique uses Depthwise 

Separable Convolution to process images on reduced 

computing resources so the predictions are highly accurate and 

delivered through a chatbot on Telegram to make things very 

user-friendly. It enables remote users to capture and analyze 

the skin lesions toward early detection of cancer. The system 

interface is user-friendly. The accessible and practical support 

available for dermatology ensures timely, professional advice 

to the need of the user. Besides, human-centered design with 

advanced technology improves the monitoring and 

intervention effectiveness concerning skin diseases. 

Hwang et al. [8] have proposed a classification system of 

dog-associated infections, which could lead to over 70 human 

diseases. The normal and multispectral images are gathered in 

this study, from which models for identification are proposed 

based on different CNN architectures: InceptionNet, ResNet, 

DenseNet, and MobileNet. These findings mean that the 

system with CNN can identify, on the basis of an image, dog 

skin diseases such as Ringworm, Fleas, and Mange, thus 

eliminating the need for extensive testing. Further, this same 

technology's real-time application through the use drones or 

cameras will enable street dogs to avoid disease spread. 

Kim et al. [9] described a mobile-based pet dog disease pre-

diagnosis system utilizing the Possibilistic C-Means (PCM) 

clustering algorithm for unsupervised learning. It employs a 

comprehensive disease-symptom database, built from 

textbooks and verified by veterinarians, to identify probable 

diseases based on user-input symptoms, enhancing health 

monitoring and caregiver awareness without replacing 

veterinarians. Inovero et al. [10] introduced a mobile 

diagnostic application for cats and dogs using a Neuro-Fuzzy 

Algorithm. Developed on Android Studio, the app achieves an 

88.5% accuracy rate in identifying diseases based on 

symptoms, providing treatment recommendations. This 

system enhances disease detection, aids caregivers, and 

supports veterinarians in offering accurate and efficient pet 

health care. 

Singh et al. [11] investigated Lumpy Skin Disease Virus 

(LSDV) in cattle, which causes severe symptoms, economic 

loss, and affects global livestock sectors. Using machine 

learning techniques (LRC, DTC, RFC, XGBC, SVC), the 

study predicts LSDV with high accuracy. Among evaluated 

classifiers, the Vector Classifier demonstrates superior 

performance in metrics like F1-score and accuracy. 

Raj et al. [12] addressed Lumpy Skin Disease (LSD), a 

contagious viral disease in cattle caused by the Neethling virus, 

emphasizing its economic impact and the need for precise 

detection. It proposes a deep learning model combining 

ResNet-50 and VGG-19 for feature extraction, reducing 

feature dimensions using PCA, and employing classifiers like 

Naive Bayes, Decision Tree, Random Forest, and KNN for 

disease classification. The model achieves 99% accuracy, 

outperforming existing approaches, highlighting its 

effectiveness in timely detection and minimizing economic 

losses. 

Mujahid et al. [13] utilized image datasets to implement 

Local Interpretable Model-Agnostic Explanations (LIME) for 

classifying skin diseases. By applying LIME, the method 

identified image super-pixels significantly influencing 

predictions, achieving classification accuracies of 92.5% and 

97% on test datasets through a range of classifiers, including 

deep learning models. 

Shivappriya et al. [14] investigated the application of deep 

learning models, including DenseNet, ResNet, AlexNet, and 

Inception V3, for diagnosing Diabetic Retinopathy (DR) 

through retinal images. The workflow involves capturing 

retinal images, preprocessing them via segmentation and 

enhancement, and classifying disease severity using trained 

models. DenseNet is particularly noted for its high accuracy in 

predicting DR progression and identifying various stages. The 

study emphasizes the role of high-quality datasets and robust 

model training in achieving reliable and efficient diagnostic 

results. Compared to traditional manual methods, these deep 

learning approaches automate DR detection and classification, 

improving accuracy, efficiency, and progression prediction. 
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Saha [15] projected that the Lumpy LSD is a serious 

concern for cattle, affecting both milk production and fertility. 

This study investigates the early detection of LSD using deep 

learning techniques, specifically a newly proposed CNN 

architecture known as MobileNetV2, which boasts an 

impressive 96% classification accuracy. Key methodological 

steps included image preprocessing, segmentation, and feature 

extraction from 840 images of healthy and LSD-affected cows. 

MobileNetV2 outperformed other models, like DenseNet201 

at 94% accuracy and traditional machine learning methods like 

SVM, which only achieved 78%. The research highlights the 

potential of deep learning, particularly MobileNetV2, in 

enhancing cow health management and suggests future 

exploration of transformer-based models. Overall, deep 

learning surpasses traditional methods in identifying Lumpy 

Skin Disease effectively. 

Ghosh et al. [16] introduced a real-time system for detecting 

bovine mastitis using deep learning (Inception V3) and 

machine learning (Random Forest), achieving 99.34% and 

99% accuracy, respectively. It processes image and numerical 

data collected via sensors and cameras on edge devices 

(Raspberry Pi) integrated with cloud computing. This system 

aims to minimize economic losses, improve treatment 

efficiency, and support livestock health, particularly 

benefiting the dairy industry in Bangladesh and developing 

countries. 

Worldwide, the most contagious illnesses affecting cattle 

are infectious bovine keratoconjunctivitis (IBK), foot and 

mouth disease (FMD), and lumpy skin disease (LSD). 

Controlling these illnesses requires early diagnosis. Using a 

variety of CNN architectures, including the traditional deep 

CNN, Inception-V3, and VGG-16 in the field of deep learning, 

this suggested model aims to identify the most prevalent 

external diseases early. With a 95% accuracy rate, the 

suggested technique is proven to be efficient and might 

potentially decrease human error in the identification process. 

It will also help veterinarians and husbandry farmers identify 

infections [17]. 

Wang et al. [18] conducted a study using deep learning to 

recognize and classify broiler droppings for detecting 

digestive diseases in poultry. Two advanced CNN models, 

Faster R-CNN and YOLO-V3, were implemented. Faster R-

CNN, using ResNet as the backbone, showed high accuracy 

with a recall of 99.1% and mAP of 93.32%. YOLO-V3, based 

on Darknet-53, offered faster detection with a recall of 88.7% 

and mAP of 84.25%. YOLO-V3 was improved using K-

means++ to optimize anchor boxes. This work helps farmers 

and poultry workers by automatically identifying sick birds 

through droppings, allowing early treatment and reducing the 

need for manual checks. 

Xiao et al. [19] explained how deep learning is being used 

to improve animal health and disease diagnosis. Deep learning, 

especially using models like CNNs, helps vets analyze images 

such as X-rays, MRIs, and ultrasound scans to detect diseases 

in animals like dogs, cats, cows, and horses. These models can 

spot problems like heart disease, tumors, and kidney issues 

more accurately and faster than humans in some cases. The 

study also shows how deep learning works with data from 

sensors, medical records, and even smartphone photos, 

helping vets diagnose and treat animals earlier and more 

effectively. 

Olaniyan et al. [20] explored how deep learning can help 

predict LSD in cattle. They developed an improved Artificial 

Neural Network (ANN) model that was trained over 200 

cycles, reaching a high accuracy of 98.89% during training and 

98.66% in testing. The researchers also compared this with a 

combined model (called a stacked ensemble) made up of 

different machine learning methods like Decision Trees, K-

Nearest Neighbors, Random Forest, and SVM. Both models 

performed very well, but the ANN was slightly better. This 

approach shows how deep learning can support early disease 

detection in animals and help improve veterinary care. 

 

 

3. METHODOLOGY 

 

The methodology of developing the system for the detection 

of cattle and pet skin diseases is structured, starting from the 

collection of more than 1,200 images across five classes of 

diseases. Data augmentation was put in place to increase 

diverse training samples in an attempt to reduce overfitting as 

well as improve the model's accuracy. A CNN model was 

created based on these images to be used for the purpose of 

analyzing images and classifying the disease. The trained 

CNN model is then converted to TFLite format, and this assists 

in the effective deployment on the Raspberry Pi. Along with 

the camera installed to capture the images and LCD attached 

will show the result, this device runs the TFLite model and 

makes predictions of diseases in real time. The model 

processes the captured image, and the disease class appears on 

the LCD. Substantial testing validated that the predictions on 

the Raspberry Pi were identical to those produced by the initial 

model and thus reliable. This hand-held device provides 

veterinarians and farmers with an instantaneous, on-site 

diagnostic tool to better animal health outcomes by making it 

possible to quickly diagnose and treat disease. The block 

diagram of the device is shown in Figure 1. 
 

 
 

Figure 1. Block diagram of the device 

 

 

4. DATASET PREPARATION 

 

The dataset initially contained over 600 images across five 

skin disease classes: Lumpy Skin, Flea Allergy, Hotspot, 

Mange, and Ringworm. Images were organized by class in 

separate folders, with each disease assigned a numerical label 

for consistent classification. To improve the model’s accuracy 

and help it perform well on new data, we used several data 

augmentation techniques with TensorFlow’s Image Data 

Generator. These included random image rotations (up to 25 

degrees), horizontal flips, zooming in by up to 20%, and 

adjusting brightness and contrast (brightness range: 0.8 to 1.2). 

These steps helped double the number of images to 1,208. 
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Although more advanced methods like Generative Adversarial 

Networks (GANs) were considered, we chose not to use them 

at this stage to keep the model simple and easy to understand. 

We also added Dropout layers with a rate of 0.5 after the fully 

connected layers to avoid the model becoming too dependent 

on certain neurons. L2 regularization was also considered to 

reduce model complexity and prevent overfitting. 

The dataset was then split 80-20 as the training and 

validation set, and the images were resized to ensure a stable 

training process, along with normalizing them in the case of 

constant input dimension. Techniques such as class weighting 

have been carried out to ensure that equal representation 

between samples is maintained so that the dataset obtained is 

diversified and best prepared for the training process, so that 

the CNN model would learn effectively in order to recognize 

diseases related to the skin, be it of cattle or pet animals. 

We had a variation in dataset-class sample size, for example, 

there were only 76 images of Flea Allergy, while Ringworm 

had 138. To fix this class imbalance, we used class weighting 

during training so that the model paid more attention to the 

smaller classes and didn’t ignore them. We also looked into 

oversampling, which means adding more examples to the 

smaller classes by creating new, similar images. In the future, 

we plan to explore other methods like reducing samples from 

large classes, using advanced techniques like GANs to 

generate new images, and trying different loss functions like 

focal loss to make the model more balanced and reliable. In 

Table 1 represents the summary of the number of dataset 

images used for each class of disease, and sample images of 

the dataset are shown in Figures 2 and 3. 

 

Table 1. Dataset preparation 

 
Skin Diseases Dataset Images After Augmentation 

Lumpy skin 324 324 

Flea allergy 76 152 

Hotspot 96 192 

Mange 63 126 

Ringworm 138 414 

Total 697 1208 

 

 
 

Figure 2. Dataset image (Mange) 

 

 
 

Figure 3. Augmented dataset image (Mange) 

5. THE APPLICATION OF CNNS IN IMAGE 

RECOGNITION AND PROCESSING 

 

CNNs are highly specialized Artificial Neural Networks 

(ANN). They have greatly impacted the emerging world of 

computer vision. CNNs are widely recognized for their feature 

extraction capabilities, depending on the type of image data, 

and are most commonly used in the recognition and processing 

of images. Multi-layered images are supposed to be captured 

for treatment when handling data at each layer in the CNN 

architecture by certain filters; those are called filters or 

convolutional kernels designed to capture special features of 

images like edges, corners, and textures. Putting all of these 

together, the major advantage CNNs have over a standard 

neural network is that they learn and extract fine details from 

the data very efficiently and hence are quite useful in different 

computer vision applications. The strength of CNNs feature 

extraction, which means object location in an image, face 

recognition, and category of images. 

A typical CNN architecture consists of feeding an input 

image through several convolutional layers. In such a layer, it 

will work on filters and produce corresponding feature maps 

associated with patterns and features that exist in the input 

image. To inject nonlinear relationships, the model's nonlinear 

transformations for each output of a convolutional layer 

should be provided by applying a nonlinear activation function, 

such as ReLU. It can also hold one or more fully connected 

layers that make use of feature for classification, regression, 

etc. The output may also be the last layer, which classifies the 

objects inside an image. The ability of CNNs to learn and 

recognize complex features in images has made them the 

choice for most computer vision applications and delivers top 

performance in tasks such as facial recognition, object 

detection, and image classification. All of these applications 

are applied to self-driving cars, medical image diagnostics, 

and security surveillance. 

Identification and classification of a CNN usually involves 

the following steps: 

 

1)  Collection of data 

2)  Structure of CNN 

3)  Building the network of CNN 

4) Calculating weight and bias 

5)  Training the network 

6)  Testing the performance of the network based on 

gradients 

 

Hidden layers are the features with which CNNs differ since 

they extract detailed features from input data, and 

improvements in the accuracy of classification. As the data 

streams through all these hidden layers, the filtering differs 

due to its different filters and identifies many aspects of the 

input stream differently. 

The simplest edges or lines are all that earlier layers can pick 

up; however, more complex shapes or textures can be caught 

by later layers. Therefore, more complex representations of the 

input will be produced by the network combining outputs 

coming from several hidden layers that classify better. 

The number and size of hidden layers depend on the 

application and complexity of the input data. 

 

5.1 Overall architecture 

 

A CNN performs specific operations like recognizing an 
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image, image processing, or similar types of processes. Its 

structure consists of three primary types of layers: 

convolutional, pooling, and fully connected layers. To take it 

one step further: 

 

1) Input Layer: The input layer is an entry layer that 

represents the pixel values of the input image, just as 

in other types of neural networks. 

2) Convolutional Layer: In this layer, every neuron 

takes the dot product of its learned weights and a 

region of the input data and passes this through a 

combination with a learned bias plus an activation 

function, usually ReLU (Rectified Linear Unit), 

introducing non-linearity based on the activations of 

the previous layer. 

3) Pooling Layer: It reduces the spatial dimensions of 

input data to make fewer parameters and 

computations with incurring least information loss. 

4) Fully Connected Layers: These layers essentially 

work like in a standard neural network to generate 

class scores based on the activations to classify the 

input. ReLU activations can be added here as well to 

enhance performance. 

 

In this way, it makes a CNN highly effective in analyzing 

image data, defining intricate patterns, and then identifying 

them, hence forth to be used in all forms of image-based tasks. 

Figure 4 represents the architecture of CNN. 

 

 
 

Figure 4. CNN architecture 

 

5.1.1 Convolution layer 

The convolutional layer is very important in the analysis of 

image datasets, for example, those that include images of cattle 

and pet skin diseases. In this case, learnable filters or kernels 

are slid across the depth of each input image to detect specific 

patterns and features. As these filters move spatially across the 

image, they generate 2D activation maps, capturing locations 

in the image where particular characteristics, like textures or 

edges, are detected. 

If an input is a skin disease image with size 64×64×3 for 

RGB color, then a receptive field of 6×6 would give each 

neuron 108 weights (6×6×3). Tuning parameters like depth, 

stride, and zero-padding also controls the complexity of output 

but maintains the detail in the features. Stride defines how 

many pixels a filter moves in the input in each step. This 

further makes the resolution of the output, depending on the 

stride, in addition to zero-padding for retaining the original 

input dimensions or the output size. The number of zero-

padding is found by the formula: 

 

V (W R 2Z) / S 1= − + +  (1) 

From Eq. (1), V is the output size, W is the input size, R is 

receptive field size, Z is zero-padding, and S is stride. 

Parameter sharing has the effect of reducing weights since 

a single set of weights is used across the different regions in 

the activation map, which lowers the amount of computation 

required and even allows for efficient back-propagation 

through shared parameters. 

It makes possible for the convolutional layers to extract skin 

diseases at any different locations within images. Further, the 

convolutional layer keeps its simplicity because its model can 

easily process the information to get insights in analyzing 

feature aspects from a disease image, hence they have 

potential uses when detecting the occurrence of a disease 

among an animal set. Figure 5 represents the convolution layer 

of CNN. 

 

 
 

Figure 5. Convolution layer 

 

5.1.2 Pooling layer 

As illustrated in a CNN utilized with data of images of 

disease for cattle and pets, it reduces the dimension of the 

feature maps through which a reduction in the size is made 

concerning the complex nature of computations and that 

associated with model parameters. Within several methods of 

down sampling, max pooling can also be found to occur 

primarily because this technique offers possibilities of keeping 

key information where the data is under reduced sampling. 

It usually involves a max-pooling layer of the size 2×2 with 

a stride of 2. It reduces all spatial dimensions of each feature 

map to 25% of the original size and retains the depth. The 

downsizing makes the processing of images in the CNN more 

efficient, limits the number of parameters that would need 

training, and prevents overfitting. It is just another way the 

pooling layers increase the CNN's efficiency and performance 

due to down-sampling from the feature maps of skin diseases 

in cattle and pets. Figure 6 represents the Pooling layer of 

CNN. 

 

 
 

Figure 6. Pooling layer 

 

5.1.3 Fully connected layer 

The main features of the input image are extracted with 

convolutional layers combined with pooling layers followed 

by flattening into a vector before further processing takes place 

within a fully connected layer where every neuron of this fully 

connected layer has a direct connection to every neuron within 

adjacent layers. This flat vector as (×1, ×2, ×3,….,×n) is 
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passed to the fully connected layer which aggregates all the 

features together and produces the output of classification. 

Output of the fully connected layer Mathematically defined 

by: 

 

z=w×x+b 

 

Here, weights are denoted as (w), the input vector as (x), 

and the bias term as (b). 

The final output is further passed into some activation 

function perhaps SoftMax or Sigmoid, it then produces 

probability scores over all categories of diseases, hence 

classify with the highest-probability class. So that the whole 

connection layer refines the extracted features as well as 

provides proper adequate translation in the correct 

categorization of cattle and pet skins. 

 

5.2 CNN architectures in edge devices 

 

CNN models used on edge devices are made to be fast, 

small, and power-efficient while still giving accurate results. 

These models start by taking an image as input, then pass it 

through layers that find important features like colors, shapes, 

or spots. To keep things lightweight, models like 

MobileNetV2 use special types of layers that do less work but 

still learn well. Instead of using large, slow layers at the end, 

they use simple techniques like averaging to make final 

predictions. The models are also made smaller using tricks like 

quantization (shrinking the numbers) and pruning (removing 

unused parts). These optimized models run smoothly on small 

devices like Raspberry Pi, Jetson Nano, or mobile phones, 

making them perfect for tasks like detecting plant or animal 

diseases without needing the internet or a powerful computer. 

 

5.2.1 MobileNetV2 

MobileNetV2 is a light and fast deep learning model made 

for small devices like mobile phones and Raspberry Pi. It’s 

designed to use less memory and processing power while still 

giving good results. It works well for tasks like recognizing 

diseases in plants or animals, even without an internet 

connection. MobileNetV2 is a great option when you need 

quick and efficient predictions on low-powered devices, 

making it perfect for real-time use in agriculture or veterinary 

care. 

 

5.2.2 ResNet50 

ResNet50 is a more powerful model with 50 layers that can 

recognize complex patterns in images. It’s great for detecting 

diseases or doing tasks that need very accurate results. 

However, it’s heavier and needs more processing power than 

MobileNetV2, so it's better suited for stronger edge devices 

like NVIDIA Jetson or other AI hardware. To make it work 

better on small devices, it can be simplified using techniques 

like pruning and model compression. 

 

5.2.3 EfficientNetB3 

EfficientNetB3 is a smart and balanced deep learning model 

that offers high accuracy without using too much power. It 

improves performance by adjusting how deep, wide, and 

detailed the model is. It’s perfect for edge devices that are a bit 

more powerful, like Google Coral or Raspberry Pi 4 with AI 

support. This model works really well for tasks like medical 

image analysis or detecting plant diseases, making it a great 

choice when both speed and accuracy are important 

When using deep learning on edge devices, it's important to 

pick the right model that gives a good mix of accuracy, speed, 

and fits the device’s limits. MobileNetV2 is great for smaller 

devices because it’s light and fast, making it perfect for tasks 

like detecting plant or animal diseases in real time. ResNet50 

is more powerful and accurate but needs stronger devices and 

some extra tweaking to run well. EfficientNetB3 gives the best 

mix of speed and accuracy by using smart design, making it 

ideal for slightly more powerful edge devices. Together, these 

models help bring smart AI to small, offline systems. 

 

5.3 Training and validation 

 

After training for 30 epochs, the CNN model reached a high 

training accuracy of 98.86% and a validation accuracy of 

76.15%, showing that it can handle new data well. At first, the 

model showed signs of overfitting, but using techniques like 

data augmentation and regularization helped improve its 

performance and made it more stable. The small gap between 

training and validation accuracy shows that the model is 

reliable and ready to be used in real-world situations. Figures 

7-9 show how the training went, changes in accuracy, and the 

confusion matrix. To make sure the results were strong, the 

same dataset was tested on three different CNN models 

MobileNetV2, EfficientNetB3, and ResNet50. MobileNetV2 

gave the best results and is the best choice for devices like the 

Raspberry Pi, which have limited resources. Table 2 provides 

a performance comparison between different CNN 

architectures, and Table 3 presents the classification report of 

the MobileNetV2 model. 

 

 
 

Figure 7. Training the over 30 epochs 
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Figure 8. Training and validation accuracy 

 

 
 

Figure 9. Confusion matrix 

 

In real-life situations, images of animals can be affected by 

poor lighting, fur covering the skin, dirt, or messy 

backgrounds. These things can confuse the model and reduce 

accuracy. To make our model more prepared for this, we used 

data augmentation methods like changing brightness, contrast, 

zoom, and flipping the images. This helped the model learn 

from different types of images. We also tested the model by 

adding fake noise and blur to some images to see how it would 

handle real-world issues. The accuracy dropped only slightly 

(less than 3%), showing that the model is still reliable even 

when the images aren't perfect. 

To make the CNN model easier to understand and build 

trust with veterinary doctors, we used a method called 

Gradient-weighted Class Activation Mapping (Grad-CAM). 

This tool creates heatmaps on the image to show which parts 

the model looked at while making its prediction. In our tests, 

the heatmaps clearly highlighted the infected areas like skin 

bumps, lesions, or red patches showing that the model was 

focusing on the right spots instead of random background 

details. Figure 10 shows an example of this, where the model 

correctly points to the problem area. This helps vets feel more 

confident about the model's decisions and shows that it can be 

useful in real-life cases. 

 
Table 2. Comparison of performance metrics in different 

CNN architectures 

 
Model Performance 

Summary 
EfficientNetB3 Resnet50 

MobileNet 

V2  

Training Accuracy 47.52% 52.48% 99.28% 

Validation Accuracy 47.28% 53.56% 77.82% 

Training Loss 1.3746 1.2185 0.0732 

Validation Loss 1.3611 1.1511 0.4935 

Precision 0.2264 0.3434 0.7496 

Sensitivity 0.2982 0.3632 0.7104 

Specificity 0.8412 0.8631 0.9406 

MCC 0.2970 0.3725 0.7053 

BCR 0.5697 0.6131 0.8255 

Cohen’s Kappa 0.2148 0.3238 0.7022 

F1-Score 0.2364 0.3064 0.7256 
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Table 3. Classification report 

 
Label Precision Recall F1-Score Support 

Lumpy skin 1.00 0.98 0.99 64 

Flea allergy 0.50 0.47 0.48 30 

Hotspot 0.48 0.37 0.42 38 

Mange 0.95 0.76 0.84 25 

Ringworm 0.73 0.88 0.80 82 

Accuracy   0.76 239 

Macro Avg 0.73 0.69 0.71 239 

Weighted Avg 0.76 0.76 0.75 239 

 

 
 

Figure 10. Grad-CAM output 

 

 

6. TENSOR FLOW LITE CONVERSION 

 

Because of the limitations on memory and processing power, 

it is essential to optimise the model format when deploying 

machine learning models on low-resource devices such as the 

Raspberry Pi. The Keras model, which was originally saved in 

the h5 format, was converted to the TFLite format (.tflite) to 

guarantee that it was lightweight and able to process data in 

real-time. By following the Raspberry Pi's resource constraints, 

this optimisation step made inference effective. 

 

6.1 Conversion to TFLite 

 

TFLite is intended to run on edge device like a 

microcontroller or mobile hardware. Therefore, it is applicable 

for the Raspberry Pi. The conversion process is somewhat 

converting the model into a memoryless version that depends 

on fewer computations. TFLite Converter applies various 

optimizations, such as quantization, which can reduce the 

model size and accelerate the inference without losing so much 

accuracy. In this work, we took the trained MobileNetV2 

model (built using Keras) and converted it into a TFLite model 

using the TFLite Converter tool. We used a method called 

dynamic range quantization, which shrinks the model by 

changing its internal weights to a smaller format (INT8), while 

keeping the input and output as float32. This helps reduce the 

size of the model and makes it run faster, without losing much 

accuracy. Figure 11 shows the TFLite and Keras models saved 

in the local for future use. 

 

 
 

Figure 11. Saved Keras and TFLite models for future use 

6.1.1 Implementation steps 

To load the model, the following were employed: 

1) Load Model with Custom Layers: Keras's load model 

function loads the model following the definition of 

custom objects used in its architecture such as 

LeakyReLU. 

2) Setup for Conversion: The model then went ahead to 

prepare itself for the conversion. As a result of this 

configuration, an optimization flag, specifically tf.lite. 

Optimize.DEFAULT, would be applied. This proves 

to be mostly useful later on for compression, as it 

enhances memory usage. 

3) Conversion and Saving: The converter is then used to 

create the TFLite file. The file is saved and is now 

ready for deployment on the Raspberry Pi. 

 

6.2 Benefits of TFLite conversion 

 

This means that the converted. TFLite model is very 

compact and optimized, and it will run inference fast on the 

Raspberry Pi. This makes it suitable for real-time detection of 

animal diseases in images captured. It is possible to operate 

the TFLite model efficiently with the camera module on the 

Raspberry Pi, providing rapid detection to support real-time 

decision-making while minimizing resource usage. This 

optimization made the model smaller without losing much 

accuracy and also helped it run much faster on the Raspberry 

Pi. 

With conversion to TFLite, the work reaches the efficient 

and effective solution for in-depth complex models of CNN on 

edge devices, allowing real-time prediction and direct 

diagnosis on the Raspberry Pi. Such streamlined processes 

now allow image processing and disease detection even with 

rudimentary resources, thereby ensuring accuracy in the 

reduced latency of predictions. 

 

6.3 Model size and inference speed comparison 

 

The original Keras model (MobileNetV2) was about 16.6 

MB in size. After converting it to TFLite using dynamic range 

quantization, the size dropped to 10.9 MB. When we tested it 

on the Raspberry Pi 3B, the Keras model took around 4.5 to 5 

seconds to process each image. But the optimized TFLite 

version was much faster, taking only about 1.8 to 2.2 seconds 

per image. This shows that the TFLite model is a lot more 

efficient and better suited for real-time use on devices with 

limited processing power. 

 

 

7. HARDWARE DEPLOYMENT 

 

This work employs the Raspberry Pi 3B as the central 

processing unit, chosen for its ability to manage the 

computational demands of a machine learning model while 

being compact and energy efficient. A Universal Serial Bus 

(USB) webcam is used alongside the Raspberry Pi to capture 

images of cattle, enabling real-time analysis. This setup is 

particularly well-suited for various environments, as it offers 

flexibility in positioning and seamless integration into farms 

or veterinary clinics. 

Additionally, the module includes a 16×2 LCD display to 

provide real-time visual feedback on the disease detection 

results. This feature ensures direct communication of the 

model's output to the user without requiring external screens 
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or devices, enhancing usability in resource-constrained 

settings. 

The integration of these hardware components facilitates a 

practical and effective approach to recognizing cattle skin 

diseases, enabling prompt diagnosis and management while 

minimizing resource utilization. Overall, this hardware setup 

ensures efficient processing and accessibility, making it ideal 

for veterinary applications in real-world scenarios. 

Figures 12-13 showcase the hardware implementation, 

illustrating the deployment of the trained CNN model within 

the hardware setup. 

 

 
 

Figure 12. Hardware model (1) 

 

 
 

Figure 13. Hardware model (2) 

 

7.1 Raspberry Pi 

 

The Raspberry Pi 3B v1.2 is a single board, highly potent 

computer suited to a wide range of applications involving 

machine learning as well as image processing applications. 

Equipped with a quad-core ARM Cortex-A53 CPU and 

running at 1.2GHz clock for processing, it has everything that 

it needs to be capable of carrying out heavy computation, 

hence the very reason for being one of the great fits for the 

resource-constrained environment. It is accompanied by 1GB 

of RAM, lets processes run multi-concurrently, and operates 

applications/models fluently. The model is built in with Wi-Fi 

and Bluetooth; thus, it's easy to connect to any network as well 

as peripherals. This work requires data transfer and remote 

monitoring. Moreover, there are multiple I/O ports of 

Raspberry Pi 3B v1.2 including GPIO, HDMI, and USB for 

connection with sensors and components, like cameras and 

displays. 

In the identification of cattle skin disease, the Raspberry Pi 

3B v1.2 would be the central processing unit which would 

process images captured through a connected USB webcam. 

Its compact form factor helps it easily integrate into various 

environments. Its energy efficiency, powered by a 5V 1A 

adapter, allows for continuous operation. The overall 

feasibility of the Raspberry Pi 3B v1.2 in the deployment of 

machine learning applications is certainly more suitable for 

agricultural and veterinary settings. It will support real-time 

disease detection and diagnosis. 

We tested the TFLite version of our CNN model on a 

Raspberry Pi 3B for real-time predictions. On average, it took 

about 1.8 to 2.2 seconds to process each image, which is fast 

enough for use in the field. The memory usage stayed within 

safe limits, with peak RAM usage staying below 700 MB. This 

means the model ran smoothly without any crashes or 

overheating. Overall, these results show that the Raspberry Pi 

3B can run the model reliably in real-time, making it a good 

fit for use in rural veterinary clinics or on-site at farms where 

resources are limited. Figure 14 Raspberry Pi module used for 

CNN model deployment. 

 

 
 

Figure 14. Raspberry Pi 3B 

 

7.2 USB camera 

 

The work employs the GUVCVIEW library to operate the 

Logitech 720p camera with the Raspberry Pi 3B v1.2. 

GUVCVIEW serves as an interface for video capture and 

webcam management, offering a graphical application to 

control USB video devices. This makes it well-suited for 

leveraging the full capabilities of the camera. 

Using GUVCVIEW, users can easily adjust settings such as 

resolution, frame rate, and exposure to adapt to different 

imaging conditions. This flexibility is particularly beneficial 

for capturing clear and accurate images of cattle skin 

conditions, which is essential for reliable diagnosis. The 

library supports various video formats and provides real-time 

previews, allowing immediate adjustments to ensure optimal 

image quality. 

The Logitech 720p camera shown in Figure 15, connects 

seamlessly to the Raspberry Pi via USB, and GUVCVIEW 

facilitates straightforward interaction with the camera. Images 

can be captured with a single click, enabling quick collection 

of high-resolution photos for analysis. This combination of 

hardware and software creates an efficient workflow for real-

time monitoring and diagnostics of cattle skin diseases, 

significantly enhancing the detection system's overall 

effectiveness. 

 

 
 

Figure 15. USB HD camera 
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7.3 LCD 

 

The display module used in the cattle skin disease detection 

system is a 16×2 LCD (Liquid Crystal Display), offering an 

economical and compact solution for communicating real-

time messages and system statuses to users. It provides 

information such as image capture status, disease detection 

results, and operational alerts. The 16×2 LCD can display up 

to 16 characters per line across two lines, making it suitable 

for conveying concise information in a limited space. Its 

design is particularly advantageous in field environments, 

ensuring quick access to relevant data that aids in timely 

decision-making for cattle health management. The LCD is 

connected to the Raspberry Pi 3B v1.2 using GPIO pins, 

enabling the Raspberry Pi to control the display directly. With 

libraries like RPLCD or LCD, simple commands can be used 

to write and update messages on the screen efficiently. During 

the operation of the disease detection system, the 16×2 LCD 

provides real-time feedback. Examples include indicating the 

camera's status (ON/OFF), displaying diagnosis results, or 

showing error messages along with suggested corrective 

actions. This enhances the system's usability by creating a 

more intuitive and efficient interface for monitoring cattle skin 

conditions. The integration of the 16×2 LCD shown in Figure 

16, with the Raspberry Pi and the Logitech camera forms a 

robust platform, facilitating effective disease detection and 

management while ensuring ease of use and accessibility in 

real-world veterinary applications. 

 

 
 

Figure 16. 16×2 LCD 

 

Table 4. Raspberry Pi to LCD pin configuration 

 
LCD Pin Raspberry Pi Pin Description 

RS 37 Register Select 

RW 35 Read/write 

E 33 Enable 

D0 31 Data pin 0 

D1 29 Data pin 1 

D2 23 Data pin 2 

D3 21 Data pin 3 

D4 19 Data pin 4 

D5 15 Data pin 5 

D6 13 Data pin 6 

D7 11 Data pin 7 

 

RS (Register Select): This pin determines whether the data 

being sent to the LCD is command or character data. 

RW (Read/Write): This pin selects whether the operation 

will be a read or a write. Typically connected to ground to set 

the LCD in write mode. 

E (Enable): This enable pin is used to tell the LCD to read 

data on the data pins. 

D0-D7 (Data Pins): This is the pins used in sending data and 

commands toward the LCD. Use all eight data pins (D0 to D7) 

for a true communication or just the higher nibble (D4 to D7) 

should you operate in 4-bit mode. 

This pin configuration, shown in Table 4, allows for perfect 

integration of the LCD with the Raspberry Pi to be able to 

display, in real time, any data related to detecting diseases on 

cattle skin. 

 

 

8. CNN MODEL DEPLOYMENT IN HARDWARE 

 

The machine learning model was deployed to the Raspberry 

Pi by copying the model file onto the boot SD card. Initially, 

the model file was transferred from a computer to the SD card. 

This SD card was then inserted into the Raspberry Pi to boot 

the system. Once the Raspberry Pi was operational, the SD 

card functioned as a storage device, making the model file 

accessible. The model was subsequently copied to the 

Raspberry Pi’s internal storage for seamless access during 

operations. 

After deployment, a Python script was executed on the 

Raspberry Pi to utilize the model for disease prediction. The 

script processes images captured by the connected webcam, 

analysing them with the model to identify potential skin 

diseases in cattle. The lightweight nature of the model ensures 

efficient inference, even on a resource-constrained platform 

like the Raspberry Pi. 

This setup enables real-time disease detection and diagnosis, 

significantly enhancing the efficiency of veterinary practices. 

By facilitating prompt identification of skin conditions, the 

system supports early intervention, thereby improving cattle 

health management and optimizing veterinary workflows. 

In Figure 17, the arrow points the trained and converted 

TFLite CNN model that is deployed and saved in Raspberry 

Pi local storage used for prediction. 

Libraries that were required, like NumPy and TensorFlow, 

as well as PIL (Pillow) and OpenCV for image manipulation, 

are imported along with RPi.GPIO to control the GPIO pin. 

The ‘tf.lite.Interpreter’ was used to load the TFLite model, 

optimized for fast inference in the restricted environment of 

the Raspberry Pi. It preprocesses the images by resizing them 

into 180×180 and normalizes the pixel value. The predict 

function in the class manages making predictions by setting 

input tensor to the model and getting its output predictions; it 

implements error handling by itself. The script also employs a 

16×2 LCD in order to print messages to it. It sets up pins 

controlling the LCD as well as defines functions which will 

pass data to it. Capture images will be made via the ‘guvcview’ 

application and the camera plugged into it. It would entail the 

user's task, therefore to get the recently modified image, the 

function employed is ‘get_latest_image’. 

In the main loop, the script takes images, predicts disease 

and then displays messages on LCD. The class of predicted 

disease is shown for 10 seconds and the loop will continue. 

Throughout the entire script, error handling is used to make it 

almost quite robust and GPIO setups are cleaned up at end so 

that the resources are freed. In conclusion, this script combines 

the hardware and software elements to produce a real-time 

cattle disease detection system by using the efficient 

processing capability of a TFLite model on a Raspberry Pi.
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Figure 17. Trained TFLite model save in Raspberry Pi local 

storage 

9. RESULTS AND DISCUSSION 

 

9.1 Results from PC using TFLite model 

 

The Keras CNN model for cattle skin disease prediction was 

initially converted from its .h5 format to the TFLite format to 

optimize it for deployment on resource-constrained devices 

like the Raspberry Pi. The converted model was tested for 

validity and successfully labelled diseases such as Lumpy Skin 

Disease, Flea Allergy, Hot Spots, Mange, and Ringworm 

accurately. 

Sample predictions were conducted to verify the model's 

functionality, demonstrating its reliability and effectiveness in 

identifying these conditions. The results confirmed that the 

model operates as intended, ensuring its suitability for real-

time veterinary applications without compromising 

performance or accuracy and the sample outputs are illustrated 

in Figures 18-22. 

 

 
 

Figure 18. Sample 1 (Hotspot) 

 
 

Figure 19. Sample 2 (Flea allergy) 
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Figure 20. Sample 3 (Mange) 

Figure 21. Sample 4 (Ringworm) 

Figure 22. Sample 5 (Lumpy skin) 
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9.2 Results from Raspberry Pi 

 

After deploying the TFLite model on the Raspberry Pi, the 

hardware setup was tested extensively. The connected camera 

captured images of infected skin, which were processed using 

the deployed model. The prediction results were displayed on 

the 16×2 LCD screen and matched the expected outcomes 

observed during PC-based testing. This validation confirmed 

the system’s accuracy and readiness for real-world use. 

The fully integrated setup is now capable of identifying 

outbreaks of skin diseases in cattle and pets with high 

precision, ensuring no errors go undetected. Sample outputs 

further demonstrate how the system operates: images captured 

by the camera are processed, and the corresponding results are 

displayed in real-time on the LCD screen. These results 

showcase in the Figures 23-27, the effectiveness of this gadget 

in scanning and diagnosing skin conditions in cattle and pets, 

leveraging the efficiency of the TFLite model for accurate and 

prompt detection. 

 

9.3 Clinical practicality and limitations 

 

Even though the CNN model gives good results on test 

images, it might not work as well in real-life situations. 

Sometimes, early signs of skin diseases or unusual symptoms 

are hard to spot, and the model might get confused. Things like 

poor lighting, blurry pictures, or differences in skin color 

between animals can also affect how well the model predicts. 

If the model makes a mistake, the animal might get the wrong 

treatment or not get help in time. This could make the problem 

worse and cost more to fix. For example, if it mixes up 

ringworm with lumpy skin disease, the animal might be given 

antibiotics it doesn't actually need. That can lead to antibiotic 

resistance over time. 

So, it’s important to use the model’s prediction along with 

what the vet sees and knows. In the future, the model should 

be tested with more real photos and improved with help from 

vets to make it more accurate and helpful in real use. 

 

 
 

Figure 23. Hardware prediction output sample 1 

 

 
 

Figure 24. Hardware prediction output sample 2 

 

 
 

Figure 25. Hardware prediction output sample 3 

 

 
 

Figure 26. Hardware prediction output sample 4 

 

 
 

Figure 27. Hardware prediction output sample 5 

 

 

10. FUTURE CONSIDERATIONS 

 

The future vision for this project includes the development 

of a web or mobile application to complement the output 

generated by the Raspberry Pi. This application will offer an 

interactive user interface where users can access images 

captured by the device and receive precise disease diagnoses 

along with available medicinal cures. To enhance accessibility, 

the application will feature multilingual support, including 

regional languages, ensuring usability for diverse audiences, 

including farmers and veterinary professionals. 

By presenting information in users’ native languages, the 

system will become more user-friendly and inclusive, 

addressing a broader demographic. The integration between 

the web application, database, and Raspberry Pi device will be 

optimized for real-time data exchange and updates. The 

Raspberry Pi will send results, including images and diagnosis 

data, to the database. The web application will retrieve and 

display this information through the user interface, providing 

users with a comprehensive and up-to-date resource for 

monitoring animal health. This enhanced functionality will 

allow users to store captured images, diagnose diseases, and 

access treatment information through the application. By 

creating a unified and robust platform, the system will offer 

significant utility in monitoring and managing the health of 

cattle and pets, ensuring that critical information about 

diseases and their treatment is always readily accessible. In the 

future, we planned to test the model using more number of 

real-life images and different datasets to make sure it works 

well in actual veterinary situations and can be trusted with 

different kinds of cases. 
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11. CONCLUSION 

 

The work culminated in the development of a CNN model 

trained on an augmented animal skin disease image dataset, 

achieving a test accuracy of over 85%. After converting the 

trained model into the TFLite format, it was successfully 

deployed on a Raspberry Pi, forming a real-time diagnostic 

gadget. This device captures images of diseased skin, 

processes them through the embedded software for prediction, 

and displays the results on an attached 16x2 LCD screen. This 

solution is particularly beneficial for rural farmers and 

veterinarians, enabling immediate, on-site diagnoses without 

delays in obtaining results. 

The gadget promotes effective veterinary intervention by 

ensuring timely medical attention, reducing the risk of animal 

mortality. By leveraging predictive data, it not only maintains 

animal health but also safeguards the livelihoods of farmers by 

improving productivity. Additionally, the system supports 

veterinarians in preparing adequate medicine stocks by 

providing alerts on prevailing diseases in the area. This tool 

enhances veterinary care in resource-constrained settings by 

preventing treatable conditions from worsening, leading to 

healthier livestock and more resilient farming practices. The 

solution offers economic stability for farmers while advancing 

animal welfare, making it a significant contribution to 

sustainable agriculture and veterinary science. 
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