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This paper presents a modified algorithm for addressing acoustic impulse responses 

identification for communication systems. This study introduces an enhanced sub-band 

version of variable-step-size µ-law proportionate normalized least-mean-square algorithm 

for achieving rapid convergence and minimal steady-state error. This algorithm is noted as 

SPV-NLMS: Sub-band Proportionate Variables-step-sizes NLMS algorithm. The proposed 

SPV-NLMS algorithm is dynamically and independently adjusting the N step-sizes 

parameters during adaptation using an optimal estimation of each sub-filter. The SPV-

NLMS is adaptable and can be employed with various acoustic more dispersive, dispersive, 

more sparse or sparse environments. The effectiveness of this algorithm is validated through 

simulations in the context of acoustic impulse response identification. The SPV-NLMS 

algorithm has the potential to significantly improve the convergence and the steady-state 

error using the Mean Square Error (MSE) and Echo Return Loss Enhancement (ERLE) 

criteria. 
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1. INTRODUCTION

Digital signal processing is a very important field on 

communication systems, enabling smooth information 

exchange across vast distances and diverse environments, 

serving as the foundation of our interconnected world. 

Adaptive signal processing, noise reduction and echo 

cancellation are crucial for the efficiency and reliability of 

modern communication systems [1]. They involve processing 

and analyzing signals to extract useful information from noisy 

environments, leading to enhanced data transmission and 

reception [2]. Advanced adaptive filtering algorithms used in 

communication, such as acoustic system identification [3] and 

beamforming [4, 5], allow systems to adapt in changing 

channel conditions, ensuring continuous connectivity. 

Acoustic impulse response identification is a fundamental 

aspect of adaptive filtering algorithms, which is integrated to 

diverse fields like telecommunications, audio engineering, and 

control systems [6-8]. The Least Mean Squares (LMS) and its 

normalized version (NLMS), utilize input signals and desired 

outputs to estimate the acoustical impulse response of a system 

[6]. By iteratively adjusting filter coefficients, the algorithm 

minimizes the error between predicted and actual outputs. This 

process allows us to adapt to changing environments in real-

time, making it incredibly useful for applications like echo 

cancellation in telephony and reducing noise in audio 

processing. Identifying impulse responses using adaptive 

filtering enables systems to accurately capture the dynamic 

behavior of complex systems, leading to improved 

performance, improved signal quality, and more accurate 

responses in cases of varying conditions [9-11]. The basic 

proportionate NLMS algorithm and its variants are used in 

sparse impulse response identification applications [12-15]. 

To improve the convergence rate, the sub-band decomposition 

is very useful, but the final steady-state error is large [16-19]. 

To solve this problem, the addition of a variable step size 

parameter is crucial [20, 21]. 

In this paper, we propose a new sub-band implementation 

of the proportionate variable-step-sizes NLMS algorithm. The 

utilization of the µ-law compression in the PNLMS algorithm 

allows for enhanced handling of signals with varying dynamic 

ranges, effectively preserving the fine details while adapting 

to larger variations. By adopting a sub-band structure, the 

algorithm can segment the input signal into different 

frequency components, enabling precise adaptation within 

specific frequency ranges. Moreover, the incorporation of 

independent variable parameters improves the adaptability by 

optimal step-sizes to match the unique characteristics of each 

sub-band.  

Section 2 presents the impulse response identification 

system using the basic NLMS algorithm. The new 

implementation of the proposed sub-band proportionate 

algorithm with new separated variable-step-sizes parameters, 

is presented and discussed in Section 3. Section 4 presents a 
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comprehensive discussion of simulation results, incorporating 

diverse objective criteria that highlight the performance of the 

proposed SPV-NLMS algorithm. Section 5 presents the 

conclusion of this study. 

 

 

2. SYSTEM IDENTIFICATION STRATEGY 

 

2.1 Acoustic impulse response 

 

An acoustical impulse response refers to the characteristic 

acoustic behavior of a space or environment in response to a 

short impulsive sound signal. It describes how sound waves 

travel, reflect, and attenuate within a given space over time. 

The acoustical impulse response encompasses various 

acoustic phenomena, such as reflections, diffraction, 

absorption, and reverberation, which collectively shape the 

sound behavior within a specific location. There are two types 

of impulse responses in acoustical systems [22]: dispersive 

impulse responses and sparse impulse responses. The 

dispersive impulse responses are characterized by the 

propagation of signal components over time, resulting in a 

spread-out or smeared response. In such cases, the system 

response is influenced by frequency-dependent delays, 

causing diverse frequency components of the signal to arrive 

at diverse times. The sparse impulse responses are 

characterized by a relatively small number of significant 

response values, with most of the response values being close 

to zero [12]. Sparse impulse responses are often encountered 

in scenarios where there is a clear line-of-sight propagation 

path or minimal reflections [13]. In Figure 1, we present the 

real acoustical dispersive/sparse impulse responses. 

 

 
(a) 

 
(b) 

 

Figure 1. Real impulse responses, (a) Dispersive, (b) Sparse 

[23] 

 

2.2 Identification system process  

 

Impulse response identification is a process in signal 

processing where the characteristics of a system in response to 

an impulsive input signal are estimated [24]. The impulse 

response describes how a system reacts to a brief, 

instantaneous input, and it encompasses information about the 

system behavior, time delays, amplitude scaling, and filtering 

effects. This process is fundamental in understanding and 

modeling various systems, such as communication channels, 

audio systems, and room acoustics [25]. Figure 2 shows a 

basic acoustical adaptive system identification, where we note 

that the output desired signal 𝑑(𝑛) in the closed acoustical 

room is given by convoluting the input signal 𝑥(𝑛) with the 

acoustic impulse response ℎ(𝑛). 
 

𝑑(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛) (1) 

 

In the other hand, the adaptive filter output 𝑦(𝑛) presents as 

convolution among the input 𝑥(𝑛)  and adaptive filter 

coefficients ℎ̃(𝑛). 
 

𝑦(𝑛) = 𝑥(𝑛) ∗  ℎ̃(𝑛) (2) 

 

We note that the error 𝑒(𝑛) is a crucial component in 

various algorithms used to adjust system parameters. The goal 

is to iteratively reduce this error signal, thus improving the 

system's performance or convergence to a desired state. 

Mathematically, 𝑒(𝑛) can be defined as: 

 

𝑒(𝑛) = 𝑑(𝑛) −  𝑦(𝑛) (3) 

 

By inserting Eqs. (1) and (2) into Eq. (3), we obtain 

 

𝑒(𝑛) = 𝑥(𝑛) ∗  ℎ(𝑛) −  𝑥(𝑛) ∗  ℎ̃(𝑛) (4) 

 

𝑒(𝑛) = 𝑥(𝑛) ∗ [ℎ(𝑛) − ℎ̃(𝑛)] (5) 

 

During the phase of stable convergence, the filter ℎ̃(𝑛) 

achieves convergence with the room impulse response ℎ̃(𝑛) =
ℎ(𝑛). Consequently, the computed error takes the form: 

 

𝑒(𝑛) = 0 (6) 

 

 
 

Figure 2. Acoustical adaptive system identification [26] 

 

2.3 Adaptive NLMS algorithm  

 

The NLMS is a popular adaptive filtering algorithm used in 

various signal processing applications, including system 

identification. The NLMS algorithm is specifically used for 

identifying the dispersive impulse response. 

Firstly, we note that the adaptive filter vector is defined as: 

𝒉̃(𝑛) = [ℎ̃1(𝑛), ℎ̃2(𝑛), … , ℎ̃𝑀(𝑛)]
𝑇
, where 𝑀 is the length of 

the impulse response. We compute the estimated output 𝑦(𝑛) 
at iteration 𝑛 by taking the dot product of the current impulse 

response estimate and the input signal vector 𝑥(𝑛): 
 

𝑦(𝑛) =  [𝐡̃(𝑛 − 1)]
𝑇
𝐱(𝑛) (7) 

 

where, 𝐱(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1), … , 𝑥(𝑛 − 𝑀 + 1)]ᵀ. 
The error 𝑒(𝑛) is the difference between the actual output 
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𝑑(𝑛)  and the estimated output 𝑦(𝑛) , i.e., 𝑒(𝑛) = 𝑑(𝑛) −
𝑦(𝑛) . Then the output error 𝑒(𝑛)  is normalized by a 

normalization factor 𝛼(𝑛) which is the sum of squares of the 

recent 𝑀 elements of the input signal vector 𝑥(𝑛), plus a small 

positive constant ε to prevent division by zero is calculated: 

 

𝛼(𝑛) =  𝐱(𝑛)𝑇 𝐱(𝑛) +  𝜀 (8) 

 

The adaptation of the estimate filter 𝒉̃(𝑛) using the NLMS 

algorithm is defined by the next expression: 

 

𝐡̃(𝑛) = 𝐡̃(𝑛 − 1) + 𝜇𝑛
𝑒(𝑛) 𝐱(𝑛)

𝛼(𝑛)
  (9) 

 

These steps are repeated for each iteration 𝑛 =
1, 2, 3, . . . , 𝑒𝑛𝑑, and a stopping criterion is used. This criterion 

can be a maximum number of iterations or a threshold on the 

error 𝑒(𝑛), indicating that the algorithm has converged or the 

desired accuracy has been achieved. 𝜇𝑛 is the fixed normalized 

step-size parameter that has values between 0 and 2 [1-6]. 

 

 

3. PROPOSED SPV-NLMS ALGORITHM 
 

For some applications [3], the length of acoustic impulse 

responses can be high, often ranging from 100 to 400 

milliseconds and characterized by sparse impulse responses. 

An essential aspect is the individual adjustment of adaptation 

step-sizes for these sub-filters. This signifies that the variable 

parameter assigned to each independent sub-filter is 

personalized and fine-tuned autonomously in comparison to 

the others. 

In this section, we present the proposed sub-band 

proportionate variable-step-sizes NLMS algorithm, noted 

SPV-NLMS. In SPV-NLMS, the µ-law proportionate 

enhances signal handling for varying dynamic ranges, 

preserving details while adapting to larger variations. The 

proposed algorithm introduces an innovative approach by 

employing proportionate variable step sizes specifically 

tailored to each individual sub-band frequency. While existing 

proportionate algorithms, such as PNLMS, excel in improving 

the convergence rate during the initial stages of adaptation, 

their performance significantly deteriorates thereafter. Sub-

band decomposition-based algorithms, on the other hand, offer 

the advantage of achieving high convergence rates, 

particularly when input sequences exhibit strong correlation. 

To ensure minimal misalignment in the steady state, various 

variable step-size (VSS) algorithms have been developed in 

the literature. 

The key contribution of the proposed algorithm lies in 

leveraging these advantages to deliver superior performance 

compared to existing methods. It achieves precise adaptation 

across diverse frequency components, with the unique 

incorporation of distinct variable step-size parameters for each 

sub-band further enhancing the algorithm's adaptability and 

efficiency. The general diagram of the proposed SPV-NLMS 

algorithm is presented in Figure 3. 

As an initial stage, as presented in Figure 3, (see two blocs 

1 and 2), two analysis filter banks combined with decimation 

parts to partition 𝑥(𝑛)  and 𝑑(𝑛)  into 𝑁  separate frequency 

sub-bands are employed. The decimation parts are used to 

down-sample the 𝑁  sub-signals. The process of analysis 

filtering involves the decomposition of the input signal into 𝑁 

sub-bands, wherein each of these sub-bands corresponds to a 

distinct frequency range. Each filter is responsible for isolating 

a particular set of frequencies, thereby generating an array of 

sub-band signals. The output sub-signals of two analysis filter 

banks can be described as follows: 

 

{

𝑥1(𝑛) = 𝑥(𝑛)* ℎ1(𝑛)

𝑥2(𝑛) = 𝑥(𝑛)* ℎ2(𝑛)
⋮

𝑥𝑁(𝑛) = 𝑥(𝑛) ∗ ℎ𝑁(𝑛)

  (10) 

 

{

𝑑1(𝑛) = 𝑑(𝑛)* ℎ1(𝑛)

𝑑2(𝑛) = 𝑑(𝑛)* ℎ2(𝑛)
⋮

𝑑𝑁(𝑛) = 𝑑(𝑛) ∗ ℎ𝑁(𝑛)

  (11) 

 

Each analysis filter directly relates to one of the sub-signals. 

The comprehensive expressions, both in general and vector 

form, for decomposing the input and desired sub-signals are as 

follows: 

 

𝑥𝑖(𝑛) = 𝑥(𝑛)* ℎ𝑖(𝑛) (12) 

 

𝑑𝑖(𝑛) = 𝑑(𝑛) ∗ ℎ𝑖(𝑛) (13) 

 

𝑥𝑖(𝑛) = [𝐱𝑙(𝑛)]
𝑇 𝐡𝑖(𝑛) (14) 

 

𝑑𝑖(𝑛) = [𝐝(𝑛)]
𝑇 𝐡𝑖(𝑛) (15) 

 

with 𝑖 = 1, 2, … , 𝑁, L is the length of analysis filter and: 

 

𝐡𝑖(𝑛) = [ℎ(𝑖,1)(𝑛), ℎ(𝑖,2)(𝑛), . . . , ℎ(𝑖,𝐿)(𝑛)]
𝑇 , 

𝐱𝑙(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1), . . . , 𝑥(𝑛 − 𝐿 + 1)]𝑇 , 
𝐝(𝑛) = [𝑑(𝑛), 𝑑(𝑛 − 1), . . . , 𝑑(𝑛 − 𝐿 + 1)]𝑇 . 

 

The down-sampling factor is denoted as 𝐷, and it governs 

the extent of reduction in the sample rate, specifically 𝑁 = 𝐷. 
In this process, the timing index "𝑛"  is modified to "𝑘"  to 

reflect the decimated timing. The result of this decimation 

applied to the input sub-signals are defined as: 
 

{

𝑥1(𝑘) = 𝑥1(𝑛𝐷)

𝑥2(𝑘) = 𝑥2(𝑛𝐷)
⋮

𝑥𝑁(𝑘) = 𝑥𝑁(𝑛𝐷)

  (16) 

 

{

𝑑1(𝑘) = 𝑑1(𝑛𝐷)

𝑑2(𝑘) = 𝑑2(𝑛𝐷)
⋮

𝑑𝑁(𝑘) = 𝑑𝑁(𝑛𝐷)

  (17) 

 

The general formulation of the decimated input and the 

desired sub-signals can be presented as follows: 

 

𝑥𝑖(𝑘) = 𝑥𝑖(𝑛𝐷) (18) 

  

𝑑𝑖(𝑘) = 𝑑𝑖(𝑛𝐷) (19) 

 

where, 𝑥𝑖(𝑛) represent the original input sub-signals prior to 

decimation, 𝑥𝑖(𝑘)  denote the decimated input sub-

signals, 𝑑𝑖(𝑛) represent the original desired sub-signals prior 

to decimation, and 𝑑𝑖(𝑘) denote the decimated desired sub-

signals. Using the sub-band methodology provides an efficient 

adaptation procedure, leading to faster convergence rates 

when identifying acoustic impulse responses within long 

sparse environments (the third block of Figure 3). 
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Figure 3. The detailed scheme of the proposed adaptive algorithm for impulse response identification 

 

All adaptation formulas of the proposed SPV-NLMS 

algorithm, which relies on distinct proportionate and variable-

step-size parameters, are defined as follows: 

 

{
 
 

 
 𝒉 ̃1(𝑘) = 𝒉 ̃1(𝑘 − 1) + 𝜇1(𝑘)  

𝑷1(𝑘−1) 𝒙1(𝑘) 𝑒1(𝑘)

𝛼1(𝑘)

𝒉 ̃2(𝑘) = 𝒉 ̃2(𝑘 − 1) + 𝜇2(𝑘) 
𝑷2(𝑘−1) 𝒙2(𝑘) 𝑒2(𝑘)

𝛼2(𝑘)

⋮

𝒉 ̃𝑁(𝑘) = 𝒉 ̃𝑁(𝑘 − 1) + 𝜇𝑁(𝑘)  
𝑷𝑁(𝑘−1) 𝒙𝑁(𝑘) 𝑒𝑁(𝑘)

𝛼𝑁(𝑘)

  (20) 

 

with 𝛼1(𝑘) , 𝛼2(𝑘), … , 𝛼𝑁(𝑘)  represent the modified 

normalization factors linked to each input sub-signals 𝑥1(𝑘), 
𝑥2(𝑘), … , 𝑥𝑁(𝑘) , respectively. These modified factors are 

given by: 

 

{

𝛼1(𝑘) = [𝐱1(𝑘)]
𝑇 𝐏1(𝑘 − 1) 𝐱1(𝑘) + 𝜀

𝛼2(𝑘) = [𝐱2(𝑘)]
𝑇 𝐏2(𝑘 − 1) 𝐱2(𝑘) + 𝜀
⋮

𝛼𝑁(𝑘) = [𝐱𝑁(𝑘)]
𝑇 𝐏𝑁(𝑘 − 1) 𝐱𝑁(𝑘) + 𝜀

  (21) 

 

In this context, the 𝑀 ×  𝑀  size matrices  𝐏1(𝑘 − 1) , 

𝐏2(𝑘 − 1) ,…, 𝐏𝑁(𝑘 − 1)  are used to govern the step-sizes 

associated with each coefficient of the individual sub-filters. 

𝜇1(𝑘) , 𝜇2(𝑘) , …, 𝜇𝑁(𝑘)  represent the individual variable-

step-size parameters assigned respectively to the sub-filters 

𝐡 ̃1(𝑘), 𝒉 ̃2(𝑘), …, 𝒉 ̃𝑁(𝑘). 
Next, all control diagonal matrices 𝐏𝑖(𝑘 − 1)  and 

individual variable-step-size parameters 𝜇𝑖(𝑘) that are used to 

ensure a rapid and efficient adaptation of all sub-filters 

𝒉 ̃𝑖(𝑘) are detailed. The general updating equation by the 

proposed SPV-NLMS algorithm is given by: 
 

𝐡 ̃𝑖(𝑘) = 𝐡 ̃𝑖(𝑘 − 1) + 𝜇𝑖(𝑘)  
𝐏𝑖(𝑘−1) 𝐱𝑖(𝑘) 𝑒𝑖(𝑘)

𝛼𝑖(𝑘)
  (22) 

with  𝐡̃𝑖(𝑘) = [ℎ ̃𝑖,1(𝑘), ℎ ̃𝑖,2(𝑘), … , ℎ̃𝑖,𝑀(𝑘)]
T

, 𝐱𝒊(𝑘) =

[𝑥𝑖(𝑘), 𝑥𝑖(𝑘 − 1), … , 𝑥𝑖(𝑘 − 𝑀 + 1)]T,  𝛼𝑖(𝑘) =
[𝐱𝑖(𝑘)]

𝑇 𝐏𝑖(𝑘 − 1) 𝐱𝑖(𝑘) + 𝜀. 

Block 3 of Figure 3 presents the adaptation filters in sub-

band form using 𝑁 individual proportionate and variable-step-

size parameters. We note that the decimated error sub-signals 

in the output are given by: 

 

{

𝑒1(𝑘) =  𝑑1(𝑘) − 𝑦1(𝑘)

𝑒2(𝑘) =  𝑑2(𝑘) − 𝑦2(𝑘)
⋮

𝑒𝑁(𝑘) =  𝑑𝑁(𝑘) − 𝑦𝑁(𝑘)

  (23) 

 

The general formula for the sub-signal 𝑦𝑖(𝑘)  of the all-

output filters can be defined as: 

 

𝑦𝑖(𝑘) = 𝑥𝑖(𝑘) ∗  ℎ̃𝑖(𝑘) (24) 

 

The general vectorial equation is the following: 

 

𝑦𝑖(𝑘) = [𝐱𝑖(𝑘)]
𝑇 𝐡 ̃𝑖(𝑘) (25) 

 

By substituting the last equation into Eq. (23) for estimated 

sub-signals, the next expressions are obtained: 

 

{
 

 
𝑒1(𝑘) =  𝑑1(𝑘) − [𝐱1(𝑘)]

𝑇 𝐡 ̃1(𝑘)

𝑒2(𝑘) =  𝑑2(𝑘) − [𝐱2(𝑘)]
𝑇 𝐡 ̃2(𝑘)

⋮
𝑒𝑁(𝑘) =  𝑑𝑁(𝑘) − [𝐱𝑁(𝑘)]

𝑇 𝐡 ̃𝑁(𝑘)

  (26) 

 

Considering the general equation for error sub-signals, it 

can be expressed as follows: 

 

𝑒𝑖(𝑘) =  𝑑𝑖(𝑘) − [𝐱𝑖(𝑘)]
𝑇 𝐡 ̃𝑖(𝑘) (27) 
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The utilization of the proportionate adaptive algorithm 

proves to be particularly effective in the context of identifying 

sparse impulse responses (see Block 4). This adaptive filtering 

technique enhances the precision of signal processing tasks in 

scenarios where the impulse responses are sparsely distributed. 

The algorithm capitalizes on the inherent sparsity by assigning 

varying step-sizes to individual filter coefficients as presented 

in fourth step. Larger coefficients, which are more influential 

in contributing to the response, are assigned proportionately 

larger step-sizes. In the proportionate adaptive approach, each 

filter coefficient is assigned a unique step-size [14]. 

This means that larger coefficients are granted greater 

increments, resulting in an amplified convergence rate for 

those specific coefficients.  

The µ-law compression function employed in our algorithm 

is instrumental in emphasizing small signal variations while 

compressing larger amplitudes, making it particularly 

effective for signals with large dynamic ranges. For larger 

values of |ℎ̃𝑖,𝑚(𝑘)|, the logarithmic nature of the compression 

reduces the relative magnitude, mitigating the impact of 

dominant coefficients.  

Conversely, for smaller coefficients, the compression 

function behaves approximately linearly, allowing for more 

precise adjustments. This balance ensures improved steady-

state precision and enhances convergence speed, as smaller 

coefficients are not neglected during adaptation, and large 

variations are effectively controlled.  

Additionally, µ-law compression inherently provides 

robustness to outliers and better handling of non-stationary 

environments, making it a critical feature for adaptive filtering 

algorithms in dynamic scenarios. 

The values of the diagonal control matrix 𝐏𝑖(𝑘)  are 

determined by the following formulas: 

 

{
 
 

 
 𝐏1(𝑘) = 𝑑𝑖𝑎𝑔[𝑝1,1(𝑘), 𝑝1,2(𝑘), … , 𝑝1,𝑀(𝑘)]

𝐏2(𝑘) = 𝑑𝑖𝑎𝑔[𝑝2,1(𝑘), 𝑝2,2(𝑘), … , 𝑝2,𝑀(𝑘)]

⋮
𝐏𝑁(𝑘) = 𝑑𝑖𝑎𝑔[𝑝𝑁,1(𝑘), 𝑝𝑁,2(𝑘), … , 𝑝𝑁,𝑀(𝑘)]

  (28) 

 

The diagonal elements of 𝐏𝑖(𝑘), as represented in Eq. (28), 

are denoted by 𝑝𝑖,𝑚(𝑘) with 𝑚 = 1, 2, … ,𝑀. These elements 

are determined through the following expressions: 

 

{
 
 

 
 𝑝1,𝑚(𝑘) =

𝛾1,𝑚(𝑘)

∑ [𝛾1,𝑙(𝑘)]
𝑀
𝑙=1

𝑝2,𝑚(𝑘) =
𝛾2,𝑚(𝑘)

∑ [𝛾2,𝑙(𝑘)]
𝑀
𝑙=1

⋮

𝑝𝑁,𝑚(𝑘) =
𝛾𝑁,𝑚(𝑘)

∑ [𝛾𝑁,𝑙(𝑘)]
𝑀
𝑙=1

  (29) 

 

where, the general diagonal elements of 𝐏𝑖(𝑘) is given by: 

 

𝑝𝑖,𝑚(𝑘) =
𝛾𝑖,𝑚(𝑘)

∑ [𝛾𝑖,𝑙(𝑘)]
𝑀
𝑙=1

  (30) 

 

and 

 

{
 
 

 
 𝛾1,𝑚(𝑘) = 𝑀𝑎𝑥{𝜌 × 𝐹(|ℎ̃1,𝑚(𝑘)|), 𝐹𝐿𝑜𝑔(|ℎ̃1,𝑚(𝑘)|)}

𝛾2,𝑚(𝑘) = 𝑀𝑎𝑥{𝜌 × 𝐹(|ℎ̃2,𝑚(𝑘)|), 𝐹𝐿𝑜𝑔(|ℎ̃2,𝑚(𝑘)|)}

⋮
𝛾𝑁,𝑚(𝑘) = 𝑀𝑎𝑥{𝜌 × 𝐹(|ℎ̃𝑁,𝑚(𝑘)|), 𝐹𝐿𝑜𝑔(|ℎ̃𝑁,𝑚(𝑘)|)}

 (31) 

 

with the general formula is: 

𝛾𝑖,𝑚(𝑘) = 𝑀𝑎𝑥{𝜌 × 𝐹(|ℎ̃𝑖,𝑚(𝑘)|), 𝐹𝐿𝑜𝑔(|ℎ̃𝑖,𝑚(𝑘)|)} (32) 

 

with 𝜌 = 5/𝑀, to prevent any inactivity during the adaptation 

phase. 

The functions 

𝐹(|ℎ̃1,𝑚(𝑘)|), 𝐹(|ℎ̃2,𝑚(𝑘)|), … , 𝐹(|ℎ̃N,𝑚(𝑘)|) are given by: 

 

{
 
 
 
 

 
 
 
 𝐹(|ℎ̃1,𝑚(𝑘)|) = 𝑀𝑎𝑥 {

𝛿, 𝐹𝐿𝑜𝑔(|ℎ̃1,1(𝑘)|), 𝐹𝐿𝑜𝑔(|ℎ̃1,2(𝑘)|),

 … , 𝐹𝐿𝑜𝑔(|ℎ̃1,𝑀(𝑘)|) 
}

𝐹(|ℎ̃2,𝑚(𝑘)|) = 𝑀𝑎𝑥 {
𝛿, 𝐹𝐿𝑜𝑔(|ℎ̃2,1(𝑘)|), 𝐹𝐿𝑜𝑔(|ℎ̃2,2(𝑘)|),

 … , 𝐹𝐿𝑜𝑔(|ℎ̃2,𝑀(𝑘)|) 
}

⋮

𝐹(|ℎ̃𝑁,𝑚(𝑘)|) = 𝑀𝑎𝑥 {
𝛿, 𝐹𝐿𝑜𝑔(|ℎ̃𝑁,1(𝑘)|), 𝐹𝐿𝑜𝑔(|ℎ̃𝑁,2(𝑘)|)

,… , 𝐹𝐿𝑜𝑔(|ℎ̃𝑁,𝑀(𝑘)|) 
}

 (33) 

 

The general function 𝐹(|ℎ̃I,𝑚(𝑘)|) is: 

 

𝐹(|ℎ̃𝑖,𝑚(𝑘)|) = 𝑀𝑎𝑥 {
𝛿, 𝐹𝐿𝑜𝑔(|ℎ̃𝑖,1(𝑘)|), 𝐹𝐿𝑜𝑔(|ℎ̃𝑖,2(𝑘)|),

… , 𝐹𝐿𝑜𝑔(|ℎ̃𝑖,𝑀(𝑘)|) 
}  (34) 

 

where, 𝛿 is the regularization component that is typically set 

at 0.01, and introduces a slight non-zero value, contributing to 

the regulation and stabilization of the updating process. The 𝑁 

logarithmic functions are given by: 

 

{
 
 

 
 𝐹𝐿𝑜𝑔(|ℎ̃1,𝑚(𝑘)|) =

𝑙𝑛(𝜇×|ℎ̃1,𝑚(𝑘)|+1)

𝑙𝑛(𝜇+1)

𝐹𝐿𝑜𝑔(|ℎ̃2,𝑚(𝑘)|) =
𝑙𝑛(𝜇×|ℎ̃2,𝑚(𝑘)|+1)

𝑙𝑛(𝜇+1)

⋮

𝐹𝐿𝑜𝑔(|ℎ̃𝑁,𝑚(𝑘)|) =
𝑙𝑛(𝜇×|ℎ̃𝑁,𝑚(𝑘)|+1)

𝑙𝑛(𝜇+1)

  (35) 

 

with the general logarithmic function is given by: 

 

𝐹𝐿𝑜𝑔(|ℎ̃𝐼,𝑚(𝑘)|) =
𝑙𝑛(𝜇×|ℎ̃𝑖,𝑚(𝑘)|+1)

𝑙𝑛(𝜇+1)
  (36) 

 

The determination of the positive quantity 𝜇 depends on the 

noise level. For identifying sparse impulse responses, a 

practical selection for 𝜉  is 0.001. Additionally, 𝜇  stands for 

the inverse of 𝜉, 𝜇 =  1/𝜉. 
An important contribution presented in Block 5 is the 

distinct optimal step-size relationships designed for faster 

convergence and very low error. In adaptive filtering, the 

significance of the step-size lies in its efficient role during 

updates of coefficients. Our focus in optimizing these distinct 

step-size parameters is dual: enhancing the convergence rate 

and lessening the difference between desired various impulse 

responses and both estimated and actual impulse responses. 

It's significant that our primary attention centers on 𝑁 error 

sub-signals, denoted as 𝑒𝑖(𝑘), which derive from the process 

of adaptive sub-filtering. We define 𝛜𝑖(𝑘)  as weight-error 

vectors used to measure the variance between real 𝒉  and 

estimated sub-filter, 𝒉̃𝑖(𝑘). 
 

{
 

 
𝝐1(𝑘) = 𝒉 − 𝒉̃1(𝑘)

𝝐2(𝑘) = 𝒉 − 𝒉̃2(𝑘)
⋮

𝝐𝑁(𝑘) = 𝒉 − 𝒉̃𝑁(𝑘)

  (37) 

 

The formula for the weight-error vectors 𝛜𝑖(𝑘) is: 
 

𝝐𝑖(𝑘) = 𝒉 − 𝒉̃𝑖(𝑘) (38) 
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Based on Eq. (38), the minimization of mean square 

deviation (MSD) is used and determined by the next system of 

equations: 
 

{
 
 

 
 𝑐1(𝑘) = 𝐸[‖𝝐1(𝑘)‖

2] = 𝐸 [‖𝐡 − 𝐡̃1(𝑘)‖
2
]

𝑐2(𝑘) = 𝐸[‖𝝐2(𝑘)‖
2] = 𝐸 [‖𝐡 − 𝐡̃2(𝑘)‖

2
]

⋮

𝑐𝑁(𝑘) = 𝐸[‖𝝐𝑁(𝑘)‖
2] = 𝐸 [‖𝐡 − 𝐡̃𝑁(𝑘)‖

2
]

  (39) 

 

After replacing Eq. (20) into Eq. (39), the next system of 

equations is obtained: 
 

{
 
 
 
 
 

 
 
 
 
 𝑐1(𝑘) − 𝑐1(𝑘 − 1) = 𝜇1

2𝐸 [
(𝑒1(𝑘))

2

𝛼1(𝑘)
] −

2𝜇1𝐸 [
𝜖1
𝑇(𝑘−1)𝐏1(𝑘−1)𝐱1(𝑘)𝑒1(𝑘)

𝛼1(𝑘)
]

𝑐2(𝑘) − 𝑐2(𝑘 − 1) = 𝜇2
2𝐸 [

(𝑒2(𝑘))
2

𝛼2(𝑘)
] −

2𝜇2𝐸 [
𝜖2
𝑇(𝑘−1)𝐏𝟐(𝑘−1)𝐱2(𝑘)𝑒2(𝑘)

𝛼2(𝑘)
]

⋮

𝑐𝑁(𝑘) − 𝑐𝑁(𝑘 − 1) = 𝜇𝑁
2𝐸 [

(𝑒𝑁(𝑘))
2

𝛼𝑁(𝑘)
] −

2𝜇𝑁𝐸 [
𝜖𝑁
𝑇 (𝑘−1)𝐏𝑁(𝑘−1)𝐱𝑁(𝑘)𝑒𝑁(𝑘)

𝛼𝑁(𝑘)
]

  (40) 

 

The formula for the system of Eq. (40) is: 
 

𝑐𝑖(𝑘) − 𝑐𝑖(𝑘 − 1) = 𝜇𝑖
2𝐸 [

(𝑒𝑖(𝑘))
2

𝛼𝑖(𝑘)
] − 

2𝜇𝑖𝐸 [
𝜖𝑖
𝑇(𝑘−1)𝐏𝑖(𝑘−1)𝐱𝑖(𝑘)𝑒𝑖(𝑘)

𝛼𝑖(𝑘)
]  

(41) 

 

Based on the last equation, the relationship 𝑐𝑖(𝑘) −
𝑐𝑖(𝑘 − 1) = 𝑓(𝜇𝑖) is obtained. It's important to allow that each 

separated fixed step-size 𝜇𝑖  carries an influence on the 

respective function 𝑓(𝜇𝑖), subsequently affecting the MSD. 

When we select for specific values of 𝜇𝑖  that maximize the 

function 𝑓(𝜇𝑖) , we are effectively ensuring that the MSD 

experiences the most substantial reduction between successive 

iterations (from 𝑘 − 1 to 𝑘), i.e., 𝑐𝑖(𝑘) < 𝑐𝑖(𝑘 − 1). By using 

the principal selection of 𝑐𝑖(𝑘) < 𝑐𝑖(𝑘 − 1), it can be inferred 

that 𝑓(𝜇𝑖) < 0. 
 

𝜇𝑖
2𝐸 [

(𝑒𝑖(𝑘))
2

𝛼𝑖(𝑘)
] − 2𝜇𝑖𝐸 [

𝝐𝑖
𝑇(𝑘−1) 𝐏𝑖(𝑘−1) 𝐱𝑖(𝑘) 𝑒𝑖(𝑘)

𝛼𝑖(𝑘)
] < 0  (42) 

 

By employing Eq. (42) the obtained general expression of 

all optimal values of step-size is the following: 
 

𝜇𝑖,𝑜𝑝𝑡 < 2

{
 
 

 
 
𝐸[
𝝐𝑖
𝑇(𝑘−1) 𝐏𝑖(𝑘−1) 𝐱𝑖(𝑘) 𝑒𝑖(𝑘)

𝛼𝑖(𝑘)
]

𝐸[
(𝑒𝑖(𝑘))

2

𝛼𝑖(𝑘)
]

}
 
 

 
 

  (43) 

 

We note that all these optimal values are bounded as, 0 <
𝜇𝑖,𝑜𝑝𝑡 < 2, and indicates that the optimal values of adapted 

step-size should fall within the range of 0 to 2. This is a 

common guideline in adaptive filtering to ensure stability and 

convergence of the algorithm. Too small values might lead to 

slow convergence, while too large values might cause 

instability or divergence. 

We define ∆𝑖(𝑘)  as a small quantity associated with the 

adaptive sub-filter ℎ̃𝑖(𝑘), with 𝜇𝑖,𝑜𝑝𝑡 < 2 ∆𝑖(𝑘), and ∆𝑖(𝑘) is 

defined by: 

𝛥𝑖(𝑘) =

{
 
 

 
 
𝐸[
𝝐𝑖
𝑇(𝑘−1) 𝐏𝑖(𝑘−1) 𝐱𝑖(𝑘) 𝑒𝑖(𝑘)

𝛼𝑖(𝑘)
]

𝐸[
(𝑒𝑖(𝑘))

2

𝛼𝑖(𝑘)
]

}
 
 

 
 

  (44) 

 

To verifies the Eq. (43) and 0 < 𝜇𝑖,𝑜𝑝𝑡 < 2 , apply that 

∆𝑖(𝑘) must be less to 1. In the following, we will introduce our 

innovative approach to determine separated Variable-step-

sizes parameters 𝜇𝑖(𝑘) using recursive estimations. Through 

these novel adaptations, we establish recursive formulas for 

calculating 𝜇𝑖,𝑜𝑝𝑡, where 𝑖 takes values from 1 to 𝑁. In the last 

equation, it is important to highlight that all ∆𝑖(𝑘) quantities 

are small sub-unitary scalar values. However, the 𝑁  small 

∆𝑖(𝑘) quantities can be approximated through an analysis of 

cross-correlation function between input signal 𝑥𝑖(𝑘)  and 

estimated output sub-signal 𝑒𝑖(𝑘) of each adaptive sub-filter 

ℎ̃𝑖(𝑘). We introduce a new approach to estimate ∆𝑖(𝑘) using 

newly derived estimates denoted as ∆̃𝑖(𝑘) that is equal to 
 

𝛥̃𝑖(𝑘) =
‖𝑲𝑖(𝑘)‖

2

𝜌𝑖+‖𝑲𝑖(𝑘)‖
2  (45) 

 

We note that 0 < 𝜌𝑖  and {𝜌𝑖 + ‖𝑲𝑖(𝑘)‖
2} > ‖𝑲𝑖(𝑘)‖

2 , it 

follows that ∆̃𝑖(𝑘)<1. Also, they are calculated as follows: 
 

{
 
 

 
 𝛥̃1(𝑘) =

‖𝑲1(𝑘)‖
2

𝜌1+‖𝑲1(𝑘)‖
2

𝛥̃2(𝑘) =
‖𝑲2(𝑘)‖

2

𝜌2+‖𝑲2(𝑘)‖
2

⋮

𝛥̃𝑁(𝑘) =
‖𝑲𝑁(𝑘)‖

2

𝜌𝑁+‖𝑲𝑁(𝑘)‖
2

  (46) 

 

We notice that: 
 

{
 
 

 
 𝜇1,𝑜𝑝𝑡 < 2 × 𝛥̃1(𝑘)

𝜇2,𝑜𝑝𝑡 < 2 × 𝛥̃2(𝑘)

⋮
𝜇𝑁,𝑜𝑝𝑡 < 2 × 𝛥̃𝑁(𝑘)

  (47) 

 

In the last equations, we change 2 by the maximum value 

step-size denoted 𝜇𝑚𝑎𝑥, which is selected to achieve a faster 

convergence rate, under the condition that this maximum value 

is less than 2. Now, we note that the optimal separated step-

sizes are given by 𝜇𝑖,𝑜𝑝𝑡(𝑘) = 𝜇𝑚𝑎𝑥  ∆̃1(𝑘). We then propose 

a method to independently and iteratively estimate the 𝑁 

optimal step-size parameters using the following formulas: 
 

{
 
 

 
 𝜇1,𝑜𝑝𝑡(𝑘) = 𝜇𝑚𝑎𝑥 ×

‖𝑲1(𝑘)‖
2

𝜌1+‖𝑲1(𝑘)‖
2

𝜇2,𝑜𝑝𝑡(𝑘) = 𝜇𝑚𝑎𝑥 ×
‖𝑲2(𝑘)‖

2

𝜌2+‖𝑲2(𝑘)‖
2

⋮

𝜇𝑁,𝑜𝑝𝑡(𝑘) = 𝜇𝑚𝑎𝑥 ×
‖𝑲𝑁(𝑘)‖

2

𝜌𝑁+‖𝑲𝑁(𝑘)‖
2

  (48) 

 

The general formula for 𝑁  optimal Variable-step-sizes 

parameters is the following: 

 

𝜇̃𝑖,𝑜𝑝𝑡(𝑘) = 𝜇𝑚𝑎𝑥 ×
‖𝑲𝑖(𝑘)‖

2

𝜌𝑖+‖𝑲𝑖(𝑘)‖
2  (49) 

 

The 𝑁 vectors 𝑲𝑖(𝑘) are calculated taking in consideration 

the diagonal proportionate step-size 𝐏𝑖(𝑘 − 1)  and 

normalized by input sub-signal energy 𝛼𝑖(𝑘). The estimation 

of these vectors follows the procedure outlined below: 
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{
 
 

 
 𝑲1(𝑘) = 𝜆1 𝑲1(𝑘 − 1) + (1 − 𝜆1)

𝐏1(𝑘−1) 𝐱1(𝑘) 𝑒1(𝑘)

𝛼1(𝑘)

𝑲2(𝑘) = 𝜆2 𝑲2(𝑘 − 1) + (1 − 𝜆2)
𝐏2(𝑘−1) 𝐱2(𝑘) 𝑒2(𝑘)

𝛼2(𝑘)

⋮

𝑲𝑁(𝑘) = 𝜆𝑁 𝑲𝑁(𝑘 − 1) + (1 − 𝜆𝑁)
𝐏𝑁(𝑘−1) 𝐱𝑁(𝑘) 𝑒𝑁(𝑘)

𝛼𝑁(𝑘)

  (50) 

 

with 0 < 𝜆1 < 1, 0 < 𝜆2 < 1, …, and 0 < 𝜆𝑁 < 1. Generally, 

we can write: 

 

𝑲𝑖(𝑘) = 𝜆𝑖  𝑲𝑖(𝑘 − 1) + (1 − 𝜆𝑖)
𝑷𝑖(𝑘−1) 𝒙𝑖(𝑘) 𝑒𝑖(𝑘)

𝛼𝑖(𝑘)
  (51) 

 

We note here that 𝛼𝑖(𝑑) = [𝐱𝑖(𝑘)]
𝑇 𝐏𝑖(𝑘 − 1) 𝐱𝑖(𝑘) + 𝜀. 

Finally, to ensure the convergence of the proposed SPV-

NLMS algorithm. The values of all independent variable 

parameters must be verified using the following conditions: 

 

{
 
 
 

 
 
 𝜇1(𝑘) = {

𝜇𝑚𝑖𝑛        𝑖𝑓 𝜇̃1,𝑜𝑝𝑡(𝑘) < 𝜇𝑚𝑖𝑛
𝜇̃1,𝑜𝑝𝑡(𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝜇2(𝑘) = {
𝜇𝑚𝑖𝑛        𝑖𝑓 𝜇̃2,𝑜𝑝𝑡(𝑘) < 𝜇𝑚𝑖𝑛
𝜇̃2,𝑜𝑝𝑡(𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

⋮

𝜇𝑁(𝑘) = {
𝜇𝑚𝑖𝑛        𝑖𝑓 𝜇̃𝑁,𝑜𝑝𝑡(𝑘) < 𝜇𝑚𝑖𝑛
𝜇̃𝑁,𝑜𝑝𝑡(𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (52) 

 

The general separated Variable-step-sizes parameters can 

be managed through the following condition: 

 

𝜇𝑖(𝑘) = {
𝜇𝑚𝑖𝑛        𝑖𝑓𝜇̃𝑖,𝑜𝑝𝑡(𝑘) < 𝜇𝑚𝑖𝑛
𝜇̃𝑖,𝑜𝑝𝑡(𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  (53) 

 

While taking into account the good quality level, 𝜇𝑚𝑖𝑛 

represents the possible minimum value that ensures and attains 

an optimal performance. 

 

 

3.1 Optional reconstruction block 

 

As an additional or optional stage, our attention is directed 

towards the synthesis filter bank that is placed in the output of 

the proposed algorithm. In some applications, such as acoustic 

noise reduction, speech enhancement and acoustic echo 

cancellation, the full-band output signal is required and must 

be calculated. For this aim, in our methodology, an 

interpolation block as illustrated in Figure 4 is integrated. The 

process of precisely reconstructing the entire error signal 

across all frequencies involves interpolating the 𝑁 output error 

sub-signals and using 𝐺1(𝑧), ..., 𝐺𝑁(𝑧). 
 

 
 

Figure 4. The detailed bloc for creating full-band signal  

The interpolated sub-errors are calculated as follows: 

 

{
 
 
 
 

 
 
 
 𝑒1(𝑛) = {

𝑒1 (
𝑘

𝐼
) 𝑛 = 0,±𝐼, ±2𝐼, …

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

𝑒2(𝑛) = {
𝑒2 (

𝑘

𝐼
) 𝑛 = 0,±𝐼, ±2𝐼, …

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
⋮

𝑒𝑁(𝑛) = {
𝑒𝑁 (

𝑘

𝐼
) 𝑛 = 0,±𝐼, ±2𝐼, …

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

  (54) 

 

The general formula for the 𝑁 interpolated error sub-signals 

and full-band output signal is the following: 

 

𝑒𝑖(𝑛) = {
𝑒𝑖 (

𝑘

𝐼
) 𝑛 = 0,±𝐼, ±2𝐼, …

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
  (55) 

 

𝑒(𝑛) = ∑ 𝒈𝑖
𝑇(𝑛)𝒆𝑖(𝑛)

𝑁
𝑖=1   (56) 

 

where, 𝐠𝑖(𝑛) = [𝑔𝑖(𝑛), 𝑔𝑖(𝑛 − 1), … , 𝑔𝑖(𝑛 − 𝐿 + 1)]
T , and 

𝒆𝑖(𝑛) = [𝑒𝑖(𝑛), 𝑒𝑖(𝑛 − 1), … , 𝑒𝑖(𝑛 − 𝐿 + 1)]
T. 

 

 

4. SIMULATION RESULTS 

 

In this experimental section, a series of experiments were 

conducted involving a proposed sub-band proportionate 

separated variable-step-sizes NLMS algorithm within four 

acoustic impulse response identification, noted respectively, (i) 

More-Sparse, (ii) Sparse, (iii) Dispersive, and (iv) More 

Dispersive.  

The primary goal is to evaluate the performance of this 

version while preserving the inherent characteristics of real 

acoustical rooms. The evaluation was carried out using two 

types of input signals, both sampled at a frequency of 8 kHz.  

(i) The first is white noise represents a stationary signal 

used for testing purposes in terms of stability.  

(ii) The second is USASI signal that presents a stationary 

signal conforming to the USA Standards Institute's 

specifications. Three objective measures were 

employed to assess the simulated and proposed 

algorithm performance: the Mean Square Error 

(MSE), the Echo Return Loss Enhancement (ERLE) 

and the standard deviation (SD). 

 

The experimental setup is based on four acoustic impulse 

response, visualized in Figure 5. These impulse responses 

were employed for all simulations and results presented in this 

study with different lengths:  𝑀 = 128, 256, 512 𝑎𝑛𝑑 1024. 
The sparseness level of impulse response can be computed as 

follow [27]: 

 

𝜁 =
𝑀

𝑀−√𝑀
 
1−‖𝒉1‖

√𝑀‖𝒉2‖
  (57) 

 

where, ‖. ‖1 𝑎𝑛𝑑 ‖. ‖2  denote respectively 𝑙1 𝑎𝑛𝑑 𝑙2 𝑛𝑜𝑟𝑚𝑠, 
and  𝑀 represent the length of the impulse response. The 

experiments were conducted over 100,000 iterations. 

To achieve an effective sub-band decomposition of the 

signals 𝑥(𝑛)  and 𝑑(𝑛) , we used the analysis filters whose 

length has been deliberately set be proportionate to a 

parameter 𝑁 . We conducted experiments with 𝑁  equal to 2 

and 𝐿 equal to 16. In Figure 6 the frequency representation of 

the analysis and synthesis filter banks is shown. 

1299



 

These filter banks are designed with a focus on utilizing two 

sub-bands in the context of employing variable-step-sizes 

algorithms. 

 

 

 
 

Figure 5. Four types of impulse responses used in 

simulations 

 

 
 

Figure 6. Frequency representation of 𝐻1(𝑛) and 𝐻2(𝑛) with 

L = 16 

 

4.1 Parameter values and simulation procedure  

 

The assessment of an adaptive algorithm tracking capability 

is a very important aspect in various applications, particularly 

those involving dynamic and variable environments. Tracking 

capability refers to the algorithm's inherent skill to rapidly 

adapt to changes in input conditions, ensuring consistent and 

accurate responses. This attribute is particularly crucial in like 

noise reduction in audio or echo cancellation applications 

where the input data, such as signals or parameters, show rapid 

changes and fluctuations. Table 1 shows the used constants 

and variable parameters. Where they are chosen carefully to 

ensure firstly, the stability and secondly to find the highest 

performances of the algorithms by numerous trials. 

 

4.2 Stability study 

 

Assessing the stability of an adaptive algorithm against 

white noise involves ensuring it can consistently perform well 

despite random disturbances. In our simulation, white noise 

represents unpredictable fluctuations that could challenge the 

algorithm stability. The analysis is centered on how well the 

adaptive filter maintains convergence and steady-state 

behavior in the presence of white noise. The evaluation of 

stability uses the MSE measure. The main objective is to 

confirm the convergence to best values without showing 

irregular behavior caused by the white noise. 

 

Table 1. Algorithms parameters 

 
Algorithms Parameters 

NLMS  𝜇𝑛 = 0.9, 𝜀 = 10−6, 𝑁 = 1, 

PNLMS 
𝜇𝑛 = 0.9, 𝜀 = 10−6, 𝑁 = 1,   

𝜌 = 5/𝑀, 𝛿 = 0.01, µ = 0.001 

S-NLMS   𝜇𝑖 = 0.9, 𝜀 = 10−6, 𝑁 = 2   

SP-NLMS   
𝜇𝑖 = 0.9, 𝜀 = 10−6, 𝑁 = 2,  

𝜌 = 5/𝑀, 𝛿 = 0.01, µ = 0.001 

MPNLMS 
𝜇𝑛 = 0.9, 𝜀 = 10−6, 𝑁 = 1,  

𝜌 = 5/𝑀, 𝛿 = 0.01, µ = 0.001 

Proposed 

𝜇𝑚𝑎𝑥= 0.9, 𝜇𝑚𝑖𝑛 = 0.005, 𝜀 =  10−6, 𝑁 = 2, 

𝜌 = 5/𝑀, 0 < 𝜆𝑖 < 1, 0 < 𝜌𝑖,  
𝛿 = 0.01, µ = 0.001 

 

 
 

Figure 7. MSE performance using white noise, M = 128 

 

 
 

Figure 8. MSE performance using white noise, M = 256 

 

Figures 7 and 8 presents the outcomes achieved using six 

algorithms: basic NLMS, proportionate NLMS, sub-band 

NLMS, sub-band proportionate NLMS, µ-law PNLMS 

(MPNLMS) and proposed SPV-NLMS. In Figure 7, a sparse 

impulse response with 128 taps was used. The results 
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presented in Figure 8 used a dispersive impulse response with 

𝑀 = 256. 

Based on obtained results presented in Figures 7 and 8, the 

proposed SPV-NLMS algorithm is a robust candidate, in both 

types of impulse responses, having an improved convergence 

and tracking abilities. 

 

4.3 Time evolution of the proposed separated variables-

step-sizes 

 

This simulation part involves the optimization of the 

proposed sub-band proportionate separated variable-step-sizes 

NLMS algorithm across consistent parameters and various 

types of acoustic impulse responses. By applying these refined 

parameters to different acoustic impulse response systems 

(More Dispersive, Dispersive, Sparse, and More-Sparse) the 

study seeks to assess the algorithm adaptability and 

effectiveness.  

 

 
 

Figure 9. Variation of proposed separated step-size 

parameters in more-dispersive IR case 

 

 
 

Figure 10. Variation of proposed separated step-size 

parameters in dispersive IR case 

 

The observed minimization of the separated step-sizes over 

time, as depicted in Figures 9-12, holds significant 

implications for the adaptability and convergence behavior of 

the proposed algorithm. This temporal reduction in step-sizes 

suggests a proactive response to evolving acoustic conditions. 

Initially, larger step-sizes are chosen to obtain a rapid 

convergence during the algorithm early stages, optimizing the 

estimation process. As the algorithm iterates, the step sizes 

progressively decrease, indicating a cautious and refined 

approach to adaptation. This dynamic adjustment allows the 

algorithm to strike a balance between rapid convergence and 

low final MSE values. The decreasing step-sizes signify the 

algorithm ability to fine-tune its learning process, mitigating 

potential overshooting or divergence issues that might arise in 

complex and changing acoustic environments. This behavior 

is particularly relevant in real-world scenarios where 

maintaining accurate estimates over time is essential. The 

trend aligns with the algorithm goal to strike a balance 

between rapid convergence and long-term stability for diverse 

acoustic scenarios. 

 

 
 

Figure 11. Variation of proposed separated step-size 

parameters in sparse IR case 

 

 
 

Figure 12. Variation of proposed separated step-size 

parameters in more-sparse IR case 

 

4.4 MSE performance  

 

The convergence rate plays an important role in assessing 

the efficiency and adaptability of different adaptive signal 

processing algorithms, specifically focusing on the NLMS 

adaptation. The convergence rate signifies how rapidly an 

algorithm refines its estimations to reach stable and accurate 

results during iterative updates. To measure this convergence 

speed, the MSE criterion is used. The evolution of MSE values 

is illustrated in Figures 13-16, using the USASI noise under 

consistent conditions, 𝜇 =  𝜇𝑚𝑎𝑥 = 0.5. 

We evaluated these algorithms across four distinct noisy 

acoustic systems with dimensions 𝑀 = 128 and 256 using four 

types of acoustic systems, More-Dispersive, Dispersive, 

Sparse and More-Sparse. This investigation primarily centers 

on the comparative analysis of six algorithms.  

By analyzing the MSE extracted from Figures 13-16, we 

can readily discern the performance of the first full-band 

NLMS variant within dispersive IR (Figures 13 and 14). 

Notably, the conventional FNLMS algorithm also exhibits 

unsatisfactory performance in scenarios characterized by 

sparsity (see Figures 15 and 16). However, the proportionate 

version gives the best performance compared with classical 

NLMS. The S-NLMS presents a good algorithm in 

convergence speed but a very modest performance in MSE 

values in different acoustical systems. After implementing the 
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proportionate strategy on Sub-band NLMS algorithm (SP-

NLMS), a fast convergence rate and the same final MSE 

values compared with other algorithms (S-NLMS, PNLMS, 

MPNLMS, and the basic NLMS algorithm) are obtained. Also, 

it can be noticed that the proposed SPV-NLMS algorithm has 

a very fast convergence; its superiority is proved by the low 

final MSE values in different acoustical environments 

compared with S-NLMS, PNLMS, MPNLMS, and the basic 

NLMS algorithms. This suggests that the proposed algorithm 

adapts to dynamic changes in acoustic conditions, making it a 

potential favourite for applications demanding rapid 

adjustments, such as echo cancellation and noise reduction in 

communication systems. 

  
 

Figure 13. MSE evaluation of simulated and proposed 

algorithms in more-dispersive IR case, with M = 128 in (a) 

and M = 256 in (b) 

 

  
 

Figure 14. MSE evaluation of simulated and proposed 

algorithms in dispersive IR case, with M = 128 in (a) and M 

= 256 in (b) 

  
 

Figure 15. MSE evaluation of simulated and proposed 

algorithms in sparse IR case, with M = 128 in (a) and M = 

256 in (b) 

 

0 200 400 600 800 1000
-120

-100

-80

-60

-40

-20

0

(a) - Frames of 128 samples

M
S

E
 i
n
 d

B

 

 

NLMS

PNLMS

S-NLMS

SP-NLMS

MPNLMS

Proposed

0 200 400 600 800 1000
-120

-100

-80

-60

-40

-20

0

(b) - Frames of 128 samples

M
S

E
 i
n
 d

B

 

 
NLMS

PNLMS

S-NLMS

SP-NLMS

MPNLMS

Proposed

0 200 400 600 800 1000
-100

-80

-60

-40

-20

0

(a) - Frames of 128 samples

M
S

E
 i
n
 d

B

 

 

NLMS

PNLMS

S-NLMS

SP-NLMS

SPV-NLMS

MPNLMS

0 200 400 600 800 1000
-120

-100

-80

-60

-40

-20

0

(b) - Frames of 128 samples

M
S

E
 i
n
 d

B

 

 

NLMS

PNLMS

S-NLMS

SP-NLMS

MPNLMS

Proposed

0 200 400 600 800 1000
-100

-80

-60

-40

-20

0

(a) - Frames of 128 samples

M
S

E
 i
n
 d

B

 

 

NLMS

PNLMS

S-NLMS

SP-NLMS

MPNLMS

Proposed

0 200 400 600 800 1000
-100

-80

-60

-40

-20

0

(b) - Frames of 128 samples

M
S

E
 i
n
 d

B

 

 
NLMS

PNLMS

S-NLMS

SP-NLMS

MPNLMS

Proposed

0 200 400 600 800 1000
-100

-80

-60

-40

-20

0

(a) - Frames of 128 samples

(b
) 

- 
M

S
E

 i
n
 d

B

 

 
NLMS

PNLMS

S-NLMS

SP-NLMS

MPNLMS

Proposed

1302



 

  
 

Figure 16. MSE evaluation of all algorithms in more-sparse 

IR case, with M = 128 in (a) and M = 256 in (b) 

 

4.5 ERLE performance 

 

The objective ERLE criterion serves as a good measure for 

evaluating the efficacy and performance of the proposed SPV-

NLMS algorithm under conditions similar to those previously 

announced (see Section 4.4). ERLE, a ratio measure of the 

residual echo power to the input near-end signal power, offers 

insight into the algorithm ability to attenuate undesired echoes 

while preserving the clarity and intelligibility of near-end 

signal. The ERLE performance is illustrated in Figures 17-20 

for acoustic systems employing the USASI noise, 𝜇 =
𝜇𝑚𝑎𝑥  =  0.5. 

 

 
 

Figure 17. ERLE evaluation of all algorithms in the more-

dispersive IR case, with M = 128 in (a) and M = 256 in (b) 

By assessing the ERLE criterion in the same conditions as 

previously established, the effectiveness of the SPV-NLMS 

algorithm is proved. Higher ERLE values indicate superior 

echo suppression and, consequently, a higher level of overall 

performance in scenarios characterized by acoustic echo, 

making it a consistent level for validating the proposed 

algorithm capabilities in mitigating acoustic echoes and 

enhancing communication quality.  

The ERLE results provide a comprehensive view of the 

algorithmic performance, specifically highlighting the 

proposed SPV-NLMS algorithm superiority over SP-NLMS, 

S-NLMS, P-NLMS, MPNLMS and the basic NLMS 

algorithm. 

The proposed algorithm consistently outperforms S-NLMS 

and P-NLMS due to its innovative combination of sub-band 

processing and proportionate separated step-sizes. In contrast 

to the basic NLMS, the proposed algorithm demonstrates 

significant improvements, underscoring the limitations of 

uniform step-sizes in handling complex impulse response 

types. Therefore, the proposed algorithm is well-suited for real 

applications requiring effective and reliable signal 

cancellation. 

 
 

Figure 18. ERLE evaluation of all algorithms in dispersive 

IR case, with M = 128 in (a) and M = 256 in (b) 
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Figure 19. ERLE evaluation of simulated and proposed 

algorithms in the sparse IR case, with M = 128 in (a) and M 

= 256 in (b) 

 

 
 

Figure 20. ERLE evaluation of simulated and proposed 

algorithms in more-sparse IR case, with M = 128 in (a) and 

M = 256 in (b) 

 

4.6 Proposed algorithm performance in acoustical long 

impulse response sparse system 

 

Within the experimental framework outlined in this section, 

a comprehensive experiment was presented to evaluate the 

proposed algorithm in the context of long impulse responses. 

These impulse responses, characterized by lengths of M = 512 

and 1024, were integrated into the simulation scenarios having 

sparse systems using two objective criteria, MSE and ERLE, 

and using the USASI noise with 𝜇 = 𝜇𝑚𝑎𝑥 = 0.5.  

 

 
 

Figure 21. Performance of all algorithms in the sparse IR 

case with M = 512, MSE in (a) and ERLE in (b). 

 

 
 

Figure 22. Performance of all algorithms in the sparse IR 

case with M = 1024, MSE in (a) and ERLE in (b) 
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In simulation results presented in Figure 21, a sparse 

impulse response with 512 taps was used. In the next 

simulation (see Figure 22), the same type of impulse response 

but with M = 1024 was used. 

The detailed analysis of the experimental outcomes, as 

evaluated by both the MSE and ERLE criteria, proves that the 

SPV-NLMS algorithm consistently outperforms its 

counterparts, showcasing its ability to handle and suppress 

echoes across different acoustic environments 

 

4.7 Numerical complexities 

 

It is necessary to examine the computational complexity of 

an algorithm. This complexity is relative to mathematical 

operations in adaptation process. We define the number of 

operations taken by the algorithm in one iteration. Table 2 

below shows computational complexity of classical NLMS, S-

NLMS, MPNLMS and the proposed algorithm. 

 

Table 2. Computational complexity 

 
Algorithm Multiplication Division Logarithm 

NLMS 3 M + 2 1 0 

S-NLMS 3 M + 3 N + 1 1 0 

PNLMS 6 M + 3 M + 3 0 

S-PNLMS 6 M + 3 N + 4 M + 3 0 

MPNLMS 7 M + 3 M + 3 M 

Proposed 6 M + 3 N + 1 M + 5 M 

 

As shown in Table 2, the computational costs for the 

adaptation process are analyzed in terms of the number of 

multiplications, divisions, and logarithmic operations required 

per iteration. Compared to other algorithms such as NLMS, S-

NLMS, and MPNLMS, the proposed SPV-NLMS algorithm 

demonstrates a manageable increase in computational 

requirements, specifically. The number of multiplications is 

6M + 3N + 1, which is comparable to other advanced variants 

like S-NLMS and lower than MPNLMS. While divisions and 

logarithmic operations are slightly higher than NLMS and S-

NLMS, the cost is significantly optimized compared to 

MPNLMS. 

 

 
 

Figure 23. Computational complexity comparison of 

simulated algorithms in function of filter length 

In addition, Figure 23 presents a representation of the 

computational complexity, where the slope of the proposed 

algorithm demonstrates an acceptable level of complexity 

compared to other simulated algorithms. 

To assess real-time applicability and feasibility in resource-

constrained environments (e.g., embedded systems), we are 

conducting simulations and tests on platforms with limited 

computational power. Preliminary findings suggest that with 

optimizations such as fixed-point arithmetic and hardware-

level parallelism, the algorithm can meet real-time constraints. 

 

4.8 MSE and standard deviation  

 

The standard deviation analysis of the simulated algorithms, 

presented in Figures 24 and 25, serves to validate the 

consistency of the observed performance improvements. We 

note that the standard deviation is calculated after convergence. 

 
 

Figure 24. Mean MSE and standard deviation bar chart of 

simulated algorithms in sparse IR case 

 
 

Figure 25. Mean MSE and standard deviation bar chart of 

simulated algorithms in dispersive IR case 

 

This SD analysis provides a statistical measure of variation, 

confirming the reliability and robustness of the enhancements 

across different scenarios. 

Based on two Figures 24 and 25, the proposed algorithm 

outperforms all compared methods in both sparse and 

dispersive impulse response (IR) cases, achieving the lowest 

Mean MSE (-111.77 dB for sparse IR and -102.41 dB for 

dispersive IR) and the smallest Standard Deviation (1.58 dB 

and 1.34 dB, respectively). These results highlight its superior 

accuracy and consistency, as it effectively minimizes error and 
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variability compared to other algorithms such as NLMS, 

PNLMS, S-NLMS, SP-NLMS, and MPNLMS, which exhibit 

higher error levels and greater variability. This demonstrates 

the robustness and adaptability of the proposed method in 

diverse acoustic scenarios.  

 

 

5. CONCLUSION  

 

This research paper provides a detailed investigation into 

the performance and effectiveness of the proposed SPV-

NLMS algorithm for identifying various acoustic impulse 

responses. The algorithm is designed based on a sub-band 

structure, with each sub-filter utilizing individual 

proportionate step sizes. The study begins by establishing the 

novelty of the proposed algorithm in comparison to existing 

classical NLMS variants. A comprehensive derivation of the 

variable step size is presented, followed by an in-depth 

mathematical analysis of the algorithm's stability. 

Through extensive simulations and analyses, the SPV-

NLMS algorithm demonstrates robust performance, superior 

stability, a fast convergence rate, and remarkably low MSE 

values across diverse acoustic scenarios, including More-

Dispersive, Dispersive, Sparse, and More-Sparse 

environments. The research examines various aspects of the 

algorithm, including stability under white noise conditions 

using MSE criteria. Notably, the proposed algorithm 

consistently outperforms other NLMS variants, highlighting 

its adaptability, accuracy, and efficiency. It effectively 

manages challenges introduced by USASI noise, maintains 

stable convergence, and achieves low final MSE values. By 

integrating sub-band processing with separate variable step-

size adjustments, the algorithm excels in handling complex 

and dynamic acoustic systems, making it an ideal solution for 

applications requiring high stability, precise convergence, and 

dependable results.  

Furthermore, the algorithm’s strong ERLE performance in 

suppressing residual signals underscores its effectiveness in 

echo cancellation tasks, proving its suitability for practical 

applications. As a potential future direction, the 

implementation of the proposed algorithm on digital signal 

processors and its application in real-world acoustic echo 

cancellation scenarios is recommended. 
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NOMENCLATURE 

 

LMS Least Means Square 

NLMS Normalized Least Means Square 

SPV-NLMS Sub-band Proportionate 

Variable-step-size NLMS 

MSE Means Square Error 

ERLE Echo Return Loss Enhancement 

MSD Means Square Diviation 

USASI USA Standards Institute. 

IR Impulse Response 

FNLMS Fast NLMS 

P-NLMS Proportionate NLMS 

S-PNLMS Sub-band NLMS 

MPNLMS µ_law Proportionate NLMS 

 

Greek symbols 

 

𝛼(𝑛) Normalized Factor 

𝜇𝑛 Fixed Step-Size 

𝛼𝑖(𝑘) normalization factors link to ith input sub-

signals 

𝜇𝑖(𝑘) Individual variable step-size parameters 

assigned to ith sub-filters 

δ, ρ, 𝜆 Regularization components 

𝜇, ξ Positive Quantities 

𝛜𝑖(𝑘) weight-error vector 

∆𝑖(𝑘) Small Quantity 

𝜇𝑚𝑎𝑥 Maximal Step-Size value 

𝜇𝑚𝑖𝑛 Minimal Step-Size value 

𝜀 Small Positive Constant 

 

Subscripts 

 

M Lenth of Impulse Response 

L Length of sub-filter 

D Down-sampling factor 

N Number of the Sub-band 
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