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Muskingum method has been continuously receiving attention from the researchers for 

several reasons. It is a simple method, which can be used for flood routing without much 

complication as far as the procedural details are concerned. In addition, its parameters can 

be calculated using the record of past historical floods. It does not require a knowledge of 

the river bed geometry as the phenomenon can be reproduced well enough on the basis of 

the calibration carried out using experimental data relative to the extreme sections of most 

significantly long reaches. In this study, we have studied the applicability of linear and 

nonlinear Muskingum models on linear and nonlinear flood data. For the linear model three 

different methods were used to compare the accuracy of the actual and estimated outflow. 

The methods are: trial and error, least square, and direct optimization method. Subsequently, 

we have routed the flows based on the estimated parameters to compare the performance of 

these models. The results suggest a very good fit. 
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1. INTRODUCTION

Flood routing techniques are used for flood forecasting, 

reservoir design, watershed simulation, and comprehensive 

water resources projects. One category of flood routing is 

called the hydrology routing. The most well-known hydrology 

routing procedure is referred to as the Muskingum Method. 

McCarthy [1] first developed Muskingum flood routing for 

flood-control studies in the Muskingum River in Ohio, USA. 

Muskingum method has been continuously receiving attention 

from the researchers for several reasons. Firstly, it is a simple 

method, which can be used for flood routing without much 

complication as far as the procedural details are concerned. Its 

parameters can be calculated using the record of past historical 

floods. It does not require a knowledge of the river bed 

geometry as the phenomenon can be reproduced well enough 

on the basis of the calibration carried out using experimental 

data relative to the extreme sections of most significantly long 

reaches. Linear Muskingum models are (1) for continuity, and 

(2) for storage.

𝑑𝑆

𝑑𝑡
= 𝐼 − 𝑄 (1) 

𝑆 𝑡  = 𝐾[𝑥 𝐼𝑡 + (𝐼 − 𝑥)𝑄𝑡] (2) 

The variables St, It, and Qt are simultaneous storage, inflow, 

and outflow, respectively, during the passage of a flood 

through the reach at time t; x and K are constants. Physically 

speaking, K is considered to represent the average reach travel 

time and will be equal to the time difference between the 

centroids of inflow and outflow hydrographs. The coefficient 

x is used to weigh the relative effects of inflow and outflow on 

reach storage and can take values from 0 to 0.5. 

Traditionally, the parameters are estimated by plotting 

accumulated storage versus weighted flow of a given reach 

(Figure 1). Although some reaches may exhibit nonlinear 

loops, the value of x that gives a nearly collapsed loop, 

approximating a straight line as determined by visual 

judgment is considered the best value. The coefficient K is 

then the reciprocal of the slope of the straight line best 

representing the loop. 

The trial and error graphical approach, which have been 

used for decades, is time consuming and prone to subjective 

interpretation. Furthermore, the visual judgement may not 

correctly identify the best among several nearly collapsed 

loops when all may appear acceptable. 

Figure 1. Typical linear and nonlinear storage-weighted flow 

relationship 

In case where the storage versus weighted flow relationship 

is not linear as implied in the original Muskingum model, 

using a linear form of Muskingum model may introduce 

considerable error. If the relationship for a reach is discovered 
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to be nonlinear, as seen in Figure 1, the nonlinear models given 

by Eqns. (3) and (4) may be more appropriate [2-6]. 

 

St = K [x It – (I – x) Qt]n  (3) 

 

St = K [x 𝐼𝑡
𝑛 – (I – x) 𝑄𝑡

𝑛]  (4) 

 

These models have an additional parameter n, which cannot 

be determined graphically from recorded inflow and outflow 

hydrographs, and alternative parameter estimation methods 

must be used. 

In this study, we have studied the applicability of linear and 

nonlinear models on linear and nonlinear flood data. 

Subsequently, we have routed the flows based on the estimated 

parameters to compare the performance of these models. 

 

 

2. MUSKINGUM METHOD FOR FLOOD ROUTING 

 

The Muskingum method consists in a spatially lumped form 

of continuity equation and a linear storage discharge 

relationship for a specified river reach. These equations can be 

rewritten as: 

 
𝑑𝑆

𝑑𝑡
= 𝐼 − 𝑄     (5) 

 

S = K [x I + (1 - x) Q]             (6) 

 

Combining Eqns. (5) and (6) 

 

𝑄 + 𝐾 (𝐼 − 𝑥)
𝑑𝑄

𝑑𝑡
= 𝐼 − 𝐾𝑥 

𝑑𝐼

𝑑𝑡
     (7) 

 

In order to solve Eq. (7) uniquely, an initial condition must 

be specified. From a hydrologic standpoint, this initial 

condition must reflect physical realism. A survey of literature 

indicates that this has been specified in three ways: 

 

I(O) = Q(O) = 0         (8) 

 

I(O) = Q(O) = 10         (9) 

  

1(O) = Q (T), T ˃ 0         (10) 

 

where T is time taken by the flood wave to reach the 

downstream end of the river reach. 

If Eq. (7) is solved using Eq. (8) as the initial condition, the 

solution is then: 

 

𝑄(𝑡) =  ∫ ℎ(𝑡 − 𝑦)𝐼 (𝑦) 𝑑𝑦
𝑡

0
  (11) 

 

where h(t) is the instantaneous unit hydrograph (IUH) of the 

river reach and can be expressed as: 

 

ℎ(𝑡) =  
𝐼

𝐾 (𝐼−𝑥)2  𝑒
−

𝑡
[𝐾(𝐼−𝑥)]

  
−  

𝑥

𝐼−𝑋
 𝛿(𝑡)          (12) 

 

where δ(t) is the Dirac δ - function or impulse inflow. 

However, if Eq. (7) is solved using Eq. (9) as the initial 

condition, the solution is then: 

 

𝑄(𝑡) =  
𝐼0

(𝐼−𝑥)
𝑒

−
𝑡

[𝐾(𝐼−𝑥)]
  

−  
𝑥

𝐼−𝑥
  𝐼(𝑡) +

 
𝐼

𝐾 (𝐼−𝑥)2  ∫ 𝑒
−

𝑡−𝑆
[𝐾(𝐼−𝑥)]

𝑡

0
  𝐼(𝑠) 𝑑𝑠   (13) 

 

The initial condition given by Eq. (10) was proposed by Gill 

[7-8]. If Eq. (7) is solved using this condition then, for T ≤ t 

the solution would be: 

 

𝑄(𝑡) =  − 
𝑥

(𝐼−𝑥)
 𝐼(𝑡) +  [𝑄(𝑇) +  

𝑥

(𝐼−𝑥)
 𝐼(𝑇)] 𝑒

−
𝑡−𝑆

[𝐾(𝐼−𝑥)]   +

 
𝐼

𝐾(𝐼−𝑥)
 ∫ 𝑒

−
𝑡−𝑆

[𝐾(𝐼−𝑥)]
𝑡

𝑇
  𝐼(𝑠)𝐷𝑠  (14) 

 

This solution was obtained by Singh and McCann [9-10] 

with an explicit statement of the initial condition assumed. 

A careful consideration of Eq. (14) shows that the inflow I 

on the interval 0 < t < T does not affect the outflow at times t > 

T. 

It seems more appropriate that any lag time T to be imposed 

on Muskingum method should be imposed through the basic 

equations, not through the initial condition. Using the 

Muskingum assumption of a unique stage-discharge 

relationship m St. Venant equations, Cunge [8, 11] derived a 

partial differential equation for the Muskingum method. He 

then showed that the Muskingum method did not allow for 

wave damping, and that wave attenuation was due to errors 

arising from numerical approximation of the Muskingum 

equation. This, of course, is valid if it is assumed that the 

lumped system can be transformed into a distributed system, 

the Muskingum method has a dynamic basis and that this basis 

lies in St. Venant equations. It can be seen that this assumption 

is no more valid than the Muskingum hypothesis itself and has 

no particular basis other than to try to predicate a physical 

basis for a purely empirical assumption. 

The Muskingum method is not a translatory solution. 

Further, it can be shown that there is no unique dynamical 

analogy of the Muskingum method even if the assumption of 

its dynamic basis is made. 

Through an entirely different approach, translatory 

solutions for the Muskingum method have been obtained for 

particular parameter values and some assumptions on inflow 

[8, 12, 13]. If Eq. (7) is written in a finite difference form 

(using forward difference formula) then: 

 

Qn = C0 I0 + C1 In-1 + C2 Qn-1  (15) 

 

where: 

 

𝐶0 =  
(−𝐾𝑥+0.5 ∆𝑡)

𝐶3
 ; 𝐶1 =  

(𝐾𝑥+0.5 ∆𝑡)

𝐶3
 ; 𝐶2 =

 
(𝐾−𝐾𝑥+0.5 ∆𝑡)

𝐶3
 and 𝐶3 = (𝐾 − 𝐾𝑥 − 0.5 ∆𝑡)   (16) 

 

Here Δt is the routing period, and C0 + C1 + C2 = 1. The 

approximate translator solution is possible only if l and Q can 

be approximated linearly over M. This implies that Δt should 

be very small so that this assumption is not violated. 

Consequently, K will be very small and the channel reach 

under consideration will have to be short enough to have such 

a small approximation travel time. However, if we consider a 

continuous solution given by Eq. (13), then it is immediately 

clear that regardless of the choice of K and x, this solution is 

not translatory. To illustrate, consider: 
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𝐼(𝑡) =  [
𝐼(0) + sin 𝑡  , 0 ≤ 𝑡 <  𝜋

𝐼(0)               , 𝑡 ≥  𝜋
]  (17) 

 

𝑄(𝑡) =  
𝐼0

𝐼−𝑥
 𝑒

−
−𝑡

[𝐾(𝐼−𝑥)] − 
𝑥

(𝐼−𝑥)
 𝐼(𝑡) +  

𝐾 𝑒
−

−𝑡
[𝐾(𝐼−𝑥)] 

𝐾2 (𝐼−𝑥)2+𝐼
 (1 +

 𝑒
−

𝜋
[𝐾(𝐼−𝑥)]  ) + 

𝐼0

(𝐼−𝑥)
 (1 +  𝑒

−
−𝑡

[𝐾(𝐼−𝑥)]  ),   t ≥ π      (18) 

 

Evidently Q (t + T) ≠ I(t) for any T. 

On the other hand, if we consider equation 11 then we may 

not obtain translator solutions for any choice of K and x. This 

can be seen to be true by considering the above example input 

in Eq. (17) with I0=0. The above discussion shows that the 

Muskingum method, as proposed by McCarthy [1], is not a 

translatory solution. This method is a black box type and is not 

based on hydraulic equations of open channel flow. It says 

nothing about the spatial variability of inflow, outflow and 

storage [14-17]. 

 

 

3. ESTIMATION OF THE PARAMETERS OF THE 

MUSKINGUM MODEL 

 

3.1 Trial and error method 

 

In the conventional graphical method, weighted flow given 

by Eq. (18) is plotted against the accumulated storage given by 

Eq. (19) for several selected values of x. The value of x which 

gives the narrowest loop is accepted as the Muskingum x. The 

narrowest loop is then represented by a straight line, and the 

reciprocal of the slope of this line is taken as storage constant 

K. 

 

𝑆2 =  𝑆1 + (𝐼 −  𝑄) ∆𝑡   (19) 

 

where, 

 

𝐼 =  
𝐼𝑛+ 𝐼𝑛+1

2
 ,𝑄 =  

𝑄𝑛+ 𝑄𝑛+1

2
  Weighted flow = x In+I + (1- x) 

Qn+I     (20) 

 

Instead of drawing the accumulated storage against 

weighted flow for each trial value of x, and then choosing the 

best fit line by visual judgement, I developed a computer 

program to compute the sum of the squares of the deviations 

from the best fit line. For each particular value of x, pairs of 

values for accumulated storage and weighted flow were 

computed using the given inflow and outflow hydrographs 

ordinates. The best fit line through these points was then 

determined by the method of least squares with the condition 

that this line should pass through the initial point when I0 = Q0. 

For each value of x, and the corresponding straight line giving 

the best fit line between weighted discharge and accumulated 

storage, the error sum of squares was recorded, and the value 

of x resulting in the least error sum of squares will be chosen 

as the Muskingum parameter x. The storage constant K will be 

the reciprocal of the slope of the best fit line. This procedure 

is summarized below. 

Let y = weighted discharge 

b = slope of the straight line. 

Then, 

 

 y = y0 + b (S – S0)      (21) 

 

And  

 

 𝑠𝑢𝑚 =  ∑[𝑦 − [𝑦0 + 𝑏 (𝑆 −  𝑆0)]]
2
 = ⅀ [y - y0 – b S + b 

S0      (22) 

 
𝑑(𝑠𝑢𝑚)

𝑑𝑏
= 0 =  ∑ 2 (𝑦 −  𝑦0 − 𝑏𝑆 + 𝑏𝑆0) (−𝑆 +  𝑆0) −

 ∑ 𝑦 𝑆 + 𝑦0 ∑ 𝑆 + 𝑏 ∑ 𝑆2 − 𝑏 𝑆0  ∑ 𝑆 +  𝑆0  ∑ 𝑦 −
𝑛 𝑦0  𝑆0 − 𝑏 𝑆0  ∑ 𝑆 + 𝑛 𝑏 𝑆0

2 = 0    

   (23) 

 

where n = number of data points except the initial point. 

 

𝑏 [∑ 𝑆2 − 2 𝑆0  ∑ 𝑆 + 𝑛 𝑆0
2 ] =  ∑ 𝑦 𝑆 − 𝑦0  ∑ 𝑆 −

 𝑆0 ∑ 𝑦 + 𝑛 𝑦0 𝑆0     (24) 

 

𝑏 =  
∑ 𝑦 𝑆− 𝑦0  ∑ 𝑆− 𝑆0  ∑ 𝑦+𝑛 𝑦0 𝑆0

∑ 𝑆2−2 𝑆0  ∑ 𝑆+𝑛 𝑆0
2    (25) 

 

If the initial storage is considered as zero, 

 

sum = ⅀ (y – y0 – b S)2    (26) 

 
𝑑(𝑠𝑢𝑚)

𝑑𝑏
= 0 =  ∑ 2(𝑦 −  𝑦0 − 𝑏 𝑆) (−𝑆)  (27) 

 

⅀ y S – y0 ⅀S – b ⅀ S2 = 0   (28) 

 

Then 

 

𝑏 =  
∑ 𝑦 𝑆− 𝑦0  ∑ 𝑆

∑ 𝑆2     (29) 

 

It should be noted that Eq. (29) is a special case of Eq. (25) 

for So= 0. 

 

3.2 Least square method 

  

This method is based on minimizing the sum of squares of 

deviations between observed storage and computed storage for 

a given inflow-outflow sequence. Mathematically: 

 

𝐸 =  ∑ [𝑆0 (𝑗) −  𝑆𝑒(𝑗)]2 𝑁
𝑗=1 →  𝑚𝑖𝑛        (30) 

 

where S0 (j) is the observed storage for the jth time interval; Se 

(j) is the estimated storage for the jth time interval; and N is 

the number of observations. E is the error function to be 

minimized. Two cases are distinguished. 

Case A: C ≠ 0 where C is the difference between absolute 

and relative storages. Eq. (21) can be written as (dropping j for 

brevity and assuming A = K x and B =K (1-x): 

 

E= ∑ [𝑆0  − x K I − K (1 − x)Q − C]2𝑁
𝑗=1  (31) 

 

Thus we obtain: 

 

𝐴 =  
𝑦1 

 𝑦2
− 𝐵 (

𝑦3

𝑦2
) , 𝐵 =  

𝑦1𝑧2− 𝑧1 𝑦2 

𝑧2 𝑦3− 𝑦2 𝑧1
  and 

𝐶 =  
∑ 𝑆0−𝐴 ∑ 𝐼−𝐵 ∑ 𝑄

𝑁
  (32) 

 

where 

 

𝑦1 =  ∑ 𝑆0 𝐼 −  
(∑ 𝑆0  ∑ 𝐼)

𝑁
, 𝑦2 =  ∑ 𝐼2 − 

  (∑ 𝐼)2

𝑁
  and 

𝑦3 =  
∑ 𝑄 𝐼− ∑ 𝑄  ∑ 𝐼

𝑁
    (33) 

357



 

𝑧1 =  ∑ 𝑆0 𝑄 − 
(∑ 𝑆0  ∑ 𝑄)

𝑁
 , 𝑧2 =  ∑ 𝐼 𝑄 −  

(∑ 𝐼  ∑ 𝑄)

𝑁
 and 𝑧3 =

 ∑ 𝑄2 − 
(∑ 𝑄  ∑ 𝑄)

𝑁
   (34) 

 

Therefore: 

 

K = A+ B  and    X= A/(A+ B)  (35) 

 

Thus K, x and C can be determined objectively and 

conveniently. 

Case B: C = 0. Solving for A and B as before: 

 

𝐴 =  
(∑ 𝑆0 𝐼 ∑ 𝑄2− ∑ 𝑆0 𝑄 ∑ 𝐼 𝑄)

𝐷
, 

𝐵 =  
(∑ 𝑆0 𝐼 ∑ 𝐼2− ∑ 𝑆0 𝑄 ∑ 𝐼 𝑄)

𝐷
 and 𝐷 =  ∑ 𝐼2  ∑ 𝑄2 − (∑ 𝐼 𝑄)2

                       (36) 

 

And hence K and x can be determined from Eq. (34). 

 

3.3 Direct Optimization (DO) method 

 

The ditect optimization (DO) method determines directly 

the routing coefficients C0, C1, and C2 without estimating K 

and x. The method is based on minimizing the difference 

between observed outflow hydrograph and computed 

hydrograph. Therefore, this method is also a least-squares 

optimization method and is in principle, equivalent to the least 

squares method defined previously. 

There are, in fact, only two unknowns since the third is 

known from C0 + C1 + C2 = 1. If we choose C1, and C2 to be 

the unknowns then: 

 

𝑥 =  
𝐶1+0.5𝐶2−0.5

𝐶1+ 𝐶2
    (37) 

 

𝐾 =  
∆𝑡 (𝐶1+𝐶2)

1− 𝐶2
   (38) 

 

Further, rearranging 

 

C1 (In – In-1) + C2 (In – Qn-1) = In - Qn (39) 

 

If we define: 

 

Rn = In – Qn; Fn = In – In-1; and Gn = In – Qn-1 (40) 

 

Then 

 

Rn = C1 Fn + C2 Gn  (41) 

 

The error function (dropping the subscript n for brevity) 

then follows: 

 

𝐸 =  ∑ (𝑅0 − 𝑅𝑒)2𝑁
1   →   𝑚𝑖𝑛  (42) 

   

where subscripts 0 and e denote observed the estimated R 

values, respectively. 

Following the usual procedure: 

 

⅀R0 F = C1 ⅀F2 + C2 ⅀F G       and 

⅀R0 G = C1 ⅀F G + C2 ⅀G2         (43) 

 

Solving for C1 and C2: 

 

𝐶1 =  
(∑ 𝑅0 𝐹 ∑ 𝐺2− ∑ 𝑅0 𝐺 ∑ 𝐹 𝐺)

𝐷𝐸𝑇
 and 

𝐶2 =  
(∑ 𝑅0 𝐺 ∑ 𝐹2− ∑ 𝑅0 𝐹 ∑ 𝐹 𝐺)

𝐷𝐸𝑇
                 (44) 

 

where 

 

𝐷𝐸𝑇 =  ∑ 𝐺2  ∑ 𝐹2 − (∑ 𝐹 𝐺)2  (45) 

 

Thus, once C1 and C2 are determined, K and x can be 

obtained. 

 

3.4 Nonlinear method 

 

Through an analysis of stream flow records at the upstream 

and downstream ends of a river reach, it is possible to construct 

a set of data comprising the inflow rates at the upstream end 

of the reach, the outflow rates at downstream end of the reach 

and the storage volumes in the reach at selected times over 

some historical period. These data may be denoted by: 

St = actual or measured storage in the reach at time t 

It = actual or measured inflow rate at the top of the reach at 

time t 

Qt = actual or measured outflow rate at the bottom of the 

reach at time t. 

The standard, nonlinear Muskingum model for channel 

routing assumes a relationship between storage, inflow and 

outflow defined by Eq. (44). A standard selection procedure 

for parameters of the model is to minimize the sum of the 

squared deviations of model-predicted storage and actual 

storage. One way to define this procedure for the standard 

nonlinear model is with the mathematical model given by Eq. 

(47) and 48. 

 

𝑆𝑡 = 𝐾[𝑥 𝐼𝑡
𝑛 + (1 − 𝑥) 𝑄𝑡

𝑛]  (46) 

 

𝑁 =  ∑ (𝑆𝑡 − 𝑃𝑠𝑡)2
𝑡       (47) 

 

𝑃𝑠𝑡 = 𝐾 [𝑥 𝐼𝑡
𝑛 + (1 − 𝑥) 𝑄𝑡

𝑛]  (48) 

 

where Pst =model - predicted storage value; 

N = error sum of squares. 

One of the solution method for the mathematical program 

is: 1- select a group of values for n (e.g. n = 0.05, 0.10, ...); for 

each value of n, solve the resulting mathematical model using 

traditional calculus methods by setting all partial derivatives 

equal to zero and solving for the optimal values of K and x. 2- 

choose that value of n and the associated values of K and x that 

produced the minimum value of the objective function, N. 

The standard nonlinear Muskingum model is a more general 

model and should perform better in minimizing the sum of the 

squares of deviations of actual storage from model-predicted 

storage values. 

 

If we let 

P = K x 

then Eqns. (23), (24), and (25) yield 

 

𝑁 =  ∑(𝑆𝑡 − 𝑃 𝐼𝑡
𝑛 − 𝐾 𝑄𝑡

𝑛 + 𝑃 𝑄𝑡
𝑛)2  = ∑[𝑆𝑡 − 𝑃 (𝐼𝑡

𝑛 −
 𝑄𝑡

𝑛) − 𝐾 𝑄𝑡
𝑛]2   (49) 

 
𝑑(𝑁)

𝑑𝑃
= 0 
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∑ 2 [𝑆𝑡 − 𝑃 (𝐼𝑡
𝑛 − 𝑄𝑡

𝑛) − 𝐾 𝑄𝑡
𝑛] (𝑄𝑡

𝑛 − 𝐼𝑡
𝑛) = ∑ 𝑆𝑡  𝑄𝑡

𝑛 −
 ∑ 𝑆𝑡  𝐼𝑡

𝑛 + (𝑘 − 2𝑃) ∑ 𝑄𝑡
𝑛 𝐼𝑡

𝑛 + (𝑃 − 𝐾) ∑ 𝑄𝑡
𝑛 + 𝑃 ∑ 𝐼𝑡

2𝑛 =
0        (50) 

 
𝑑(𝑁)

𝑑𝑃
= 0 

∑ 2 [𝑆𝑡 − 𝑃 (𝐼𝑡
𝑛 − 𝑄𝑡

𝑛) − 𝐾 𝑄𝑡
𝑛] (−𝑄𝑡

𝑛) = 0       (51) 

 

 

∑ 𝑄𝑡
𝑛 𝐼𝑡

𝑛 −  ∑ 𝑆𝑡  𝑄𝑡
𝑛  + (𝐾 − 𝑃) ∑ 𝑄𝑡

2𝑛 = 0          (52) 

 

Now let, 

 

A1 = ⅀ St 𝑄𝑡
𝑛  , A2 = ⅀ St 𝐼𝑡

𝑛, A3 = ⅀ 𝑄𝑡
𝑛  𝐼𝑡

𝑛, A4 = ⅀ 𝑄𝑡
𝑛 and 

A5 = ⅀ 𝐼𝑡
𝑛         (53) 

 

Then Eq. (28):   

 

A1 - A2 + (K- 2P) A3 + (P- K) A4 + P A5 = 0 (54) 

 

Eq. (29):   

 

PA3 -AI + (K- P) A4 = 0      (55) 

 

From Eq. (29) solve for P 

 

𝑃 =  
𝐴1−𝐾 𝐴4

𝐴3− 𝐴4
       (56) 

 

Substitution of Eq. (30) into (28) gives: 

 

A1 – A2 + K (A3 – A4) + P (A4 + A3 -2A3) = 0  (57) 

 

Solving for K we get 

 

𝐾 =  
(𝐴2− 𝐴1)−𝑃 (𝐴4+ 𝐴5−2 𝐴3)

𝐴3− 𝐴4
   (58) 

 

Substituting Eq. (24) into (25) yields 

 

𝐾 (𝐴3 −  𝐴4) + (𝐴1 − 𝐴2)

+  
𝐴1 −  𝐾 𝐴4

𝐴3 −  𝐴4

  (𝐴4 + 𝐴5 − 2 𝐴3) = 0 

 

𝐾 (𝐴3 −  𝐴4) + (𝐴1 −  𝐴2) + 
𝐴1 (𝐴4+ 𝐴5−2 𝐴1)

𝐴3− 𝐴4
−

 
𝐾 𝐴4 (𝐴4+ 𝐴5−2 𝐴3)

𝐴3− 𝐴4
= 0   (59) 

 

𝐾 ((𝐴3 −  𝐴4) −  
𝐴4(𝐴4 + 𝐴5 − 2 𝐴3) 

𝐴3 − 𝐴4

)

= (𝐴2 −  𝐴1) − 𝐴1 𝑥 
(𝐴4 + 𝐴5 − 2 𝐴3)

𝐴3 − 𝐴4

 

 

Let 

 

𝐵1 =  (𝐴3 −  𝐴4) − 
𝐴4(𝐴4+ 𝐴5−2 𝐴3) 

𝐴3− 𝐴4
  and 

𝐵2 =  (𝐴2 −  𝐴1) − 
𝐴1(𝐴4+ 𝐴5−2 𝐴3) 

𝐴3− 𝐴4
 (60) 

 

Then: 

 

𝐾 =  
𝐵2

𝐵1
 and  𝑥 =  

𝑃

𝐾
  (61) 

 

And 

 

𝑁 = 𝑆𝑈𝑀 =  ∑  (𝑆𝑡 − 𝑃 (𝐼𝑡
𝑛 −  𝑄𝑡

𝑛) − 𝐾 𝑄𝑡
𝑛)2 (62) 

 

The nonlinear model requires Q1 to be solved by trial and 

error at every time step of flow routing. The routing equation 

for nonlinear model is given by the following equation. 

 

[
𝐼1+ 𝐼2

2
− 

𝑄1+ 𝑄2

2
]  ∆𝑡 = 𝑆2 − 𝑆1 = 𝐾 [(𝑥 𝐼2 + (1 −

𝑥) 𝑄2)𝑛 − (𝑥 𝐼1 +  (1 − 𝑥) 𝑄1)𝑛]    (63) 

 

I solved this equation by using Newton method as part of a 

Basic computer program. 

Let 

 

𝐹(𝑄2) = [
𝐼1+ 𝐼2

2
− 

𝑄1+ 𝑄2

2
] ∆𝑡 − 𝐾 [(𝑥 𝐼2 +  (1 − 𝑥) 𝑄2)𝑛 −

(𝑥 𝐼1 +  (1 − 𝑥) 𝑄1)𝑛] = 0 (64) 

 

The procedure is as follows: 

(1) At first choose an initial approximation for Q2. 

(2)  Check  
𝑑𝑓 (𝑄2)

𝑑𝑄2
 ≠ 0 

If  
𝑑𝑓 (𝑄2)

𝑑𝑄2
= 0 

then another approximation for Q2 should be chosen. 

(3) Calculate a new value of Q2. 

 

𝑄2 (𝑛𝑒𝑤) =  𝑄2 − [
𝐹(𝑄2)

𝐹′(𝑄2)
]  (65) 

  

(4) If |Q2 (new)-Q2| < 0.0001,  

then Q2 =Q2 (new)    (66) 

 

However, if |Q2 (new)- Q2 | > 0.0001, then a new value of 

Q2 should be calculated as described in step 3. 

 

 

4. PRACTICAL CASE STUDIES 

 

A sample data set of Linsley, Kohler, and Paulhus [18] is 

used to illustrate the calculations made for the linear model. A 

second data set given by Wilson [19] is used for the 

calculations for the nonlinear model. 

 

4.1 Linear model 

 

For the linear model three different methods were used to 

compare the accuracy of the actual and estimated outflow. The 

methods are trial and error, least square and direct 

optimization method. The data used are given in Table 1. 

The parameters K and x, and various statistics used for 

comparing the performance of different parameter estimation 

methods are listed in Table 2. These statistics are: 

 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 
∑(𝐴𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑢𝑡𝑓𝑙𝑜𝑤)2

𝑁 − 1
 

 

where, N = number of data points. 

 

Deviation of peak of routed and actual outflow (DPO): 

DPO = |Peakrouted - Peakactual|   

Deviation of peak time of routed and actual outflows 

(DPOT): 

DPOT = |Time of peakrouted - Time of peakactual| 
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Table 1. Actual inflow and outflow data for linear model* 

 
Time 

(days) 

Inflow 

(m3/2) 

Outflow 

(m3/s) 

0.0 1.13 1.13 

0.5 0.99 1.10 

1.0 1.05 1.05 

1.5 3.54 1.47 

2.0 9.63 3.68 

2.5 16.28 8.13 

3.0 20.44 13.37 

3.5 20.95 17.67 

4.0 19.06 19.14 

4.5 12.91 18.07 

5.0 9.06 16.25 

5.5 6.39 11.16 

6.0 5.44 8.69 

6.5 4.08 6.65 

7.0 3.34 5.10 

7.5 2.69 4.02 

8.0 2.26 3.23 

8.5 1.90 2.63 

9.0 1.58 2.18 

9.5 1.42 1.81 

10.0 1.19 1.56 
*[18] 

 

It is clear that both the Least Squares and Trial and Error 

methods yield very close values in x and K whether or not C 

equals zero. The DO method yields different values for x and 

K when compared with the other methods. However, it appears 

to be the most accurate of all since it gives the minimum DPO 

and residual variance. Three points emerge from the analysis 

of the above data. First, the three methods are comparable in 

their results on the whole. Second, although K and x are 

significantly different for these models, they lead to more or 

less comparable outflow hydrographs. This suggests that there 

might exist more than one set of the parameters K and x for 

the Muskingum flood routing method. Third, the direct linear 

optimization method is simple to apply and avoids the 

intermediate step of obtaining K and x. As mentioned earlier 

in the study the trial and error graphical approach, which have 

been used for decades, is time consuming and prone to 

subjective interpretation. Comparability of the results 

indicates that there is no particular reason to use the trial and 

error graphical method. In addition, the observed and 

computed outflows are compared graphically for each method 

as shown in Figures 2, 3, 4 and 5. Those Figures (2, 3, 4 and 

5) show how close the estimated values given by the model to 

the actual values are, and the results suggest a very good fit. 

 

Table 2. Parameter estimation and other statistics 

 
Method Parameter Estimates DPO 

(m3/s) 

DPOT 

(days) 

Res Var 

(m3/s2) x K n 

Trial& Error 0.302 0.708 - 0.831 0 0.322 

Least Square 0.282 0.711 - 0.504 0 0.254 

DO 0.172 0.765 - 0.013 0 0.136 

 

 
 

Figure 2. Actual and estimated outflow relationship for Trial 

and Error method 

 

 
 

Figure 3. Actual and estimated outflow relationship for Least 

Square method with c=0 

 
 

Figure 4. Actual and estimated outflow relationship for Least 

Square method with c≠0 

 

 
 

Figure 5. Actual and estimated outflow relationship for 

Direct Optimization method (DO) 
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5. NON-LINEAR MODEL 

 

The data for the nonlinear model is given in table 3. 

 

Table 3. Actual inflow and outflow data for nonlinear 

model* 

 
Time 

(Hours) 

Inflow 

(m3/s) 

Outflow 

(m3/s) 

0 0.623 0.623 

6 0.651 0.594 

12 0.991 0.594 

18 2.009 0.736 

24 2.915 0.962 

30 3.141 1.245 

36 3.085 1.557 

42 2.830 1.868 

48 2.434 2.123 

54 2.009 2.321 

60 1.670 2.406 

66 1.330 2.377 

72 1.104 2.264 

78 0.906 2.066 

84 0.792 1.811 

90 0.679 1.528 

96 0.623 1.245 

102 0.594 1.019 

106 0.566 0.849 

114 0.538 0.708 

120 0.538 0.623 

126 0.509 0.538 
*[19] 

 

The parameters K and x, and various statistics are carried 

out as explained earlier and the results are shown in table 4.  

 

Table 4. Parameter estimation and comparative statistics for 

the nonlinear method 

 
Parameter Estimates DPO 

(m3/s) 

DPOT 

(hrs) 

Res Var 

(m3/s2) x K n 

0.215 0.0548 2.352 0.073 0 0.297 

 

The value of K in the nonlinear method is associated with 

inflow and outflow, Δt in hours and n=2.352 only. Figure 6 

shows how close the estimated values given by the model to 

the actual values are, and the results suggest a very good fit. 

 

 
 

Figure 6. Actual and estimated outflow relationship for 

Nonlinear method 

 

6. SUMMARY AND CONCLUSIONS 

 

Three methods (Trial and Error, Least Square and Direct 

Optimization) based on the linear model were investigated and 

used. It is clear that both the Least Squares and Trial and Error 

methods yield very close values in x and K. 

The Direct Optimization method yields different values for 

x and K when compared with the other methods. However, it 

appears to be the most accurate of all since it gives the 

minimum DPO and residual variance. Three points emerge 

from the analysis of the above data. First, the three methods 

are comparable in their results on the whole. Second, although 

K and x are significantly different for these models, they lead 

to more or less comparable outflow hydrographs. This 

suggests that there might exist more than one set of the 

parameters K and x for the Muskingum flood routing method. 

Third, the direct linear optimization method is simple to apply 

and avoids the intermediate step of obtaining K and x. 

Comparability of the results indicates that there is no 

particular reason to use the trial and error graphical method. 

Because the trial and error graphical approach, which have 

been used for decades, is time consuming and prone to 

subjective interpretation. Therefore, there exists little reason 

to use the graphical methods as practiced currently. 

The value of K in the nonlinear method is associated with 

inflow and outflow, Δt in hours and n = 2.352 only. The results 

suggest a very good fit for the estimated values to the actual 

values, for both the linear and nonlinear method. 
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