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With the rapid advancement of intelligent driving technologies, visual navigation has 
become a core approach for environmental perception in autonomous vehicles. The accuracy 
of lane line detection under complex illumination directly limits the reliability of 
autonomous navigation. Existing methods face significant challenges: traditional threshold 
segmentation requires uniform lighting conditions; edge detection algorithms often produce 
false edges under strong light; deep learning methods suffer from high computational 
complexity and degraded feature extraction in low-light scenarios; and image enhancement 
techniques like histogram equalization (HE) struggle to adapt to dynamic lighting changes. 
To address these issues, this study proposes an integrated solution combining image 
enhancement and lane line detection. On one hand, an optimized Multi-Scale Retinex (MSR) 
method is employed to improve illumination component estimation and reflectance 
recovery, enhancing contrast in lane line images under complex lighting. On the other hand, 
a Sparrow Search Algorithm (SSA) is introduced to optimize the similarity matrix 
construction and cluster center initialization in spectral clustering, enabling precise 
separation of lane lines from the background. The proposed approach offers a robust and 
real-time solution for reliable navigation of intelligent vehicles in unstructured lighting 
environments, contributing significantly to the visual perception theory and advancing the 
industrialization of autonomous driving. 
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1. INTRODUCTION

With the rapid development of intelligent driving
technology, the autonomous navigation capability of 
intelligent vehicles in dynamic environments has become a 
research hotspot [1-3]. Visual navigation, as the core method 
of the perception system of intelligent vehicles [4, 5], directly 
affects the vehicle’s path planning and decision control. 
However, in actual driving scenarios, illumination conditions 
are complex and variable, such as strong direct light [6], 
shadow occlusion [7], backlight environments [8], etc., which 
often cause problems such as reduced image contrast [9], 
increased noise [10], and feature blurring [11], seriously 
affecting the accuracy and robustness of traditional 
recognition algorithms. How to achieve high-precision lane 
line recognition under complex illumination conditions has 
become a key technical bottleneck restricting the widespread 
application of intelligent vehicles in unstructured 
environments. 

This study has important theoretical significance and 
engineering value for improving the environmental 
adaptability of intelligent vehicles under complex illumination 
scenarios. From a theoretical perspective, by exploring the 

mapping relationship between illumination changes and image 
features and constructing a robust image processing model, it 
can enrich the theoretical system of visual perception for 
intelligent vehicles; from the engineering application 
perspective, accurate lane line recognition is the foundation for 
intelligent vehicles to achieve autonomous obstacle avoidance 
and lane line tracking. The research results can effectively 
improve driving safety and reliability of vehicles under all-
weather conditions and provide technical support for the 
industrialization of autonomous driving technology. 

Existing lane line recognition methods for intelligent 
vehicles have obvious limitations under complex illumination 
conditions. Traditional threshold segmentation-based methods 
[12, 13] require high illumination uniformity and are prone to 
mis-segmentation in shadow areas; edge detection-based 
algorithms [13, 14] are sensitive to contours but easily produce 
false edges under strong light interference. In recent years, 
deep learning-based methods [15-17] perform well under 
conventional illumination but suffer from degraded feature 
extraction capability due to image information degradation in 
low-light or strong-light scenarios. Moreover, these models 
have large numbers of parameters and high computational 
complexity, making it difficult to meet the real-time 
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requirements of intelligent vehicles. Additionally, some 
studies use HE for image enhancement [18-20], but this 
method easily amplifies noise and has insufficient adaptability 
to dynamic illumination changes. 

This paper focuses on the lane line recognition problem of 
intelligent vehicles under complex illumination conditions and 
mainly conducts two aspects of research: on the one hand, 
proposes an image enhancement method based on optimized 
MSR, improving the illumination component estimation and 
reflectance component recovery process to enhance the 
contrast and detail information of lane line images under 
complex illumination; on the other hand, constructs a lane line 
recognition algorithm based on SSA-optimized spectral 
clustering, utilizing the global optimization capability of the 
SSA to optimize the similarity matrix construction and cluster 
center initialization process of spectral clustering, improving 
the distinguishability between lane lines and background. The 
innovation of the research results lies in combining image 
enhancement and intelligent optimization algorithms to form 
an integrated “enhancement-recognition” solution, which can 
effectively suppress the influence of illumination changes and 
improve the robustness and real-time performance of the 
recognition algorithm, providing a new technical path for 
reliable navigation of intelligent vehicles in complex 
illumination environments. 
 
 
2. IMAGE ENHANCEMENT OF INTELLIGENT 
VEHICLE LANE LINES UNDER COMPLEX 
ILLUMINATION BASED ON OPTIMIZED MSR 
 

 
 

Figure 1. Flowchart of intelligent vehicle lane line image 
enhancement under complex illumination conditions 

 
Under complex illumination conditions, intelligent vehicle 

lane line images often face issues such as halo interference in 
strong light areas, detail blurring in low illumination areas, and 
noise surge caused by dynamic lighting. The traditional MSR 
algorithm, lacking an adaptive adjustment mechanism, tends 
to amplify the halo in bright regions and introduce noise 
during enhancement, thus affecting the integrity of lane line 
edge features and recognition accuracy. Therefore, this study 

introduces a coupling mechanism between adjustment factors 
and local average background luminance, constructing an 
adaptive adjustment model based on the minimum perceptible 
visual difference to suppress enhancement in regions with high 
background luminance, reducing halo effects under strong 
light, and ensuring clear presentation of lane line contours in 
bright areas. Meanwhile, a bilateral filtering function is 
applied to weaken noise generated during low illumination 
enhancement, maintaining image smoothness and avoiding 
noise interference in lane line feature extraction. In addition, 
by leveraging RGB and YUV format conversion to separate 
luminance and color information, combined with contrast-
limited adaptive histogram equalization (CLAHE) to 
accurately improve the contrast between lane lines and 
background, and finally using an original image fusion 
strategy to retain real scene details, this series of innovations 
can effectively solve problems faced by traditional MSR 
algorithms during dynamic driving of intelligent vehicles such 
as illumination sudden changes, halo interference, and noise 
sensitivity, providing a high-quality image basis for 
subsequent lane line recognition. Figure 1 shows the flowchart 
of intelligent vehicle lane line image enhancement under 
complex illumination conditions. 

 
2.1 YUV and RGB format conversion 

 
Under complex illumination conditions, lane line images of 

intelligent vehicles often have blurred lane line features caused 
by abrupt luminance changes. Due to the strong correlation of 
the three channels in the RGB format, direct processing easily 
causes color distortion and noise coupling problems. 
Therefore, in the optimized MSR method of this paper, YUV 
and RGB format conversion are performed. Specifically, first, 
utilizing the characteristic of YUV format that decouples 
luminance component Y from chrominance components U and 
V, the RGB image collected by the vehicle-mounted camera is 
converted to YUV format, enabling the MSR algorithm to 
perform targeted multi-scale illumination estimation and 
reflectance recovery on the Y component, avoiding cross-
interference among the three RGB channels; then the 
enhanced Y component is recombined with the original U and 
V components to form RGB format, which can achieve precise 
enhancement of lane line luminance under complex 
illumination by separating the luminance channel, and, using 
the human eye's sensitivity to luminance and relative 
insensitivity to chrominance, reduce chrominance sampling 
interference. Through CLAHE, the luminance contrast 
between lane lines and background is further improved, and 
finally, 1:1 image fusion preserves the real scene color 
information. This allows the enhanced lane lines to highlight 
contour features under dynamic illumination while avoiding 
color distortion. The specific conversion formulas between 
RGB and YUV formats are as follows: 
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2.2 Y channel enhancement based on adaptive adjustment 

1344



Under complex illumination conditions, lane line images of 
intelligent vehicles often suffer from uneven luminance 
distribution caused by strong direct light and shadow 
occlusion. The Y channel in the YUV format independently 
carries luminance information, providing a technical path to 
specifically address illumination issues. The proposed 
enhancement method based on optimized MSR focuses on 
luminance adjustment of the Y channel. That is, in low 
illumination areas, the Y channel is enhanced to improve lane 
line visibility; in strong light areas, the Y channel's over-
enhancement is suppressed to avoid halo diffusion around lane 
line edges. This directional adjustment of the Y channel avoids 
color distortion problems caused by coupled adjustments of 
the three RGB channels and can precisely optimize lane line 
luminance in dynamic illumination scenes encountered during 
intelligent vehicle driving. The specific formula for Y channel 
enhancement using MSR is as follows: 

( )
( )

( ) ( )( )1

log ,
,

log , * ,

V

v
v v

B a b
e a b

D a b B a b
µ

β=

 
= ⋅  

− ⋅  
∑ (3) 

To solve the problem of local over-enhancement caused by 
traditional MSR algorithms under complex illumination, this 
method introduces an adaptive adjustment factor β constructed 
based on the Just Noticeable Difference (JND) model, 
establishing a dynamic mapping relationship between 
luminance value and enhancement suppression degree. 
Specifically, by calculating the local average background 
luminance and based on the correlation between the visibility 
threshold in the JND model and average luminance, an 
adjustment factor β that varies with luminance is generated: in 
regions with high luminance values, β takes a larger value to 
strengthen suppression, reducing halo interference around lane 
lines under strong light; in low luminance regions, β takes a 
smaller value to retain necessary enhancement strength, 
ensuring lane line details are not overwhelmed by noise. By 
controlling the parameter J to adjust the maximum value of the 
adjustment factor, the algorithm can adapt to the dynamic 
range of different illumination scenes, avoiding overexposure 
in bright areas or blurring in dark areas caused by uniform 
enhancement parameters. Assuming the local average 
background luminance is denoted by yh(a,b), and the visibility 
threshold is denoted by S(a,b), the relationship between 
luminance JND threshold and background luminance is as 
follows: 

( )
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To further improve the quality of the enhanced image, a 
bilateral filtering function is introduced during the Y channel 
adjustment process. By combining spatial distance weighting 
and pixel similarity weighting, the dual objectives of noise 
suppression and edge preservation are achieved. In intelligent 
vehicle driving scenes, dynamic illumination changes easily 

cause image noise, while bilateral filtering suppresses 
interference from distant pixels in the spatial domain and 
preserves edge information similar to the central pixel in the 
range domain, ensuring that lane line contours remain clear 
after smoothing and denoising. After bilateral filtering, 
combined with RGB and YUV format conversion and CLAHE, 
the contrast between lane lines and background can be further 
improved. Finally, 1:1 fusion with the original image retains 
real scene illumination features while presenting lane lines 
with high contrast and low noise under complex illumination, 
providing high-quality input for subsequent recognition 
algorithms. Specifically, assuming the normalization constant 
is denoted by jf(a), the distance between the center point a and 
neighboring points is denoted by z(ζa), the spatial domain 
filtering formula is: 

( ) ( ) ( ) ( )1g a h a z a d
jf a

ζ ζ
+∞

−∞
= ∫  (6) 

The range domain filtering formula is: 

( ) ( ) ( ) ( ) ( )( )1 ,g a h a t a d a d
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The bilateral filtering formula is: 
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where, 
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−∞ −∞
= ∫ ∫  (9) 

2.3 CLAHE 

Under complex lighting conditions, the intelligent vehicle 
lane line images often suffer from insufficient contrast 
between the lane lines and the background due to uneven 
illumination. Although the traditional HE algorithm can 
improve global contrast, it easily amplifies noise in low 
illumination regions and aggravates overexposure in high 
brightness regions, failing to meet the requirement of detail 
preservation for lane line recognition. Therefore, this paper 
selects CLAHE as the improved algorithm. The core principle 
of this method lies in a three-layer processing mechanism of 
"local block division - contrast limiting - interpolation fusion," 
which solves the problem of contrast imbalance under 
complex illumination. In intelligent vehicle application 
scenarios, when the onboard camera captures lane images 
containing shadow occlusion or strong light reflection, 
CLAHE can implement differential enhancement for different 
lighting regions: for low illumination areas with narrow gray 
value distribution, the local histogram is stretched to improve 
the distinction between the lane line and the background; for 
high brightness areas, the contrast enhancement amplitude is 
limited to avoid halo effects at the lane line edges caused by 
over-enhancement, thus maintaining the stability of lane line 
features under dynamic lighting changes. Figure 2 shows the 
schematic diagram of the CLAHE algorithm principle. 
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Figure 2. CLAHE algorithm principle 
 

The specific implementation process of the CLAHE 
algorithm closely fits the enhancement needs of intelligent 
vehicle lane line images. First, the image is divided into 
several overlapping small blocks, and the local histogram of 
each block is calculated. Compared with global HE, this block 
processing can adapt to the non-uniform distribution of 
illumination in lane scenarios, such as alternating tree shade 
and open road segments. Furthermore, a contrast threshold is 
introduced to clip the histogram. When the pixel frequency of 
a certain gray level exceeds the threshold, the excess part is 
evenly distributed to other gray levels. This operation can 
effectively suppress the over-enhancement of background 
noise in strong light areas. Then, bilinear interpolation is used 
to handle boundary effects between adjacent blocks, avoiding 
lane line contour breaks caused by block enhancement. 

During intelligent vehicle driving, adopting the above 
adaptive processing mechanism can respond in real time to 
sudden lighting changes. For example, when the vehicle drives 
from a tunnel into a strong light section, CLAHE can 
automatically reduce the contrast gain of bright areas, 
preventing the lane line from losing edge features due to 
overexposure. Under the framework of MSR algorithm 
optimization, CLAHE forms a synergistic enhancement 
system with Y channel adaptive adjustment and bilateral 
filtering, further improving the quality of lane line images. 
Specifically, after MSR optimization and bilateral filtering 
noise reduction, the Y channel luminance information is 
separated through RGB to YUV format conversion. At this 
time, applying CLAHE can accurately enhance the luminance 
contrast between the lane line and the background in low 
illumination scenarios. CLAHE enhances local contrast to 
make blurred lane line edges clearer; in high dynamic lighting 
scenarios, it limits contrast to avoid mixing the bright lane line 
with reflective backgrounds. Finally, the enhanced image is 
fused with the original image at a 1:1 ratio, preserving the real 
scene illumination characteristics while dynamically adjusting 
contrast through CLAHE, making the lane line "visible in dark 
areas, not overexposed in bright areas, and edges clear" under 
complex illumination, providing a high signal-to-noise ratio 
image input for the subsequent SSA-optimized spectral 
clustering lane line recognition. 
 
 
3. INTELLIGENT VEHICLE LANE LINE 
RECOGNITION BASED ON SSA-OPTIMIZED 
SPECTRAL CLUSTERING ALGORITHM 
 
3.1 Spectral clustering algorithm 

 
Under complex lighting conditions, intelligent vehicle lane 

line images often present multimodal feature distributions of 
lane line and background due to shadow occlusion, strong light 
reflection, and other factors, such as asphalt pavement, white 
lane lines, tree shadows, and road reflections, forming 
different categories. Traditional two-class spectral clustering 

criteria, due to unbalanced segmentation problems, are 
difficult to accurately separate lane lines from multi-class 
backgrounds in complex scenes. In addition, image noise and 
contrast fluctuations caused by complex illumination lead to 
non-uniform distribution of lane line pixel features. Using 
two-class division easily causes misclustering of lane line 
edges with similar backgrounds. Therefore, this paper adopts 
multi-way partition criteria to meet the multi-class 
segmentation requirements of "lane line - strong light area - 
shadow area - background" in intelligent vehicle lane line 
recognition. By dividing image pixels into multiple categories, 
it adapts to the multimodal distribution of lane line features 
under complex illumination, avoiding recognition errors 
caused by information simplification in two-class division. 
Figure 3 shows the arc error schematic of intelligent vehicle 
lane line recognition. 
 

 
 

Figure 3. Arc error of intelligent vehicle lane line 
recognition 

 
The basic principle of the multi-way partition criterion is to 

construct a multi-way normalized cut model based on spectral 
graph theory, regarding the intelligent vehicle lane line image 
as an undirected graph, where pixel points are nodes and 
similarity between nodes is the edge weight. By solving the 
generalized eigenvalue problem, clustering eigenvectors are 
obtained. Specifically, the multi-way normalized cut criterion 
balances the number of nodes and the cut edge weights of each 
subgraph, avoiding the "small graph overcut" problem caused 
by the traditional minimum cut. In complex lighting scenes, 
this mechanism can ensure that lane line pixels in shadows, 
strong light, and different background categories are 
reasonably divided, preventing misclassification of lane line 
pixels into the background due to lighting differences. Assume 
the two subgraphs partitioned from the mother graph are 
represented by X and Y, with vertices of subgraphs X and Y 
represented by i and n, the weight between subgraphs denoted 
by q, and the similarity between the two subgraphs represented 
by CUT(X, Y), then there is the expression: 
 

( ) ( )
,

, ,
i X n Y

CUT X Y q i n
∈ ∈

= ∑  (10) 

 
Assuming subgraph u is represented by Xu, and the 

remaining subgraphs except u are represented by �̄�𝑋𝑢𝑢, the sum 
of the weights of edges connecting all data samples within 
subgraph Xu is represented by AS(Xu,Xu), and the maximum 
minimum cut is represented by LVCUT, then there is the 
expression: 
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3.2 Intelligent vehicle lane line recognition model 

 
Under complex lighting conditions, the pixel features of 

intelligent vehicle lane line images exhibit highly non-uniform 
distributions due to interference such as strong light and 
shadows. Traditional spectral clustering algorithms cannot 
adaptively determine the number of clusters K and the key 
parameter v, which easily leads to mis-clustering between lane 
lines and the background. For example, when the vehicle 
drives from a tunnel into a sunlit road section, the sudden 
change of illumination causes drastic variations in the 
brightness and chromatic features of lane line pixels. If 
spectral clustering with fixed parameters is used, it may 
mistakenly classify lane lines under strong light as reflective 
background areas. Therefore, this paper proposes a SSA-
optimized spectral clustering model. Its core idea is to use a 
heuristic algorithm to compensate for the parameter 
dependence deficiency of traditional spectral clustering, 
utilizing the global optimization capability of the SSA to 
dynamically adapt to the multi-modal distribution of lane line 
features under complex lighting, achieving adaptive 
optimization of clustering parameters and avoiding 
disconnection between manual parameter tuning and scenario 
changes. Figure 4 shows the schematic diagram of the 
intelligent vehicle lane line model constructed in this paper. 

The implementation process of this method closely revolves 
around the recognition needs of lane lines under complex 
lighting: first, randomly initialize the initial clustering centers 
for pixel features enhanced by optimized MSR, constructing 
initial partitions including lane lines, strong light areas, 
shadow areas, background, and other categories; then 
introduce the SSA, using the silhouette coefficient as the 
fitness function, simulating the foraging and vigilance 
behaviors of the sparrow population to iteratively optimize the 
spectral clustering similarity matrix construction parameter v 
and the number of clusters K. In scenarios with variable 
lighting, SSA can adjust parameters in real time. For example, 
when large shadow areas appear in the image, it automatically 
increases K to subdivide lane lines and dark backgrounds 
within the shadows, while optimizing v to enhance the 
connection weights of similar pixels; finally, through multi-
way spectral graph partitioning under the optimal parameters, 
the lane lines are accurately separated from the complex 
background. Suppose the average dissimilarity between an 
intelligent vehicle lane line u and other lane lines in the same 
cluster is represented by R(Ou), and the minimum dissimilarity 
between u and lane lines in other clusters is represented by 

MIN(eu), then the silhouette coefficient calculation formula is 
given by: 
 

( ) ( )
( ) ( ){ }

u u
u

u u

MIN e R O
SC

MIN R O MIN e
−

=
−

 (12) 

 
Suppose the trace of a matrix is denoted by tr, the between-

class covariance matrix is Sv, the within-cluster covariance 
matrix is Pv, the number of samples is L, and the number of 
classes is V, then the CH index calculation formula is given by: 
 

( )
( ) 1

v

v

tr S L VCH
tr P V

−
=

−
 (13) 

The steps of intelligent vehicle lane line recognition based 
on SSA-optimized spectral clustering are as follows, with the 
algorithm flowchart shown in Figure 5. 

Step 1: Data Resampling and Preprocessing 
Firstly, the original lane line images are resampled. Using 

cubic spline interpolation and other time synchronization 
strategies, images under different lighting conditions are 
unified to the same sampling density to weaken the feature 
fluctuations caused by dynamic lighting changes. The 
resampled data undergoes preprocessing and normalization to 
eliminate the direct influence of light intensity differences on 
pixel values. For example, in backlight scenarios, 
normalization can map the overexposed sky region and darker 
lane line pixels to a unified value range, avoiding feature shifts 
caused by large brightness spans. Based on optimized MSR 
enhanced image features, a fused similarity distance matrix E 
is constructed, which comprehensively considers the YUV 
luminance component and RGB color features. In complex 
lighting scenes with mixed shadows, it effectively measures 
the similarity between lane line pixels and the background. 

Step 2: SSA Parameter Initialization 
For the dynamic changes of lane line features under 

complex lighting, initialize the key parameters of the SSA. The 
population size v should balance computational efficiency and 
optimization capability; in scenarios of drastic light changes, 
a larger population size improves coverage of multi-modal 
features. The iteration number l must adapt to the frequency of 
lighting changes to ensure real-time parameter updates during 
high-speed driving. The alert threshold ts relates to sensitivity 
to sudden illumination changes; when the image brightness 
gradient exceeds ts, the vigilant sparrows trigger parameter 
adjustment to avoid clustering parameter failure due to abrupt 
light changes. The search dimension DIM corresponds to key 
parameters of spectral clustering, and its dimensionality 
should match the multi-class segmentation needs of lane line 
recognition under complex lighting. 
 

 

 
 

Figure 4. Intelligent vehicle lane line model schematic 
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Figure 5. Intelligent vehicle lane line recognition algorithm flowchart 
 

Step 3: Fitness Function Definition and Optimization 
Preparation 

Use the silhouette coefficient SC as the fitness function, 
whose core role is to quantify clustering quality under complex 
lighting conditions, solving the problem of manual tuning 
dependence in traditional spectral clustering parameters. In 
uneven lighting lane scenarios, SC effectively evaluates the 
tightness of lane line pixels within their clusters and the 
separation from other clusters. For lane lines heavily affected 
by reflections under strong light, SC can identify blurred 
boundaries with reflective background regions, improving 
distinguishability by parameter optimization. When setting the 
optimization parameter ranges, the feature fluctuation range 
caused by lighting changes should be considered: the upper 
limit of the number of clusters K must accommodate the multi-
modal distribution under extreme lighting; the adjustment 
range of parameter v must cover pixel similarity calculation 
demands under different lighting intensities. SSA's global 
optimization ability computes the fitness value corresponding 
to each sparrow individual's parameter combination, providing 
quantitative support for dynamically adapting to lighting 
changes. 

Step 4: Sparrow Population Position Update 
During iterative optimization under complex lighting, the 

top V sparrows with better fitness values act as discoverers 
responsible for exploring new search areas in the parameter 
space, coping with sudden lighting changes. The discoverers' 
position update formula incorporates sensitivity factors to 
lighting changes; when image brightness variance exceeds the 
threshold, the exploration step size increases to quickly search 
for new parameter combinations. The remaining sparrows act 
as followers, following the optimal positions of the discoverers 
to fine-tune parameters in stable lighting regions. 
Simultaneously, a subset of sparrows is randomly selected as 
scouters. Their position update formula couples with the 
lightning sudden change detection mechanism; when local 
strong light spots or large shadow areas appear in the image, 
the scouters trigger parameter reset mechanisms to prevent 
clustering bias caused by local lighting anomalies, ensuring 
accurate recognition of lane lines under sudden lighting 

changes. Suppose the discoverers' and followers' individual 
positions are represented by Ns+1 and Ns+1

c, the current iteration 
number by u, a normally distributed random number by W, the 
maximum iteration number by l, xs belongs to [0.5,1], the 
matrix R of ones with size 1×f, the population size v, the best 
discoverer position No, the current global worst position NBAD, 
and the matrix X with elements 1 or -1, then the position update 
formulas for discoverers and scouters are given by: 
 

1 *exp ,
*

* ,

s
s

s

uN ts xs
lN

N W R ts xs

+

 −  <  ∂=  
 + >
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 (15) 

 
Step 5: Population Best Position Update 
In each iteration, by comparing the fitness values of all 

sparrows in the current population, update the global best 
position ca and the corresponding best fitness cd. This 
mechanism is crucial in complex lighting environments. For 
example, when vehicles continuously pass through multiple 
bridge tunnels with alternating light and shadow, the algorithm 
can accumulate the best parameters from historical iterations, 
forming a memory ability for periodic lighting changes, 
thereby improving the optimization speed of parameters for 
subsequent similar scenarios. The best position ca corresponds 
to the parameter combination that can dynamically adapt to 
feature distribution changes caused by lighting: in low-light 
scenes, increase the K value to subdivide the lane lines in 
shadows from the dark background; in strong light scenes, 
adjust the v value to weaken the similarity weight of reflective 
pixels, avoiding confusion between lane lines and background. 
By continuously updating the best position, the algorithm can 
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maintain robust recognition of lane lines during driving with 
constantly changing lighting. 

Step 6: Iteration Termination Condition Judgment 
The setting of the iteration termination condition needs to 

balance computational real-time performance and parameter 
optimization accuracy to meet the requirements of high-speed 
intelligent vehicle scenarios. When the number of iterations 
reaches the preset value l or the change amplitude of the best 
fitness cd is less than the threshold, the optimization process 
terminates. In stable lighting scenes, the algorithm can 
converge early to reduce computational cost; in scenes with 
drastic lighting changes, the iteration number is automatically 
extended to ensure sufficient parameter optimization. 

Step 7: Spectral Clustering Matrix Construction under 
Optimal Parameters 

The best parameters obtained by SSA optimization are used 
in the spectral clustering algorithm to construct the adjacency 
matrix for the lane line image enhanced by MSR. The K-
nearest neighbor method is used to calculate the similarity 
between each pixel and its nearest K points. In complex 
lighting scenes, this method can adaptively adjust the 
adjacency range: in strong light reflection areas, reduce the K 
value to shrink the adjacency range and avoid erroneous 
connections between reflective pixels and lane lines; in 
shadow blur areas, increase the K value to enhance the 
connection of weak feature pixels, ensuring the continuity of 
lane line edges. Based on the adjacency matrix, the degree 
matrix F and Laplacian matrix L are constructed. The 
construction of the Laplacian matrix incorporates lighting 
adjustment factors, applying similarity attenuation weights to 
pixels in strong light areas and similarity enhancement weights 
to pixels in shadow areas, thereby suppressing the interference 
of lighting changes on clustering at the matrix level. Assume 
the intelligent vehicle lane line samples are represented by au, 
ak, the specific formulas are as follows: 
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Assuming the sum of each row of the adjacency matrix Q is 
fu. If au∈KNN(ak) and ak∈KNN(au), then formula (16) applies, 
otherwise formula (17) applies. 
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Step 8: Feature Vector Extraction and Normalization 
According to the optimal number of clusters K, extract the 

first K largest eigenvalue corresponding eigenvectors of the 
normalized Laplacian matrix L to construct a v×K dimensional 
feature matrix B. Under complex lighting conditions, this step 
reduces dimensionality to eliminate high-dimensional 
interference caused by lighting noise. For example, map lane 
line pixels under strong light from the RGB-YUV mixed 
feature space to low-dimensional feature vectors, highlighting 
their essential differences from the background. The 
normalization of feature vectors further balances the scale 
differences caused by lighting changes: in low-light scenes, 

enhance the weight of brightness features; in strong light 
scenes, suppress the abnormal contribution of over-bright 
pixels, making lane line features comparable under different 
lighting conditions. 

Step 9: k-means Clustering and Lane Line Segmentation 
Use the k-means algorithm to cluster the feature matrix B, 

dividing pixels into K clusters to separate lane lines from the 
background under complex lighting. During clustering, the 
initial cluster centers are initialized by the SSA optimization 
results, avoiding clustering bias caused by traditional random 
initialization in sudden lighting change scenarios. For example, 
at the strong light and shadow junction of a tunnel exit, the 
optimized initial centers can accurately capture the bimodal 
features of the lane line. The distance metric in clustering 
incorporates lighting adaptive weights: for pixels in strong 
light areas, use a combination metric of Euclidean distance and 
brightness penalty; for pixels in shadow areas, enhance the 
metric with color similarity, so that lane line pixels under 
different lighting are grouped into the same class, while 
background pixels with similar lighting are grouped into other 
classes. Finally, each row in Y corresponds to the cluster 
membership of the pixel, directly reflecting whether it belongs 
to the lane line. 

Step 10: Lane Line Center Extraction and Recognition 
Based on the clustering results, use the characteristic that 

lane lines have density maxima even under complex lighting 
to extract the central lane line as the recognition basis. 
Specifically, calculate the average sum of feature fusion 
Euclidean distances of pixels in each cluster, and determine 
the cluster corresponding to the minimum value as the central 
cluster of the lane line. When strong light reflection causes 
blurred edges of the lane line, density analysis can exclude 
reflective noise interference to locate the true center; when 
shadows cause lane line breaks, density connectivity can 
restore continuous central lane lines. The formula for 
extracting the central lane line incorporates lighting 
adjustment factors, applying attenuation coefficients to 
distance calculations for pixels in strong light areas and 
enhancement coefficients for pixels in shadow areas, so that in 
uneven lighting scenes, the center extraction results more 
closely match the actual lane line position, providing a reliable 
visual basis for intelligent vehicle path planning. Assume the 
lane line in cluster k is represented by Hk, and the remaining 
lane lines in the cluster by �̄�𝐻𝑘𝑘 , the specific formula for 
extracting the central lane line is as follows: 

( ){ } ( ), / , 1,MIN k kC MIN DIS H H v k v= ∈∑ (19) 

4. EXPERIMENTAL RESULTS AND ANALYSIS

This paper first quantitatively compares the image
enhancement effects of the traditional MSR algorithm, HE, 
adaptive histogram equalization (AHE), and the optimized 
MSR method proposed herein under three typical complex 
lighting scenarios: strong light, weak light, and shadow, as 
shown in Table 1. From the entropy perspective, the proposed 
method has higher values than the comparison methods in 
strong light, weak light, and shadow scenes, indicating richer 
retained image details; regarding peak signal-to-noise ratio, 
the proposed method is significantly superior in all three 
lighting scenarios, indicating obvious image quality 
improvement; the standard deviation and mean brightness data 
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show that the proposed method has a lower mean brightness 
than AHE under strong light, avoiding overexposure; higher 
mean brightness than AHE under weak light, enhancing dark 
details; and lower standard deviation than AHE under shadow, 
making contrast more natural. The above indicators verify that 
the optimized MSR method, by improving illumination 
component estimation and reflectance component recovery, 
effectively enhances contrast, detail information, and 
brightness balance of lane images under complex lighting. 

In Figure 6, the total arc error convergence curves of 
traditional methods and the proposed method for different 
lanes a, b, and c show that the proposed method’s error 
decreases faster and converges to a lower final error. Taking 
lane b as an example, the proposed method’s total error drops 
below 5.5 after 20 iterations, whereas the traditional method 
takes about 40 iterations to approach this value, and its final 
error remains above 5.5. For lane a, the proposed method 
stabilizes below 6 after 100 iterations, while the traditional 
method fluctuates around 6.5. This indicates that the SSA-
optimized spectral clustering method, through optimizing 
similarity matrix construction and cluster center initialization, 
significantly improves convergence speed and accuracy, 
reduces error accumulation during iteration, and more 
efficiently fits lane edges and distinguishes features under 
complex lighting. 

Figure 7 shows the arc error variations of lanes a, b, and c 
across 30 segments. From the data, the proposed algorithm’s 
arc error is overall lower than that of the traditional method. 
For lane b, its error in critical intervals such as segments 5-10 

and 20-25 is significantly lower than the traditional 
recognition results of other lanes, with smaller fluctuations. 
Lane c’s error rapidly decreases and stabilizes after segment 
15, reflecting the algorithm’s high-precision edge fitting 
capability for lanes under complex lighting. This shows that 
the proposed algorithm effectively reduces arc error in 
segment recognition and improves edge fitting continuity and 
stability by optimizing the spectral clustering similarity matrix 
and cluster center initialization, performing better especially 
under abrupt lighting changes. 

Table 2 compares key indicators of different algorithms 
through ablation experiments. The accuracy of traditional 
spectral clustering is 93.21%, false detections 148, processing 
time 24.8 ms; only optimizing the similarity matrix (spectral 
clustering + SSA, random centers) achieves 96.58% accuracy, 
62 false detections, processing time 27.6 ms; only optimizing 
cluster center initialization (spectral clustering + SSA, 
standard kernel) has 95.46% accuracy, 129 false detections, 
processing time 21.5 ms. The proposed method achieves 
97.89% accuracy, only 32 false detections, processing time 
24.6 ms. The data shows the proposed method’s accuracy is 
4.68% higher than the traditional method and 1.31%-2.43% 
higher than single-module optimization (similarity or cluster 
center), indicating that the dual optimization significantly 
enhances lane line and background distinguishability and 
reduces false detections. Processing time is comparable to 
traditional methods, but false detections are reduced to less 
than one quarter, reflecting high efficiency of the algorithm 
under complex lighting. 

Table 1. Comparison of image enhancement metrics for intelligent vehicle lane images under complex lighting conditions 

Lighting Scenario Method Entropy Peak Signal-to-Noise Ratio Standard Deviation Mean Brightness 

Strong Light 

Traditional MSR Algorithm 5.7 / 13 21 
HE 6.6 12 34 71 

Adaptive Histogram Equalization 7.1 14 41 57 
Proposed Method 7.6 21 41 45 

Weak Light 

Traditional MSR Algorithm 7.2 / 54 83 
HE 7.3 13 61 124 

Adaptive Histogram Equalization 7.3 15 76 54 
Proposed Method 7.5 22 62 112 

Shadow 

Traditional MSR Algorithm 5.8 / 22 21 
HE 6.7 13 41 76 

Adaptive Histogram Equalization 7.1 16 51 62 
Proposed Method 7.4 22 44 54 

Figure 6. Total convergence curve of arc error in intelligent 
vehicle lane recognition 

Figure 7. Arc error of intelligent vehicle lane recognition at 
different segments 
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Table 2. Comparison of ablation experiment results for intelligent vehicle lane line recognition 

Lane Line Recognition Algorithm Frames Correct 
Recognitions 

False 
Detections 

Average Processing 
Time (ms) 

Accuracy 
(%) 

Traditional Spectral Clustering 
(no optimization, random cluster center 

initialization) 
2785 2658 148 24.8 93.21 

Spectral Clustering + SSA 
(optimized similarity matrix construction, random 

cluster center initialization) 
2156 2214 62 27.6 96.58 

Spectral Clustering + SSA 
(only optimized cluster center initialization, 

similarity matrix is standard Gaussian kernel) 
3256 2896 129 21.5 95.46 

Proposed Method 3214 3125 32 24.6 97.89 

Table 3. Performance comparison of different intelligent vehicle lane line recognition methods on non-enhanced images 

Network MPA (%) MioU (%) Parameters (M) FLOPs (G) FPS 
U-Net 92.25 89.25 41.25 62.315 16.32 

DeepLabv3+ 92.36 89.36 7.56 12.356 23.15 
LineMod 92.58 89.58 6.23 12.485 34.58 
LaneATT 93.31 90.31 6.87 12.235 32.56 

Ultra-Fast-Lane-Detection 93.87 90.56 6.34 12.256 32.12 
Proposed Method 93.96 94.23 7.12 12.201 28.36 

Table 4. Performance comparison of different intelligent vehicle lane line recognition methods on enhanced images 

Network MPA (%) MioU (%) Parameters (M) FLOPs (G) FPS 
U-Net 94.21 90.25 41.23 62.324 22.32 

DeepLabv3+ 94.26 90.35 7.23 12.325 34.58 
LineMod 95.32 90.54 6.24 12.326 48.62 
LaneATT 95.68 91.26 6.89 12.548 42.31 

Ultra-Fast-Lane-Detection 95.63 91.51 6.34 12.322 45.23 
Proposed Method 96.31 95.23 7.12 12.487 42.56 

Tables 3 and 4 present the performance comparison of 
different intelligent vehicle lane line recognition methods on 
non-enhanced and enhanced images, respectively. Comparing 
the performance data on non-enhanced and enhanced images: 
on non-enhanced images, the proposed method already shows 
certain advantages in MPA and MIoU; after MSR 
optimization enhancement, MPA increases to 96.31% and 
MIoU reaches 95.23%. Compared with deep learning methods 
such as U-Net and LineMod, the enhanced proposed method 
leads comprehensively in MPA and MIoU, and has fewer 
parameters than Ultra-Fast-Lane-Detection, with FLOPs and 
FPS balancing computational efficiency and real-time 
performance. This shows that the improved image 
enhancement significantly improves contrast and detail of 
images under complex lighting, providing cleaner feature 
input for subsequent spectral clustering and directly improving 
recognition accuracy. On enhanced images, using global 
optimization capability to optimize the similarity matrix and 
cluster center initialization, accuracy is significantly improved 
compared to traditional spectral clustering. Meanwhile, the 
algorithm performs excellently in lightweight and real-time 
aspects, demonstrating high efficiency by combining 
traditional algorithms with intelligent optimization. 

5. CONCLUSION

This paper first proposed an optimized MSR algorithm,
effectively improving contrast, details, and brightness 
uniformity of lane line images under complex lighting. 
Experiments show that the method outperformed traditional 

methods in entropy, peak signal-to-noise ratio and other 
indicators under strong light, weak light, and shadow scenarios, 
providing high-quality input for subsequent recognition and 
solving image distortion caused by uneven lighting. Further, 
an SSA-optimized spectral clustering algorithm was 
constructed, using global optimization ability to optimize the 
similarity matrix and cluster center initialization, enhancing 
distinguishability between lane lines and background. 
Ablation experiments and convergence curves verified that the 
algorithm far exceeds traditional spectral clustering in 
accuracy, false detections, and convergence efficiency. 
Combined with enhanced MSR, it formed an "enhancement-
recognition" closed loop, significantly improving robustness 
under complex lighting. Compared with deep learning 
methods, the proposed method shows excellent performance 
in accuracy, computational efficiency, and lightweight 
characteristics, especially stronger generalization in scenarios 
without massive labeled data, suitable for embedded 
deployment in intelligent vehicles. 

This is the first time SSA is combined with spectral 
clustering, breaking the local optimum bottleneck of 
traditional clustering; the optimized MSR enhancement 
method solves brightness distortion and detail loss in light 
processing, forming a complete "front-end to back-end" 
technical chain. It provides a high-precision, real-time, robust 
lane line recognition solution for intelligent vehicle visual 
navigation, directly applicable to autonomous driving, 
intelligent vehicle competitions and other scenarios, 
improving system reliability. 

Limitations of this research include: 1) Extreme scenario 
adaptability: insufficient handling capability for extreme 
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weather such as heavy rain and thick fog, requiring multi-
modal data fusion to improve robustness. 2) Computational 
efficiency: iteration overhead of SSA still needs optimization, 
which can be improved by lightweight strategies or hardware 
acceleration to enhance real-time performance. 3) Data 
dependency: spectral clustering’s feature representation relies 
on manual design; future work may introduce semi-supervised 
or self-supervised learning to reduce dependence on prior 
knowledge. Future work could integrate vision, lidar, and 
other data to enhance recognition accuracy under extreme 
weather. It also requires integrating enhancement and 
recognition modules into an end-to-end model, improving 
overall performance and convergence efficiency through joint 
training. 
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