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 Spherical shapes are known to be the ideal theoretical profile for a vessel that resists internal 

pressure mainly because the tensile stresses developed at the wall of a pressurized spherical 

vessel is uniform in all directions. This makes a sphere very strong structure and the preferred 

shape for storing high pressure fluids since it is the only known shape that has no weak 

points. The major reason why spherical tanks are not commonly used is because of the 

complexity of the procedure for their development and the associated high cost of 

production. This work has successfully developed a relatively simplified framework for the 

design of the constituent sections of a spherical storage tank thereby providing a way out of 

the difficulty normally associated with its development. The framework developed was 

validated by using it to design and develop a 225 liter capacity spherical tank. Two models 

of same capacity were developed and evaluated. The first model was developed through 10-

section members while the second model used 30-section members. 
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1. INTRODUCTION 

 

A sphere is the optimal geometry for a closed pressure 

vessel in the sense of being the most structurally efficient 

shape. A cylindrical vessel is somewhat less efficient for two 

reasons: (1) the wall stresses vary with direction, (2) closure 

by end caps can alter significantly the ideal membrane state, 

requiring additional local reinforcements. However the 

cylindrical shape may be more convenient to fabricate and 

transport. 

Spherical storage tanks are preferred for storage of high 

pressure fluids. A spherical tank is considered stronger than its 

counterparts such as the common fixed roof tank, open top 

tank, and floating roof tank [1-3]. The even distribution of 

stresses on the sphere's surfaces, both internally and externally, 

generally means that there are no weak points.   Pressure inside 

a true spherical tank is known to be identical on every axis. 

Common storage tanks are comprised of numerous 

components or pieces of metal that are welded or bolted 

together, in the field or in the shop.  Welds and seams are 

generally accepted as weak points in high pressure scenarios. 

The spherical shape creates great strength in resisting these 

pressures and offers the least amount of exterior surface, 

which reduces the transfer of warmer ambient temperatures on 

the overall volume. Spherical storage tanks are more 

expensive to fabricate than the other common types, and 

become more economically feasible as the tank design gets 

larger. Vertical cylindrical tanks resting on the ground are 

however sometimes used in lieu of spherical tanks on account 

of their low manufacturing cost and higher capacities [1]. 

Spherical tank finds great use in applications involving 

pressure vessels and pressure vessels have been in wide use 

for many years in petroleum, chemical, military industries and 

also in nuclear power plants [4, 5]. Other recorded uses of 

spherical tanks include storing of various liquids ranging from 

non-flammable liquids to dangerous flammable or toxic 

chemicals with explosive nature and are installed almost in 

each sector of contemporary industry like nuclear, energy, 

chemical etc. [3]. During ordinary operation, the liquid storage. 

They are known to be usually subjected to high pressures and 

temperatures which may be constant or cycling. 

 

 

2. CONVENTIONAL METHODS OF FABRICATING 

SPHERICAL SHAPES 
 

The conventional method of manufacturing spherical 

tanks/vessels involves forming of spherical petal blanks after 

which the petal blanks are fabricated and welded to make 

spherical vessel. An approach previously developed involves 

integral forming after fabrication and welding, in which the 

sheet metal will be first cut into predesigned shapes of flat 

blanks and thereafter fabricated and welded into a closed 

single-curvature shell [6]. The shell will then filled be with a 

liquid after which it will be hydro bulged where resulting 

internal pressure from the pressure pump will cause plastic 

deformation in the shell under the effect of the hastening-circle 

moment which promotes the tendency of an internally 

pressurized shell to be spherical. 

There were two other different procedures developed 

whereby pressure vessels can be manufactured. The first 

method was described as a process of spin forming and 

Tungsten Inert Gas (TIG) welding as shown in Figure 1 while 

the second method involved blow forming together with solid-

state diffusion bonding process [7-9]. 

Another method for the design and manufacturing process 

of a spherical tank as described involved manufacturing by the 

dieless hydra-bulging technology involving cutting, roll-

bending, assembling, welding, hydro-bulging, final inspecting 

and tempering [9]. 
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Figure 1. Hot spinning process of hemisphere for altitude 

control tank [7] 

 

 

3. MATERIALS AND METHODS 

 

3.1 Stress assumptions in spherical vessels 

 

The following assumptions are made when analyzing the 

stresses in Spherical Vessels 

1. All shear stresses are zero:  

 

τrυ = τυr = 0, τrθ = τθr = 0 and τθυ = τυθ = 0. 

 

2. The normal stress σrr varies from zero on the outside free 

surface to the negative of the pressure p on the inside 

surface. Again there is the need to neglect this value when 

compared to the other normal stresses and justify this 

assumption a posteriori. 

The force generated on the shell (the surface of revolution) 

due to axially symmetrical load can be represented by 

meridional force (Nφ) and circumferential force (NƟ) [6]. 

 
 

Figure 2. Tensile stresses σ in a spherical pressure vessel 

[11] 

 

A more general approach at finding the Tensile Stress σ is 

by cutting the sphere into two hemispheres [10, 11] as shown 

in Figure 2 which can be used to show that 

 

𝜎 =
𝑃𝑟

2𝑡
     (1) 

 

where σ represents the tensile stresses in the wall of the vessel, 

the fluid pressure is p and t is the wall thickness 

Any section that passes through the center of the sphere 

yields the same result. 

 

3.2 Sections development 

 

Mathematical modeling of spherical tank as previously 

developed was derived based on the structure and the output 

transfer function where the spherical tank system was 

identified as a nonlinear complex structure [12]. The 

framework developed in this work is however simplified and 

has been successfully used to develop some prototypes. 

Another previous Mathematical model of spherical screw lines 

developed also involved the use of relatively complex single-

blade helicoid equation together with the equation of a curve 

of crossing of surfaces of the sphere and helicoid [13, 14]. 

In this work however, the approach employed in developing 

the spherical tank involved dividing the sphere into two 

hemispheres and subsequent division of each of the 

hemispheres into sections. The material used is mild steel and 

a simplified procedure was established for the section/profile 

development and the number of sections needed to obtain a 

near-perfect spherical shape established. Each of the sections 

developed is as represented by the profile PCD in Figures 3 

and 4. 

The procedure for the sectional development (Figures 3 and 

4) involves the following 

i. Divide the sphere into two hemispheres 

ii. If the number of sections/profiles each hemisphere will 

be divided into is represented by n1, then the arc length 

CD in Figure 3 will be the ratio of the circumference of 

one of the great circles by n1. That is, length of each of 

the base of the divided spherical section is 

 

𝑋0 =
2𝜋𝑅

𝑛1⁄      (2) 

 

iii. If the angle subtended by the arc CD at the centre E of 

the sphere is α, then 𝛼 =
360

𝑛1
 ; (See Figure 6) 

iv. The length of arc PQ (Figures 3c and 4) is 𝐿 =
90

360
2𝜋𝑅 =

𝜋𝑅

2
 

v. The development of the sectional profile PCD in Figure 

3 with the arc length PQ transforming into the height of 

the bisecting line PQ of magnitude 𝐿 =
𝜋𝑅

2
 is shown in 

Figure 5  

vi. In contrast to the basic mass-balance equation used by 

others [1, 4, 5, 16] to analyze the minor circles in a 

hemispherical shape, the method employed here is a 

simple geometrical analysis of the shape. The arc 

length AB of one of the minor circles of the sphere in 

Figure 3a is represented by x5 in the development 

shown in Figure 5 with a corresponding minor radius 

of r5 and a vertical height h5 from the sphere horizontal 

diametral plane as illustrated in Figure 4 

vii. The height PE in Figure 3a represents the radius R of 

the sphere and can as well be divided into n2 number of 

sections with n2 representing the number of minor 

circles in each hemisphere as illustrated in Figures 4 

and 5 

viii. The angle each arc of the minor circles such as arc AB 
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in Figure 3a subtends at a distance of radius R from the 

centre E of the sphere is represented by β as shown in 

Figure 4. 

ix. Analyses of such sectors of the minor circles described 

in (viii) above are as shown in Figures 7 to 9 with the 

accompanying Mathematical formulations. 

 

      
 

 

Figure 3. Sectional development 

 

 
 

Figure 4. Hemisphere used for mathematical analysis 

 
  

 

Figure 5. Sectional divisions along minor circles 

 

 
 

Figure 6. Major circle sectional analysis 

 

 
 

Figure 7. First minor circle sectional analysis 

 
 

Figure 8. Fifth minor circle sectional analysis 

 

 
 

Figure 9. n2th minor circle sectional analysis 

 

From Figure 6 and using the Cosine Rule for the cord length 

C0 is 

 

𝐶0
2 = 𝑅2 + 𝑅2 − 2. 𝑅. 𝑅𝐶𝑜𝑠𝛼 

 

𝐶0 = √2𝑅2(1 − 𝐶𝑜𝑠𝛼) 
 

𝐶0 = √2𝑅2(1 − 𝐶𝑜𝑠(360 𝑛1⁄ ))                 (3) 

 

Length of the arc CD from Figures 5 and 6 is 

 

𝑥0 =
2𝜋𝑅

𝑛1
=

𝛼

360
2𝜋𝑅                     (4) 

 

Using Figures 7 to 9; 

From the Cosine Rule, Cord length C
1 corresponding to arc 

length x
1 is 

 

𝐶1
2 = 𝑅2 + 𝑅2 − 2. 𝑅. 𝑅𝐶𝑜𝑠𝛽1 

𝐶1 = √2𝑅2(1 − 𝐶𝑜𝑠𝛽1)             (5) 

 

where β1=90/n2 (see Figure 4) 

From Figure 7, using Pythagoras theorem and taking h1 = h 

= R/n2; 𝑑1 = √𝐶1
2 − ℎ2 ;     𝑟1 = 𝑅 − 𝑑1 (see Figure 8). 

Similarly from Figure 8,  

 

𝐶5 = √2𝑅2(1 − 𝐶𝑜𝑠𝛽5) 
 

where 𝛽5 = 5𝛽1 = 5 ∗ 90/𝑛2 and 

 

 

a c b 
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𝑑5 = √𝐶5
2 − ℎ5

2 = √𝐶5
2 − (5ℎ)2 ;       𝑟5 = 𝑅 − 𝑑5 

 

For n2 number of divisions which is equivalent to the 

number of minor circles obtained for each of the two 

hemispheres of the spherical shape of interest, 

 

𝑑𝑛2 = √𝐶𝑛2
2 − ℎ𝑛2

2 = √𝐶𝑛2
2 − (𝑛2. ℎ)

2 ;             (6) 

𝑟𝑛2 = 𝑅 − 𝑑𝑛2 = 𝑅 − 𝑅 = 0 

 

since 𝑑𝑛2 = 𝑅           (7) 

 

Eq. (7) implies that there is no minor circle at the tip of the 

sphere. 

With reference to Eq. (6); 

Since 𝑑𝑛2 = 𝑅; together with n2 and h are known  

Eq. (6) becomes 

 

𝑅 = √𝐶𝑛2
2 − (𝑛2. ℎ)

2 or 

At 𝑥𝑜 =
2𝜋𝑅

𝑛1
; do = 0; ho = 0 

 

4. RESULTS AND DISCUSSIONS 

 

For our spherical shape to be well formed, the cord length 

C0 must be approximately equal to the arc length x0. 

Using Eqns. (3) and (4) and tabulating Cord Length C0 and 

Arc Length L for different values of n1 results in Table 1. The 

higher the number of sections n1 used, the closer is the value 

of C0 to L 

A more comprehensive analysis and comparisons of the 

generated data from the developed Mathematical models are 

as shown in Table 2. Figure 10 shows some of the points of 

reference on the developed section of the sphere as previously 

depicted in Figure 3 while Figure 11 shows the variation of the 

linearized sectional height to the actual equivalent sectorial arc 

length. Figures 12 and 13 illustrate the level of sphericalness 

achieved by using different number of sections, that is, n1=10 

and n1=30 for spherical shapes formation which is equivalent 

to n1=20 and 60 respectively for the corresponding 

hemispherical shapes. The developed spherical tanks at 

different levels of welding/fabrication are as shown in Figure 

14 to 20. 

 

Table 1. Table of values of C0 approaching L as n1 increases 

 

R n1 A=360/n1 
C0=sqrt((2*R^2)-

2*R*R*cosd(A)) 

L=(A*PI*R)

/180 
L-C0 

377.5 5 72.000 443.778 474.380 30.603 
 10 36.000 233.308 237.190 3.882 
 15 24.000 156.973 158.127 1.154 
 20 18.000 118.108 118.595 0.487 
 25 14.400 94.627 94.876 0.250 
 30 12.000 78.919 79.063 0.144 
 35 10.286 67.678 67.769 0.091 
 40 9.000 59.237 59.298 0.061 
 45 8.000 52.666 52.709 0.043 
 50 7.200 47.407 47.438 0.031 
 55 6.545 43.102 43.125 0.023 
 60 6.000 39.514 39.532 0.018 

 

Table 2. More comprehensive results of mathematical analysis of sections of the developed sphere 

 
n1 =   n2= 20.00 R= 377.50 B= 90.00  x0=2.PI*R/n1 

n1(th) n2 n2(th) R L y=L/n2 B=90/n2 
h = 

R.Cos(90- B) 

r = 

R.Sin(90- B) 

x = 

2.PI.r/n1 
 

1 20 1 377.50 592.98 19.77 4.50 29.62 376.34 78.82 1.00 

2 20 2 377.50 592.98 39.53 9.00 59.05 372.85 78.09 2.00 

3 20 3 377.50 592.98 59.30 13.50 88.13 367.07 76.88 3.00 

4 20 4 377.50 592.98 79.06 18.00 116.65 359.02 75.19 4.00 

5 20 5 377.50 592.98 98.83 22.50 144.46 348.76 73.05 5.00 

6 20 6 377.50 592.98 118.60 27.00 171.38 336.35 70.45 6.00 

7 20 7 377.50 592.98 138.36 31.50 197.24 321.87 67.41 7.00 

8 20 8 377.50 592.98 158.13 36.00 221.89 305.40 63.96 8.00 

9 20 9 377.50 592.98 177.89 40.50 245.17 287.05 60.12 9.00 

10 20 10 377.50 592.98 197.66 45.00 266.93 266.93 55.91 10.00 

11 20 11 377.50 592.98 217.42 49.50 287.05 245.17 51.35 11.00 

12 20 12 377.50 592.98 237.19 54.00 305.40 221.89 46.47 12.00 

13 20 13 377.50 592.98 256.96 58.50 321.87 197.24 41.31 13.00 

14 20 14 377.50 592.98 276.72 63.00 336.35 171.38 35.89 14.00 

15 20 15 377.50 592.98 296.49 67.50 348.76 144.46 30.26 15.00 

16 20 16 377.50 592.98 316.25 72.00 359.02 116.65 24.43 16.00 

17 20 17 377.50 592.98 336.02 76.50 367.07 88.13 18.46 17.00 

18 20 18 377.50 592.98 355.79 81.00 372.85 59.05 12.37 18.00 

19 20 19 377.50 592.98 375.55 85.50 376.34 29.62 6.20 19.00 

20 20 20 377.50 592.98 395.32 90.00 377.50 1.00 0.21 20.00 
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Figure 10. Points of reference on the developed section of 

the sphere 

 

 
 

Figure 11. Variation of the linearized sectional height to the 

actual equivalent sectorial arc length 

 

 
 

Figure 12. Sphericalness achieved with n1=10 

 

 
 

Figure 13. Sphericalness achieved with n1=30 

 
 

Figure 14. First section being welded to the upper 

hemisphere 

 

 
 

Figure 15. 10 section-sphere under development with lower 

hemisphere 

 

 
 

Figure 16. Developed sphere of 10 sections 

 

 

 

Figure 17. 30-Section 225 liter capacity spherical tank under 

development 
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Figure 18. Complete 30-Section 225liter capacity spherical 

tank developed 

 

 

 

Figure 19. Body-filed 30-Section 225liter capacity spherical 

tank developed 

 

 
 

Figure 20. Grey-Coated 30-Section 225liter capacity 

spherical tank developed 

 

 

5. CONCLUSIONS 

 

This paper has developed mathematical and procedural 

frameworks that will facilitate the development of spherical 

storage tanks. The effect of the number constituent sections on 

the sphericalness obtainable was also illustrated by developing 

a 225-litre capacity spherical storage tank using ten and twenty 

sections respectively. It is hoped that the framework developed 

will encourage the development and usage of spherical tanks 

when they are needed and not approximate them to cylindrical 

tanks with hemispherical caps. 
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NOMENCLATURE 

τrυ, τυr, τrθ, 

τθr, τθυ, τυθ 

Shear Stresses in different planes in N/m2 

σrr Normal Stress in N/m2 

n1 Number of Sections 

n2 Number of Minor Circles 

X0 Equivalent base (arc) length of each section 

of the sphere in mm 

R Great Circle Radius in mm 

𝛼 Angle substended by an arc of the section in 

degrees 

L Length of an Arc of a constituent great 

circle 

C0, Cn Equivalent Chord Length in mm 

𝛽 Angle substended by a minor arc 
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