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While deep learning-based object detection has achieved remarkable progress, existing 

methods exhibit significant performance degradation in dim-light environments due to three 

persistent challenges: (1) illumination bias in training data, where models optimized for 

normal lighting fail to generalize to dim conditions; (2) underutilization of latent features 

caused by data distribution shifts and noise interference; and (3) computational inefficiency 

in cascaded enhancement-detection frameworks, which limits real-time applicability. To 

address these issues, we propose Dim-ObjectDet, a novel low-light detection framework 

featuring three key innovations: (1) A multi-scale Feature Reassembling and Fusion Module 

(FRFM) detection head that dynamically integrates hierarchical features through adaptive 

channel attention, improving robustness to scale variations in dim environments; (2) An 

inverted Residual Efficient Multi-Scale Attention (iREMA) mechanism embedded in 

backbone and neck networks, synergizing local-global feature interactions to enhance noise-

resistant representation learning; (3) A computationally optimized architecture combining 

Diverse Branch Blocks (DBB) and dynamic upsampling (DySample) to balance feature 

diversity and inference speed. Extensive experiments demonstrate state-of-the-art 

performance: Dim-ObjectDet achieves 7.0% higher accuracy and 7.3% mAP@0.5 

improvement on the DarkFace dataset, along with 10.4% accuracy gain and 6.7% mAP@0.5 

increase on ExDark. Practical validation in real-world bank data center scenarios confirms 

its efficacy in smoke detection under low-light conditions, highlighting its critical value for 

infrastructure security where reliable monitoring ensures operational stability of financial 

systems. 

Keywords: 

dim light target detection, detection head, 

attention mechanism, detection feature 

extraction 

1. INTRODUCTION

Dim-light object detection, the task of identifying and 

localizing objects in poorly illuminated environments, plays a 

pivotal role in applications such as autonomous driving, video 

surveillance, and critical infrastructure monitoring. In 

financial sectors, bank data centers demand uninterrupted 

security monitoring to safeguard operational stability, 

necessitating robust detection of intrusions or anomalies (e.g., 

smoke, unauthorized personnel) under nighttime or dimly lit 

conditions [1]. Despite advancements in artificial intelligence-

driven object detection, existing methods-including two-stage 

frameworks (e.g., R-CNN [2], Faster R-CNN [3]) and one-

stage detectors (e.g., YOLO [4], SSD [5])-exhibit significant 

performance degradation in low-light scenarios. This 

limitation arises from three intrinsic challenges: (1) 

illumination bias in training data, where models optimized for 

well-lit environments fail to generalize to low-light conditions; 

(2) feature degradation caused by noise amplification, contrast

reduction, and detail loss in dim images [6-8]; and (3)

computational inefficiency in hybrid enhancement-detection

pipelines, which hinders real-time deployment [9, 10]. 

Current approaches to mitigate these issues focus on image 

enhancement, algorithm optimization, and multimodal fusion 

[11-13]. However, methods like histogram equalization [14] 

or Retinex-based techniques [15] often introduce artifacts, 

while deep learning solutions (e.g., EnlightenGAN [16]) 

prioritize enhancement over detection efficiency. Furthermore, 

cascaded frameworks combining enhancement and detection 

modules incur redundant computations, limiting their 

practicality for time-sensitive applications such as data center 

security. Consequently, there is an urgent need for lightweight, 

integrated solutions that balance accuracy, generalization, and 

computational efficiency in low-light environments. 

In this work, we propose Dim-ObjectDet, a novel 

framework addressing these challenges through three key 

innovations: 

(1) Feature Reassembling and Fusion Module (FRFM)

Head: A multi-scale detection head leveraging adaptive 

channel attention to dynamically fuse features across 

resolutions, enhancing robustness to scale variations in low-

light targets. 
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(2) Inverted Residual Efficient Multi-Scale Attention 

(iREMA): A hybrid mechanism combining inverted residual 

blocks (iRMB) and cross-dimensional attention to strengthen 

local-global feature interactions while suppressing noise. 

(3) Computational Optimization: Strategic integration of 

Diverse Branch Blocks (DBB) and dynamic upsampling 

(DySample) to improve feature diversity and inference speed 

without sacrificing accuracy. 

Our experiments demonstrate excellent performance on 

benchmark datasets (DarkFace, ExDark) and real-world bank 

data center scenarios. The framework’s efficiency and 

accuracy advancements underscore its potential for real-time 

security systems in critical infrastructure. 

 

 

2. RELATED WORK 

 

Dim-light object detection aims to leverage computer vision 

technologies to automatically identify, locate, and track target 

objects in low-light environments through image or video data. 

The core challenge lies in extracting effective information 

from faint optical signals while mitigating the adverse effects 

of insufficient illumination to achieve precise perception and 

analysis. Its applications span multiple domains, including 

security surveillance, autonomous driving, military 

reconnaissance, and industrial inspection. For instance, in 

nighttime or dimly-lit environments such as warehouses, 

parking lots, and streets, dim-light object detection assists 

surveillance systems in recognizing personnel and vehicles, 

enabling timely identification of abnormal behaviors and 

safety hazards. In autonomous driving scenarios, vehicles 

must detect pedestrians, traffic signs, and other targets under 

low-light conditions (e.g., nighttime or tunnels) to ensure 

driving safety. In military operations, this technology 

enhances nighttime mission execution, while in industrial 

settings, it supports quality inspection during precision 

manufacturing and semiconductor production under 

controlled low-light conditions to maintain product 

qualification rates.  

Despite its critical value, practical implementations of dim-

light object detection face significant challenges. The low 

intensity of optical signals in dim environments amplifies 

image noise, and complex backgrounds further degrade 

detection accuracy. Most object detection algorithms, trained 

under normal illumination conditions, underperform in low-

light scenarios. Additionally, insufficient illumination leads to 

loss of target details, rendering shape and texture features 

ambiguous or inconsistently represented across varying dim-

light conditions. To address these issues, researchers have 

proposed a series of improvement schemes to enhance 

detection performance.   

Early studies focused on image enhancement preprocessing 

to improve input quality. Traditional methods relied on 

physical imaging models for signal recovery: Histogram 

equalization [17, 18] enhances contrast by stretching grayscale 

distributions but risks local overexposure; Wavelet transform 

[19, 20] separates frequency-domain noise and signals but 

depends on basis function selection; Retinex theory-based 

methods [21-23] decompose illumination and reflection 

components by simulating human visual mechanisms but 

suffer from halo artifacts. Machine learning-based 

enhancement algorithms include deep autoencoders for natural 

low-light image enhancement [24, 25] and multi-branch CNNs 

for dark-to-bright image conversion, such as MBLLEN [13], 

PENet (employing Laplacian pyramid decomposition for 

multi-resolution components) [26], and lightweight fast 

illumination adaptive transformers for restoring RGB images 

from low-light or overexposed conditions [15, 16].  

Recent advancements prioritize computational efficiency 

and physical interpretability. Qiao and Chen [27] proposed a 

low-light enhancement method combining signal-to-noise 

ratio (SNR)-aware Transformers and convolutional models, 

adaptively adjusting long- and short-range operations based on 

regional SNR while suppressing noise in extremely low-SNR 

regions via a novel self-attention mechanism. Jiang et al. [28] 

introduced EnlightenGAN, an unsupervised generative 

adversarial network for low-light enhancement without paired 

training data. Ma et al. [29] developed a self-calibrated 

illumination learning framework using cascaded weight-

sharing strategies and self-calibration modules for efficient 

and robust enhancement.   

Algorithmic optimizations specifically targeting dim-light 

detection have also emerged. Gonzales et al. [30] explored 

multi-scale Retinex and color restoration algorithms, 

proposing a novel color constancy metric for enhancement 

evaluation. Lore et al. [31] designed a stacked sparse denoising 

autoencoder trained on synthetic low-light data to adaptively 

enhance images while avoiding oversaturation in high 

dynamic range scenarios. Yang et al. [32] developed 

LightingNet, an ensemble method integrating a Vision 

Transformer (ViT) subnetwork for local high-level feature 

extraction and a complementary learning subnetwork for 

global fine features via transfer learning.   

Dataset and training strategy optimization are critical for 

improving generalization. Large-scale datasets encompassing 

diverse illumination conditions, scenarios, and objects are 

essential. Chen et al. [33] and Li et al. [34] constructed a low-

light imaging dataset containing short-exposure low-light 

images and corresponding long-exposure references, 

proposing an end-to-end CNN to process raw sensor data, 

bypassing traditional imaging pipelines.   

Multimodal fusion has emerged to overcome single-

modality limitations. Infrared-visible fusion leverages thermal 

radiation to compensate for texture loss in dark regions, 

employing dual-stream networks with attention mechanisms 

for spatial alignment and channel-weighted fusion. LiDAR 

collaboration provides geometric constraints from 3D point 

clouds to aid 2D target localization. Recent efforts explore 

temporal fusion using optical flow features in video sequences 

to enhance single-frame robustness. However, semantic gaps 

from cross-modal heterogeneity, dynamic weight allocation, 

and computational efficiency remain challenges.   

Despite progress, key limitations persist: 1) Cascaded 

enhancement-detection frameworks incur redundant 

computations, hindering real-time deployment; 2) Single-

modality enhancement struggles in extreme low-light 

conditions; 3) Cross-modal fusion networks suffer from high 

parameter counts, limiting embedded system feasibility. Thus, 

balancing detection accuracy with computational efficiency 

remains a critical challenge in dim-light object detection. 

 

 

3. OUR DIM-OBJECTDET METHOD 

 

To address the dual challenges of feature degradation in 

low-light conditions and computational efficiency constraints, 

this study proposes the Dim-ObjectDet algorithm for low-light 

object detection. As illustrated in Figure 1, the algorithm 

1244



 

builds upon the YOLOv10 single-stage detection framework 

through synergistic innovations in feature representation 

enhancement and computational architecture optimization, 

achieving balanced improvements in detection accuracy and 

inference efficiency. 

 

 

 
 

Figure 1. Overall framework of the proposed Dim-ObjectDet 

 

3.1 Overview 

 

This study mainly achieves innovation in two key aspects. 

First, at the feature reorganization level, we design a Feature 

Recombination and Fusion Module head (FRFM-head) that 

reconstructs multi-scale feature maps through convolutional-

pooling joint operations. This module employs a lightweight 

architecture that significantly reduces GPU memory 

consumption while maintaining a moderate parameter increase. 

Constructed exclusively with fundamental operators 

(convolution and pooling), it eliminates additional 

computational overhead typically incurred by traditional 

preprocessing methods. 

Second, for network architecture enhancement, we 

implement three key improvements in both backbone and neck 

components:  

1) The proposed Inverted Residual Multi-scale Attention 

(iREMA) mechanism enhances dark region feature 

representation through convolutional-channel attention fusion, 

integrated into C2f modules to form C2f_iREMA units;  

2) Adoption of Diverse Branch Blocks (DBB) optimizes 

spatial convolution kernel combinations, enabling parallel 

extraction of fine-grained texture features through 

heterogeneous kernels;  

3) Incorporation of the Dynamic Upsampling Strategy 

(DySample) replaces fixed interpolation functions with 

learnable weighting parameters, effectively reducing 

upsampling latency while preserving feature continuity. 

 

3.2 Technical details 

 

3.2.1 iREMA 

To address blurred target features and low contrast in dim-

light environments, this study proposes a Feature 

Recombination and Fusion Module Head (FRFMHead). Its 

core architecture comprises three components: Distribution 

Focal Loss (DFL), Pooling-ReLU-Convolutions Composite 

Module (PRC2), and the Feature Recombination and Fusion 

Module (FRFM). 

The DFL loss dynamically adjusts the spatial sensitivity of 

the loss function to enhance the model’s focus on edge features 

of dim-light targets. Given the predicted feature map P ∈
ℝ𝐻×𝑊×𝐶  and ground-truth label Y, the loss function is defined 

as: 
 

ℒDFL = − ∑  

𝐻×𝑊

𝑖=1

∑ 

𝐶

𝑐=1

𝑤𝑖
(𝑐) ⋅ Y𝑖

(𝑐) log 𝜎(𝑃𝑖
(𝑐)) (1) 

 

where, 𝑤𝑖
(𝑐)

 is a weight coefficient dynamically calculated 

based on prediction confidence, and 𝜎  denotes the Sigmoid 

activation function. This design adaptively emphasizes low-

response regions (e.g., dark smoke contours) to mitigate 

gradient sparsity issues in traditional loss functions under dim-
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light scenarios.  

The PRC2 module enhances feature robustness through 

multi-scale pooling and nonlinear mapping. As shown in 

Figure 2(a), the input feature map first extracts spatial 

statistical features via parallel max-pooling and average-

pooling layers, followed by cross-interaction through dual 

convolutional paths. This structure fuses local extremum 

responses with global smooth features, effectively suppressing 

dark-light noise while preserving structural information of 

targets. 

The FRFM module dynamically integrates multi-scale 

features to improve semantic consistency, as illustrated in 

Figure 2(b). For input multi-level feature pyramids, resolution 

alignment is performed via upsampling and downsampling 

operations, followed by channel attention-generated fusion 

weight matrices. Final features are aggregated through 

weighted summation. This mechanism enables adaptive 

selection of effective features across scales, significantly 

improving recall rates for multi-scale targets in dim-light 

smoke detection. 
 

3.2.2 iREMA 

To enhance global perception and local detail retention of 

target features in dim-light environments, this study proposes 

an iREMA mechanism. This approach synergistically 

integrates the dynamic modeling advantages of the Inverted 

Residual Mobile Block (iRMB) [35] with the cross-

dimensional interaction capabilities of EMA Attention [23], 

forming a lightweight feature enhancement module. Its 

structure is illustrated in Figure 3. 

The iRMB module combines the efficiency of CNN-based 

local feature modeling with the global dependency capture 

capability of Transformers. Specifically: Local Feature 

Extraction: Static convolution extracts local texture details. 

Dynamic Global Dependency Modeling: A triple-stage 

"expand-transform-compress" process integrates long-range 

spatial dependencies via Multi-Head Self-Attention (MHSA): 

 

Xout = Projdown (ℱ(Projup(X))) + 𝑋 (2) 

 
where, Projup  and Projdown are respectively the channel 

expansion and compression projection. The intermediate 

transformation layer contains parallel paths of static 

convolution and multi-head self-attention: 

 
ℱ(X) = Conv⁡(X) + MHSA⁡(X) (3) 

 

 

 
 

Figure 2. The PRC2 and FRFM structures 

 

 
 

Figure 3. The structure of the iREMA mechanism 
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EMA [36] is a lightweight attention module optimized for 

multi-scale features. Through the channel grouping reshaping 

and cross-dimensional interaction mechanism, the adaptive 

feature calibration of channel and space dimensions is realized 

while reducing the computational complexity. EMA adopts a 

dual-path parallel processing strategy. The global path extracts 

spatial statistical features through horizontal/vertical pooling 

to capture the macroscopic distribution of the target. The local 

path uses depth-wise separable convolution to enhance the 

detail response such as edge texture. The cross-scale feature 

interaction is realized by matrix dot product, and the spatially 

sensitive attention weight map is generated. This mechanism 

significantly improves the robustness of the model to low 

signal-to-noise ratio features by dynamically focusing on key 

regions. 

iREMA builds a feature enhancement pathway by 

cascading iRMB with EMA modules. The input features were 

extended through the iRMB module to expand the channel 

dimension and fuse the local-global features. We then apply 

batch normalization to the intermediate features as follows: 
 

X̂ = 𝛾 ⋅
X − 𝜇

𝜎
+ 𝛽 (4) 

 

where, 𝜇, 𝜎⁡are the batch statistics and 𝛾, 𝛽are the learnable 

parameter. Then the spatial sensitive weight matrix is 

generated by the EMA module, and the enhanced features are 

output by the residual connection: 
 

Y = DropPath(A ⊙ X̂) + X (5) 
 

As shown in Figure 4, the iREMA module is embedded into 

the C2f base unit to construct the C2F-iREMA structure. The 

original C2f module fuses multi-scale features by cross-stage 

connection, and the iREMA mechanism is introduced to 

realize dynamic calibration of features after improvement. 

Specifically, the input features were extracted through the 

basic convolution layer to extract the primary features. 

Shallow fine layers are fused through series-parallel branch 

structures Section and deep semantic features; The iREMA 

module implements attention modulation on the fused features 

and outputs the optimized multi-scale feature pyramid. 

 

 
 

Figure 4. The structure of C2f-iREMA 

 

 
 

Figure 5. DBB architecture for training and inference 
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3.2.3 Convolution and upsampling feature extraction 

capability enhancement 

To enhance the diversity of feature representation and 

computational efficiency in low-light scenarios, this study 

proposes a dual-path optimization strategy: introducing the 

Diverse Branch Block (DBB) [24, 37] into the backbone 

network to enhance the convolutional feature extraction 

capability, and introducing an upsampling module based on 

dynamic point resampling in the neck of the detection model. 

Efficiency is improved through a three-stage optimization 

mechanism. 

The basic principle of DBB is to increase the complexity of 

the convolutional layer during the training phase by 

introducing convolutional branches of different sizes and 

structures to enrich the network's feature representation 

capability. DBB combines branches of different scales and 

complexities in structure, such as convolutional kernels of 

different sizes and average pooling operations, to enhance the 

feature representation capability of a single convolution, as 

shown in Figure 5. During the training phase, DBB adopts a 

complex branch structure, while during the inference phase, 

these branches can be equivalently transformed into a single 

convolutional layer to maintain efficient inference. DBB can 

also be inserted as a substitute for conventional convolutional 

layers in existing networks without altering the overall 

network structure. 

The DBB module expands the representation space of the 

convolutional layer through a multi-branch structure, thereby 

enhancing the model's ability to capture the blurred edges and 

low-frequency textures of dim-light targets. Its mathematical 

essence is based on the linear additivity and homogeneity of 

the convolution operation, expressed as follows: 

 
ℱ1(X) + ℱ2(X) = (W1 +W2) ∗ X

𝛼ℱ(X) = (𝛼W) ∗ X
 (6) 

 

where, W⁡represents the convolution kernel weights and 𝛼 is 

the scaling factor. Through the structural reparameterization 

technique, DBB maintains the exact same computational cost 

as the original single-branch convolution during the inference 

phase, while obtaining better feature representation 

capabilities through multi-branch learning during the training 

phase. In this study, DBB is used as a modular component to 

replace the standard convolutional layers in the backbone 

network, enhancing the gradient response intensity of dark 

area targets through multi-scale feature interaction.  

To address the edge blurring issue of traditional upsampling 

operators in low-light scenarios, this study employs the 

dynamic point resampler DySample to optimize the resolution 

recovery of neck features [38]. The core of this approach 

involves three stages: dynamic offset prediction, adaptive 

range constraint, and lightweight interpolation calculation, 

which significantly improves the geometric fidelity of feature 

resolution recovery. Given the input feature map, the dynamic 

offset generation module learns local structural information 

through a lightweight linear layer and outputs the raw offset 

tensor. To limit the offset magnitude and prevent feature 

misalignment, a Sigmoid function and a learnable range factor 

are introduced to normalize the offsets: Finally, position-

aware interpolation is performed on the input features based 

on the dynamic offsets. The calculation process can be 

expressed as: 

 

Δ = Linear⁡(X) (7) 

Δnorm = 𝜎(Δ) ⋅ 𝛾 (8) 

 

Xup = ∑  𝑘 𝑤𝑘 ⋅ X(𝑝𝑘 + Δnorm)  (9) 

 

where, 𝑤𝑘 ⁡is the bilinear interpolation weight calculated from 

the distance of neighboring pixels, and is the preset regular 

grid coordinate. Compared with the traditional dynamic 

convolution method, Dysample abandons the complex kernel 

generation process and directly predicts the offset using a 

linear layer, reducing the computational complexity. At the 

same time, it alleviates the edge blurring effect by dynamically 

focusing on the target contour area. 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

To systematically evaluate the performance of the target 

detection framework based on multimodal fusion and low-

light enhancement, this study takes YOLOv10 as the baseline 

model and conducts multi-dimensional verification 

experiments on three representative low-light target detection 

datasets: Smoke, DarkFace and ExDark. Firstly, cross-model 

comparison experiments are conducted to verify the 

effectiveness and advantages of the proposed method. Then, 

ablation experiments are carried out to verify the independent 

contributions of each module. Finally, further experiments are 

conducted to verify the proposed multimodal fusion method to 

fully explore the complementarity of different modal 

information and improve the target detection performance 

under low-light conditions. 

 

4.1 Experimental setup and datasets 

 

This experiment uses a model based on the Uitralytics 

YOLOv10 architecture, deployed on a computing platform 

with NVIDIA Ampere architecture, equipped with an RTX 

3090 24GB GDDR6X graphics card and an AMD EPYC 7R32 

16-core CPU, and builds a mixed-precision training 

environment. The software environment is based on the 

PyTorch 2.0.1 framework, with CUDA 11.8 acceleration 

library and Python 3.10.12 programming language, and data 

pipeline optimization is achieved through TorchVision 0.15.2. 

During training, the SGD optimizer is used, with a momentum 

of 0.937, an initial learning rate of 0.01 combined with a cosine 

annealing strategy for dynamic adjustment, a weight decay 

coefficient of 0.0005, and a batch size of 16. The input images 

are uniformly scaled to a resolution of 640x640 during training, 

and the training period is set to 100 epochs. 

The low-light target detection algorithm based on the FRFM 

fusion mechanism uses the Smoke, DarkFace [39], and 

ExDark [40] datasets to build a multi-dimensional verification 

system. 

(1) The Smoke dataset focuses on the financial security 

scene and covers smoking scenes under normal and low-light 

backgrounds, as shown in Figure 6. It contains 5731 images, 

with 4585 images in the training set and 1146 images in the 

validation set. 

(2) The DarkFace dataset is specifically designed for low-

light face detection and is mainly captured at night in teaching 

buildings, streets, bridges, overpasses, and parks, as shown in 

Figure 7. It contains 6000 low-light images in the real world, 

with 4800 images in the training set and 1200 images in the 

validation set. The image resolutions range from 640×48 

pixels to 1920×1080 pixels. 
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Figure 6. Mosaic augmentation and distribution of detected objects on the Smoke dataset 

 

 
 

Figure 7. Mosaic augmentation and detection object distribution on the DarkFace dataset 

 

 
 

Figure 8. Mosaic augmentation and detection object distribution on the ExDark dataset 
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(3) ExDark, as a benchmark dataset for low-light detection, 

is specifically constructed for low-light target detection, as 

shown in Figure 8. It contains a total of 7363 labeled images, 

with 5891 images for training and 1472 images for validation. 

It includes 12 types of targets and covers 10 different lighting 

conditions from extremely low-light environments to night 

environments. 

 

4.2 Comparative experiments and performance 

advantages 

 

The dim light target detection algorithm based on the 

Feature Relationship Fusion Module (FRFM) proposed in this 

chapter has been systematically verified on the bank operation 

and maintenance scene simulation dataset Smoke, as well as 

the representative datasets DarkFace and ExDark in the field 

of dim light scene target detection. Firstly, a comparative 

experiment was conducted on the Smoke dataset, and the 

experimental data are shown in Table 1. 

 
Table 1. Comparison experiments on the Smoke dataset 

 
Models Precision Recall mAP@0.5 mAP@0.5:0.95 

YOLOv10n 0.776 0.733 0.811 0.455 

YOLOv10n-ours 0.808 0.741 0.835 0.491 

YOLOv10s 0.826 0.804 0.878 0.532 

YOLOv10s-ours 0.851 0.823 0.899 0.554 

 

From the table, it can be seen that the precision, recall, 

mAP@0.5, and mAP@0.5:0.95 of the improved model have 

all increased. Among them, the improvement in mAP@0.5 

and mAP@0.5:0.95 is 3% and 8% compared to the 

YOLOv10n baseline model, and 2.4% and 4.1% compared to 

the YOLOv10s baseline model, respectively. This proves the 

effectiveness of the improved model in enhancing detection 

accuracy under different IoU thresholds. 

Based on the above experiments, further comparative 

experiments were conducted on representative low-light target 

detection datasets such as DarkFace and ExDark. The 

experimental results are shown in Table 2. The experiments 

indicate that the innovation of the target detection model in 

dim lighting scenarios is not only applicable to specific face 

target detection tasks but also effectively increases the relevant 

detection indicators for multi-target detection tasks. From the 

data in the table, it can be seen that the improved model has a 

significant improvement over the baseline models. On the 

DarkFace dataset, mAP@0.5 is improved by 7.1% and 4% 

compared to the original YOLOv10n and YOLOv10s, 

respectively, and mAP@0.5:0.95 is improved by 13.1% and 

8%, respectively, indicating that the improvement strategy 

effectively enhances the detection accuracy at high IoU 

thresholds. On the more complex ExDark dataset, mAP@0.5 

(0.492) is improved by 6.6% and 4.1% compared to the 

original versions, and mAP@0.5:0.95 is improved by 6.5% 

and 3.4%, respectively, indicating that the improvement 

strategy can also effectively enhance the detection accuracy at 

different IoU thresholds in more complex scenarios. 

This study further verified the performance advantages of 

the proposed YOLOv10 series models in object detection tasks 

through comparative analysis. The experiment selected the 

current mainstream single-stage detector RT-DETR-ResNet50 

as the control model, which achieved excellent performance 

on the COCO dataset. However, from the perspective of 

engineering deployment, the computational complexity 

(86MB) and parameter scale (126GFLOPs) of this model are 

significantly higher than the lightweight YOLOv10 

architecture proposed in this paper, which makes it face higher 

computing power requirements and energy consumption 

constraints in practical applications. 

To systematically evaluate the learning characteristics of 

the model, this study conducted comparative experiments on 

the DarkFace and ExDark two low-light object detection 

benchmark datasets. As shown in Figure 9 and Figure 10, the 

training curves indicate that within 100 training cycles on the 

single-object DarkFace dataset, the improved model shows 

significant advantages over the baseline YOLOv10 series in 

core metrics such as precision, recall, mAP@0.5, and 

mAP@0.5:0.95. The gap between the corresponding curves 

gradually expands and then remains stable as the training 

iterations progress. Notably, on the multi-object ExDark 

dataset, although the trend of the four metrics is similar to that 

of DarkFace, the improved model not only has a more distinct 

curve separation from the baseline model but also surpasses 

the YOLOv10s version with a larger parameter scale in key 

metrics such as precision and mAP@0.5. This cross-level 

performance breakthrough confirms that the improved 

algorithm enhances the detection accuracy while improving 

the model's generalization ability, especially in dim-light 

scenarios. 

Figure 11 shows the detection results of the original 

YOLOv10s model and the improved model with the 

innovative strategy applied in this study on the DarkFace, 

ExDark, and Smoke datasets under the same experimental 

conditions and parameters. (a) is the original image, (b) is the 

result of the original model (YOLOv10s), and (c) is the result 

of the improved YOLOv10s model. 

 

Table 2. Comparison experiments on DarkFace and ExDark datasets 

 
Datasets Models Precision Recall mAP@0.5 mAP@0.5:0.95 

DarkFace 

YOLOv10n 0.649 0.38 0.409 0.175 

YOLOv10n-ours 0.701 0.392 0.438 0.198 

YOLOv10s 0.699 0.429 0.473 0.214 

YOLOv10s-ours 0.731 0.436 0.492 0.231 

RT-DETR-ResNet50 0.567 0.389 0.408 0.160 

ExDark 

YOLOv10n 0.656 0.556 0.604 0.368 

YOLOv10n-ours 0.724 0.579 0.644 0.392 

YOLOv10s 0.736 0.594 0.658 0.409 

YOLOv10s-ours 0.764 0.602 0.685 0.423 

RT-DETR-ResNet50 0.706 0.567 0.627 0.389 
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Figure 9. Comparison of training data on the ExDark 

 

 
 

Figure 10. Comparison plot of the training data on the DarkFace 
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Figure 11. Detection comparison of the original model and the innovative model 

 

By comparing the detection results on Darkface, it can be 

seen that this model can detect more targets more accurately 

in low-light scenarios, such as distant faces. The detection 

accuracy for the same target is also higher. The experimental 

results on ExDark show that in the dimly lit scenes with 

multiple targets, the detection accuracy of this model has been 

effectively improved, especially for bicycles and pedestrians. 

On the Smoke01 dataset, (b) is the detection result of 

YOLOv10S with an accuracy of 0.84; (c) is the improved 

detection result with an accuracy of 0.89. The Smoke02 

dataset is a situation with dim lighting and small targets. The 

accuracies of the original model (b) and the improved model 

(c) are 0.28 and 0.39 respectively. In the above scenarios, the 

detection effect of the innovative model is better. 

 

4.3 Ablation experiment and module performance 

verification  

 

The dim light target detection algorithm based on the FRFM 

fusion mechanism adopts YOLOv10n as the baseline 

framework and quantitatively evaluates the innovations of 

each module through the control variable method. The ablation 

experiment results on the DarkFace dataset are shown in Table 

3. 

In the Table, B, C, D, and E correspond to the experiments 

conducted by applying the DBB, DySample, iREMA, and 

FRFMhead innovative strategies respectively to the baseline 

model.As can be seen from the table, the DBB strategy 

enhances the feature extraction capability with a slight 

increase in computational cost. Compared with the baseline 

model, all indicators have significantly improved; mAP@0.5 

and mAP@0.5:0.95 have increased by 5.4% and 5.7% 

respectively. DySample and iREMA maintain approximately 

the same computational cost, with mAP@0.5 increasing by 

about 2.4% and 2.2% respectively. FRFMhead innovates the 

detection head, accompanied by a significant increase in 

computational cost, and the precision, mAP@0.5, and 

mAP@0.5:0.95 indicators have significantly improved, with 

increases of 7.4%, 6.1%, and 12% respectively, while the 

recall rate has slightly increased. F, G, H, I, and J respectively 

integrate various innovative strategies into the baseline model, 

further improving the detection indicators. Among them, J 

integrates the four innovative methods into the original model, 

and the detection indicator values are significantly improved. 

The precision, mAP@0.5, and mAP@0.5:0.95 indicators are 

the best, but the recall rate is lower than that of B, F, G, and I. 

Considering all aspects of the indicators comprehensively, J is 

ultimately selected as the model innovation scheme.  

 

Table 3. Ablation experiments 

 
Models Y D S R F Params (M) FLOPs (G) Precision Recall mAP@0.5 mAP@0.5:0.95 

A √     5.7 8.2 0.649 0.38 0.409 0.175 

B √ √    5.8 9.1 0.674 0.396 0.431 0.185 

C √  √   5.8 8.2 0.66 0.389 0.419 0.178 

D √   √  5.9 8.4 0.657 0.384 0.418 0.177 

E √    √ 27 16.4 0.697 0.385 0.434 0.196 

F √ √ √   5.9 9.1 0.664 0.402 0.434 0.19 

G √ √  √  6.0 9.2 0.662 0.396 0.43 0.184 

H √  √ √  6.0 8.4 0.657 0.392 0.424 0.182 

I √ √ √ √  6.0 9.2 0.682 0.396 0.436 0.193 

J √ √ √ √ √ 28 17.9 0.701 0.392 0.438 0.198 
Note: Header fields Y=YOLOv10n, D=DBB, S=Dysampl, R=iREMA, F=FRFhead 
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5. CONCLUSIONS 

 

The dim light target detection algorithm Dim-ObjectDet 

addresses the issues of feature degradation and computational 

efficiency bottlenecks in low-light environments by 

constructing a multi-level feature enhancement and multi-

modal fusion framework. The feature reorganization and 

fusion module head (FRFMHead) integrates the distribution 

caustic loss (DFL), the pooling-activation-convolution 

composite module (PRC2), and the feature reorganization and 

fusion module (FRFM). It enhances the contrast of low-light 

targets through loss function constraints and dynamic feature 

reorganization. The inverse residual efficient multi-scale 

attention mechanism (iREMA) combines the dynamic 

modeling capability of the inverse residual mobile block 

(iRMB) with the cross-dimensional interaction characteristics 

of the EMA attention, and is embedded in the C2f unit to form 

the C2f-iREMA structure, achieving the collaborative 

optimization of local and global features. The dual-path 

optimization strategy introduces diverse branch blocks (DBB) 

in the backbone network to enhance feature extraction 

capabilities, and uses a dynamic point resampling upsampling 

module in the neck to improve computational efficiency 

through a three-stage optimization process. The lightweight 

dynamic sampling module (Dysample) directly predicts 

offsets using a linear layer to reduce computational complexity 

and alleviate the edge blurring effect. 

The relevant experiments were conducted on the dim-light 

single-modal datasets of Smoke, DarkFace, and ExDark, 

which are representative of the bank operation and 

maintenance site, to systematically verify the proposed 

method. These advancements validate the framework’s 

efficacy in real-world scenarios, particularly in bank data 

center smoke detection, where reliable low-light monitoring 

ensures operational safety. Future work will focus on 

lightweight deployment via neural architecture search (NAS) 

and quantization-aware training, aiming to reduce model 

complexity by 20–40% while retaining detection accuracy for 

edge-device applications. 
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