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 In recent years, the integration of swarm intelligence-based metaheuristic optimization 
techniques into Artificial Intelligence (AI) has garnered significant attention. This project 
aims to investigate the potential applications of swarm intelligence techniques within the 
domain of AI. By leveraging the collective behavior and adaptive nature of swarm 
intelligence, these metaheuristic optimization methods offer unique opportunities for 
solving complex problems in AI. Numerous optimization methods have been proposed in 
academic research to address clustering-related challenges, but swarm intelligence has 
established a prominent position in the field. Particle swarm optimization (PSO) is the most 
popular swarm intelligence technique and one of the researchers' favorite areas. In this 
study, we introduce a novel clustering approach that integrates PSO with the K-means 
algorithm, aimed at enhancing clustering outcomes by effectively addressing common 
clustering challenges. The PSO algorithm has been shown to converge successfully during 
the initial stages of a global search, but around the global optimum. The proposed algorithm 
is designed to organize a given dataset into multiple clusters. To assess its effectiveness, 
we tested the algorithm on five different datasets. We then compared its clustering 
performance with that of the K-means and PSO algorithms, evaluating it based on metrics 
such as execution time, accuracy, quantization error, and both intra-cluster and inter-cluster 
distances.  
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1. INTRODUCTION 

 
Significant advancements in Artificial Intelligence (AI) 

have greatly enhanced machines' ability to handle complex 
tasks and make intelligent decisions. However, traditional 
optimization methods [1] often face limitations when dealing 
with the complexity and non-linearity of real-world problems. 
To address these challenges, metaheuristic techniques, 
particularly those based on swarm intelligence, have emerged 
as a promising solution. 

Swarm intelligence algorithms [2] draw inspiration from 
collective behaviors observed in natural systems, leveraging 
principles such as self-organization, adaptation, and 
cooperation to tackle complex optimization problems in AI. 
Their approach offers several advantages, including 
robustness, flexibility, parallelism, and the ability to explore 
vast solution spaces, leading to near-optimal solutions in 
various AI domains. 

Despite these advantages, the use of metaheuristics poses 
challenges. They often require meticulous parameter tuning 
[3], and their performance can be influenced by problem 
representation and search space characteristics. Additionally, 
the computational complexity associated with swarm 
intelligence algorithms may limit their use in resource-
constrained environments. 

This study aims to investigate the application of 

metaheuristic optimization methods, particularly those based 
on swarm intelligence [4], in AI. Integrating these methods 
into AI can enhance the precision, efficiency, and robustness 
of existing algorithms for solving complex optimization 
problems of large dimensions. 

The results provide valuable insights into the benefits and 
challenges involved in utilizing metaheuristic optimization 
methods in AI [5]. Several domains and applications [6] have 
shown promising results, including optimization of machine 
learning model parameters, feature selection, portfolio 
optimization, image recognition, and data clustering. Looking 
ahead, hybrid approaches combining metaheuristic 
optimization methods with other AI techniques pave the way 
for addressing even more complex and challenging 
optimization problems. 

The proposal outlined in this document integrates K-means 
with PSO techniques to optimize the clustering process [7], 
improving both its effectiveness and accuracy. While K-means 
is widely used for partitioning data sets into distinct clusters, 
finding optimal cluster centroids can be challenging, 
especially with large-scale or high-dimensional data sets. 
Optimizing K-means clustering results using PSO aims to 
refine cluster centroids, thereby improving clustering 
precision and convergence speed. The effectiveness of this 
method is assessed using metrics like inter-cluster distance, 
intra-cluster distance, and quantification error. 
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The organization of this study is as outlined: In section 2, 
including a detailed examination of the PSO method. Section 
3 explores the K-means clustering algorithm, delves into data 
clustering with PSO, and outlines and evaluates the suggested 
methodology. Section 4 details the experimental framework 
used to assess the proposed approach and provides a 
comparative analysis of the results. The final section, Section 
5, synthesizes the results and offers a comprehensive summary 
of the research outcomes. 

 
 

2. METAHEURISTIC METHODS 
 
In the domain of optimization, metaheuristic methods have 

firmly established themselves as potent techniques for 
addressing intricate problems [8] that present substantial 
challenges, often being difficult or even infeasible to solve 
through traditional approaches. Metaheuristics provide 
flexible and efficient problem-solving strategies that can 
tackle a wide range of optimization challenges [9]. 
Metaheuristic methods leverage a range of natural phenomena, 
such as the behavior of ants, birds, or genetic evolution, and 
emulate these processes to facilitate the search for optimal 
solutions. Unlike exact optimization algorithms that guarantee 
finding the global optimum, metaheuristics offer approximate 
solutions with good quality within a reasonable computational 
time. The term metaheuristic reflects the higher-level nature of 
these methods. They are not problem-specific algorithms but 
serve as general frameworks that can be applied to various 
problem domains. Metaheuristics [10] provide a way to 
navigate the vast search space by intelligently exploring and 
exploiting different regions. 

Swarm intelligence, a specific subset of metaheuristic 
methods [11], takes cues from the collective behaviors of 
social insects like ants, bees, or birds. These methods mimic 
the interactions and collaboration observed among individuals 
within a population to seek out optimal solutions. 
Metaheuristic techniques serve as notable examples of 
methods rooted in swarm intelligence. The strength of 
metaheuristic methods resides in their capacity to address 
intricate optimization challenges, encompassing scenarios 
marked by non-linearities, multiple objectives, or solution 
spaces with high dimensions. By leveraging the principles of 
exploration and exploitation, metaheuristics can efficiently 
navigate through the search space, adapt to changing 
conditions, and escape local optima. Hybrid approaches 
combining metaheuristic optimization methods [12] with other 
AI techniques open the way to solving even more complex and 
challenging optimization problems. 

In this study, we present an innovative clustering method 
that fuses K-means [13] with PSO to improve the overall 
clustering performance. This hybrid method aims to improve 
the quality of clustering outcomes by leveraging the strengths 
of both techniques. Although the K-means algorithm is 
extensively utilized to divide datasets into distinct clusters, 
finding optimal cluster centroids can be difficult, especially for 
large-scale or high-dimensional datasets. 

Optimizing K-means clustering results using PSO aims to 
refine cluster centroids, thereby improving clustering accuracy 
and convergence speed. 

PSO overcomes the limitations inherent to conventional K-
means methods, notably sensitivity to initial centroid 
placement and susceptibility to local optima. It endows the 
algorithm with global search capabilities, enabling it to 

explore various cluster configurations and gradually converge 
on better clustering results. 
 
2.1 Particle swarm method 

 
The PSO method was initially conceptualized and created 

by James Kennedy and Russell Eberhart [14, 15]. The 
algorithm is grounded in a simplified model that simulates 
social interactions between "agents" and collaboration 
between individuals [16]. These individuals can be, for 
example, birds or bees or bees called particles, and they use 
their individual experiences as well as the experience of the 
whole population to move around a given space (search 
domain) to find food. Thanks to the notion of collaboration, a 
particle that is a promising solution can attract the rest of the 
population to share in its benefits from its discovery. The PSO 
algorithm starts with the initialization of the particle 
population. the particles and velocities are randomly 
distributed. Each particle is assigned a velocity vector which 
is calculated according to each particle’s experience and the 
group’s motion. Particle positions are updated by the notion of 
velocity in each iteration. This iterative procedure continues 
until convergence is attained. 
 
2.1.1 Definition of the method 

In PSO, the social behaviour is represented by a 
mathematical equation that directs particles in their movement 
process [17]. A particle's movement is guided by three primary 
components: Inertia, cognition, and social interaction. Each of 
these components contributes to the overall equation:  

1) The inertia component: This component directs the 
particle to continue moving in its current direction.  

2) The cognitive element: The particle modifies its 
trajectory by moving toward the optimal solution it has 
identified during its exploration. 

3) The social element: The particle's movement is guided by 
the optimal solutions discovered by neighboring particles 
within the collective swarm. 

 
2.1.2 Formalization 

In a d-dimensional space, a swarm particle i at time t can be 
represented by the following parameters:  

- X: the particle's current position within the search space; 
- V: Its velocity, indicating the direction and magnitude of 

movement; 
- Pb: The position corresponding to the particle's personal 

best solution; 
- Pg: The position representing the best-known solution 

across the entire swarm; 
- f (Pb): The fitness evaluation of the particle's best-known 

solution; 
- f (Pg): The fitness value of the best solution known to the 

whole swarm.  
The displacement of particle i between iterations t and t+1 

occurs according to the two Eq. (1) and Eq. (2):  
 

( ) ( )
( 1) ( ) 1 1

( ) ( ) 2 2 ( ) ( )

v v C r

 Pb X C r Pg X
iD t iD t

iD t iD t iD t iD t

+ = +

− + −
 (1) 

 
( 1) ( ) ( )X X ViD t iD t iD t+ = +  (2) 

 
C1, C2: Acceleration coefficients that control the influence 

of cognitive and social components on the particle's velocity. 
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r1, r2: Stochastic factors, represented by random numbers 
uniformly drawn from the interval [0, 1], which introduce 
randomness into the search process. 

 
2.1.3 Algorithm steps 

PSO is a metaheuristic inspired by the collective behavior 
observed in bird flocks [18]. It aims to replicate how these 
groups coordinate their movements and collectively optimize 
their paths. This bio-inspired technique has been successfully 
applied across various domains [19], particularly for solving 
optimization problems by mimicking natural system 
dynamics. The PSO algorithm simulates the coordinated 
motion of particles within a multidimensional search space to 
identify optimal solutions.  

The fundamental PSO algorithm, as introduced by the study 
[14], begins by randomly initializing particles within the 
search space, assigning each particle an initial position and 
velocity [17]. During each iteration, particles update their 
positions and velocities according to Eq. (1) and Eq. (2), and 
their fitness values are evaluated. This process allows the 
determination of the best global position Pg. Both the personal 
best positions Pb, and the global best position Pg are updated 
iteratively following the procedure illustrated in Figure 1. 

 

 
 

Figure 1. Particle swarm optimization (PSO) steps 
 
The process [20] is repeated until the stopping criterion is 

satisfied. 
1. Initialization:  
- Set the population size, typically represented by a group 

of particles.  
- Randomly set particle positions and velocities across the 

search space. within the specified search space. 
- Define an objective function to evaluate the quality of each 

particle's current position within the search space. 
This function plays a pivotal role in assessing how 

effectively a particle's position aligns with the specified 
objectives. 

2. Evaluation:  
- Assess each particle's performance by evaluating the 

objective function relative to its current position in the search 

space.  
3. Update Personal Best:  
- Compare the current performance [21] metric of each 

particle with its previously recorded personal best value. 
- If the current performance metric surpasses the previously 

recorded personal best, update the personal best value 
accordingly, and adjust the personal best position accordingly. 
This process ensures that each particle’s performance is 
continuously assessed and improved upon [22]. 

4. Update Global Best:  
- Assess the fitness values of the optimal personal positions 

across the entire swarm. 
- Locate the particle in the entire population with the highest 

fitness value. 
- Refine the global best position by incorporating the 

personal best position of the particle that exhibits the highest 
fitness. 

5. Updating Velocity and Position:  
- Modify the velocity of each particle [23] based on its 

current velocity, personal best position, and the global best 
position. 

- The updated velocity is computed by integrating cognitive 
and social components to effectively balance the search 
between exploring new regions and exploiting known areas of 
the search space. 

- Update the position [24] of each particle by incorporating 
the new velocity into its current position. 

6. Termination Condition:  
- Establish a termination criterion [25], which may involve 

reaching a predefined maximum number of iterations or 
achieving a satisfactory solution.  

- If the stopping criteria are not satisfied, repeat from step 2; 
otherwise, advance to the subsequent step. 

7. Output:  
- Present the global best position, which signifies the 

optimal solution attained by the algorithm. 
8. Optional: Post-processing and Fine-tuning: 
- Following the acquisition of the optimal solution, optional 

postprocessing techniques can be applied to refine and 
enhance the solution if necessary.  

- Parameter Fine-Tuning: Modifying parameters such as 
population size, maximum velocity, or acceleration 
coefficients can enhance the algorithm's effectiveness for 
specific problem instances. 

The iterative characteristic of PSO permits particles to 
navigate the search space under the influence of their 
individual experiences and the collective wisdom of the 
swarm. By continuously updating their velocities and 
positions, particles converge towards promising regions, 
eventually finding near-optimal or optimal solutions. 

 
 

3. ENHANCING K-MEANS CLUSTERING WITH 
PARTICLE SWARM OPTIMIZATION 

 
The K-means clustering algorithm is a widely recognized 

unsupervised learning method designed to segment a dataset 
into K-distinct clusters [26]. The primary goal is to minimize 
the total sum of squared deviations between data points and 
their corresponding cluster centroids [27]. Nonetheless, 
determining the most appropriate cluster centroids can pose a 
significant challenge, especially when working with high-
dimensional or extensive datasets. 

An effective strategy to improve the efficiency of the K-
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means algorithm entails improving its clustering results by 
applying PSO. PSO can be harnessed to fine-tune the positions 
of cluster centroids, leading to enhanced clustering accuracy 
and faster convergence. The core idea involves treating each 
particle as a potential set of K-cluster centroids and using the 
PSO algorithm to iteratively optimize their positions. 

During the optimization process, each particle’s position 
signifies a unique set of K-centroids, with the objective 
function mathematically expressed as the summation of 
squared distances between data points and their nearest 
centroids. The PSO algorithm then endeavours to identify the 
optimal set of centroids that minimizes this objective function. 

In each iteration, particles refine their positions based on 
their individually best-known positions (pbest) and the best-
known positions among all particles (gbest). Particle 
movement is influenced by both their prior positions and the 
global best position discovered thus far. Through this iterative 
process, particles systematically explore the solution space to 
identify the optimal cluster centroids [28].  

By amalgamating PSO with the K-means algorithm, the 
optimization process becomes more robust and adept at 
discovering superior clustering solutions. PSO aids in 
surmounting the limitations associated with the traditional K-
means algorithm, including sensitivity to initial centroid 
placement and susceptibility to local optima. It furnishes the 
algorithm with global search capabilities, enabling it to 
explore diverse cluster configurations and progressively 
converge towards improved clustering results. 

Optimizing K-means clustering [29] via PSO presents a 
promising avenue for enhancing the efficacy of this widely 
applied clustering methodology. It streamlines the automatic 
and efficient determination of optimal cluster centroids, 
ultimately resulting in improved clustering performance and 
more effective data representation across various applications. 

 
3.1 K-means algorithm 

 
The K-means [30] clustering method is a well-known 

unsupervised learning [31] approach utilized to group data 
points into K-distinct clusters. Its primary goal is to segregate 
data in a manner where points within the same cluster exhibit 
similarity, while those in separate clusters display 
dissimilarity. This algorithm finds application [32] in various 
domains.  

The algorithm follows a sequence of key steps. In the first 
step, K-cluster centroids are initialized by randomly selecting 
K-data points from the dataset. These centroids act as the 
initial representatives for the clusters. 

In the assignment phase, each data point is allocated to the 
cluster that has the nearest centroid. This process is determined 
by a distance metric such as Euclidean distance, which ensures 
that each point is accurately associated with the cluster that 
best represents its proximity to the centroid. 

Following the assignment phase, the algorithm proceeds to 
the update step. In this stage, the centroids of each cluster are 
recalculated by computing. In this stage, the centroids of each 
cluster are recalculated by determining the mean of all data 
points allocated to that specific cluster. This recalibration 
reflects the new positions of the centroids based on the 
reallocated data points. 

The algorithm continues to iterate between the assignment 
and update steps until it satisfies a predefined stopping 
criterion. Typically, convergence serves as the primary 
criterion, gauged by monitoring the shift in centroids between 

iterations. If the centroids’ positions stabilize, and the change 
falls below a predefined threshold, the algorithm concludes. 

Upon convergence, the final cluster assignments and 
centroids define the clustering solution. Each data point is 
allocated to a specific cluster, while the centroids indicate the 
representative positions for each cluster. 

It’s noteworthy that the K-means algorithm can be 
influenced by the initial placement of centroids. To mitigate 
this influence, it’s a common practice to execute the algorithm 
multiple times with different initializations and select the 
solution with the minimum sum of squared distances as the 
ultimate clustering result. 

Despite its computational efficiency and widespread use, 
the K-means algorithm does possess certain limitations [33]. 
It assumes that clusters are spherical and have uniform 
variances. an assumption that may not always hold in real-
world scenarios. Additionally, identifying the most suitable 
number of clusters (K) can be a challenging task. Furthermore, 
identifying the ideal number of clusters (K) can pose a 
challenging task, often necessitating domain expertise or 
supplementary techniques. 

In summary, the K-means algorithm serves as a robust tool 
for categorizing data into distinct groups. As illustrated in 
Figure 2, the algorithm iteratively assigns data points to 
clusters based on their proximity to centroids, which are 
updated until convergence. By comprehending its steps and 
limitations, researchers and practitioners can effectively 
employ this algorithm to extract meaningful insights and 
patterns from their data. 

 

 
 

Figure 2. K-means clustering algorithm 
 

3.2 Adapting the PSO metaheuristic for K-means 
clustering 

 
The adaptation of the PSO metaheuristic to the K-means 

clustering algorithm revolves around leveraging PSO to 
optimize the positions of cluster centroids [34]. The main goal 
is to discover the ideal cluster centroids that minimize the sum 
of squares within clusters, thereby enhancing clustering 
outcomes. 

The adaptation process typically encompasses the 
subsequent stages: 

1. Initialization: Commence by setting up a population of 
particles, with each particle representing a possible solution 
and corresponding to a set of K centroid positions for the 
clusters. The particle's position is encoded as a vector 
containing these centroid positions. 

2. Fitness Evaluation: The fitness function assesses the 
quality of the clustering solution linked to each particle's 
centroid positions. K-means that the fitness function 
frequently quantifies the within-cluster sum of squares, 
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gauging the quantification pertains to the collective squared 
distances between data points and their linked cluster 
centroids. 

3. Velocity Update: Particle velocities are modified using 
their prior velocities, their individual best-known positions 
(pbest), and the global best. This adjustment steers the particle 
toward regions within the search space with the potential for 
enhancing clustering solutions. 

4. Position Update: The position of each particle is modified 
according to its current velocity. This update affects the 
positions of centroid coordinates for each cluster. 

5. Fitness Comparison: Following the position updates, the 
fitness function is reevaluated for each particle to ascertain its 
clustering quality. Adjustments are applied to the most optimal 
positions (pbest and gbest) by the fitness values. 

6. Termination Criteria: The algorithm persists in velocity 
and position updates until it fulfils a predefined termination 
condition. This condition could involve reaching a predefined 
maximum number of iterations, attaining a specific fitness 
threshold, or meeting other convergence criteria. 

Through the iterative updating of particle positions and 
velocities, PSO systematically traverses the search space to 
discover the optimal centroid positions to minimize the within-
cluster sum of squares. 

The incorporation of PSO into K-means clustering offers 
several advantages, including improved convergence speed, 
the capability to escape local optima, and robustness in 
handling intricate datasets with non-linear cluster boundaries. 
It stands as a potent optimization technique for attaining 
superior clustering solutions. 

In conclusion, adapting PSO for K-means clustering 
represents a promising avenue to augment the algorithm’s 
performance and elevate the quality of the resultant clusters.  

 
3.3 Optimizing data clustering: Synergies between K-
means and PSO for enhanced performance 

 
The combined use of K-means and PSO leverages the 

complementary strengths of these two algorithms to enhance 
clustering outcomes. K-means is known for its efficiency in 
quickly finding local solutions by minimizing intra-cluster 
distances, but it often suffers from sensitivity to the initial 
selection of centroids and may converge to local optima. In 
contrast, PSO excels at global search by maintaining a 
population of potential solutions (particles) and guiding them 
toward better solutions based on both individual and collective 
experience. 

By integrating these methods, we capitalize on their 
respective strengths. PSO can direct the global search toward 
promising regions of the solution space, while K-means can 
locally refine these solutions to converge swiftly to high-
quality local optima. This hybrid approach overcomes the 
individual limitations of each algorithm, leading to more 
efficient convergence and higher-quality solutions. 

Theoretically, the synergy between these algorithms can be 
explained by their foundational principles. PSO is inspired by 
the collective behavior of birds flocking or fish schooling, 
where particles explore the search space in pursuit of optimal 
solutions. K-means, on the other hand, iteratively updates 
centroids to minimize distances between data points and their 
respective centroids. 

By combining these approaches, the system benefits from 
PSO's ability to explore the search space thoroughly, while K-
means focuses on fine-tuning solutions in promising regions. 

This results in a more comprehensive exploration of the 
solution space and quicker convergence to high-quality 
solutions, ultimately enhancing performance compared to the 
use of either algorithm individually. 

 
3.4 Proposed approach 

 
The proposed method incorporates a hybridization approach 

that merges two algorithms: PSO and K-means. PSO is 
renowned for its effectiveness in global search but exhibits 
limitations in local search, especially when handling extensive 
or complex datasets. Conversely, K-means excels in local 
search but struggles with global clusters and can produce 
inconsistent results due to variations in initial partitions. 

The principal goal of this research is to mitigate these 
limitations by synergizing the strengths of both algorithms. 
The proposed hybridization technique operates sequentially, 
involving the following steps: 

1. Start by randomly generating particles or selecting 
particles from an available dataset to form the 
population. 

2. Initialize the positions and velocities of the particles. 
3. Compute the fitness value. 
4. Update the positions, velocities, global best, and 

personal best of the particles. 
5. Continue to repeat steps 3 and 4 until a termination 

condition is satisfied: 
a. The iteration process reaches the predefined 
maximum number of cycles. 
b. The average shift in centroid vectors becomes 
smaller than a specified threshold value. 

6. Determine the target number of clusters (K) for the 
clustering process. 

7. Initialize the cluster centroids for the K-means 
algorithm by utilizing the positions of the K best 
particles obtained from the PSO phase. 

8. Assign each particle from the PSO population to the 
nearest K-means centroid cluster based on proximity. 

9. Recalculate the cluster centroids of K-means. 
10. Iterate through steps 8 and 9 until the centroids no 

longer exhibit movement. 
The integration of the PSO and K-means algorithms in this 

hybrid approach surpasses the individual use of either 
algorithm.  

The PSO algorithm operates as a stochastic technique for 
discovering optimal solutions. To determine the termination 
criteria for PSO, it is recommended to run the algorithm 
multiple times. Each run generates a new optimal solution in 
the vicinity of the global optimum. These runs provide a robust 
foundation for further processing with K-means, ultimately 
leading to enhanced results. 

In the initial stage [35], PSO is utilized to perform a global 
search and identify an initial solution close to the global 
optimum. The result obtained from PSO serves as the starting 
point for the K-means data clustering algorithm, which refines 
the solution and produces the final optimal result. This hybrid 
approach capitalizes on the complementary strengths of PSO 
and K-means to achieve superior clustering outcomes. 

 
 

4. ANALYSIS OF RESULTS 
 
To evaluate the efficiency of the presented approach, we 

conducted a comparative analysis with each algorithm, PSO, 
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and K-means. This analysis aims to assess how the presented 
technique performs in comparison to using each algorithm 
separately. 

By drawing comparisons between the results achieved 
through our proposed approach and those attained by utilizing 
PSO and K-means independently, our objective is to achieve a 
profound understanding of the effectiveness and efficiency of 
our approach through this comparative analysis. This in-depth 
assessment serves as a pivotal step in gauging the feasibility 
and potential advantages of the hybridization technique we 
propose. 

To facilitate this evaluation, we can employ various 
evaluation metrics and measures, including but not limited to 
clustering accuracy, convergence speed, computation time, 
and result stability. A meticulous analysis of these metrics 
enables researchers to gauge the extent to which our proposed 
approach excels in terms of clustering performance and other 
pertinent criteria when contrasted with the individual 
algorithms. 

The comparative analysis conducted in this section not only 
shines a light on the strengths and limitations of the individual 
algorithms but also offers a deeper understanding of the 
benefits brought forth by our hybrid approach. Ultimately, this 
analysis significantly contributes to the comprehensive 
evaluation and assessment of the proposed hybridization 
technique. 

The structure of this paper can be summarized as follows: 
Section 4.1, we furnish a detailed depiction of the test 

dataset, shedding light on its characteristics and properties. 
This section lays the groundwork for subsequent evaluations 
and analyses. 

Section 4.2 is dedicated to the presentation of various 
quality assessment parameters. These parameters play a 
pivotal role in quantitatively evaluating the clustering results, 
facilitating a thorough analysis of the method’s quality and 
accuracy. 

In Section 4.3, we present the findings and outcomes 
stemming from the experiments conducted with the proposed 
method. We delve into the results, offering insights into the 
performance, efficiency, and effectiveness of our approach in 
comparison to the individual algorithms. 

By presenting the article in this style, our objective is to 
offer readers a well-organized and logically structured 
presentation of the test dataset. Quality assessment parameters, 
and experimental findings. This structured approach facilitates 
a methodical understanding and evaluation of the performance 
of the proposed technique. 

 
4.1 Test datasets 

 
4.1.1 Iris dataset 

The Iris dataset stands as a cornerstone in the realm of 
pattern recognition. It comprises 150 instances, meticulously 
categorized into three distinct classes, each corresponding to a 
particular variety of iris plants. The dataset encompasses four 
attributes, offers insights into three classes, and presents a total 
of 150 data vectors. 
 
4.1.2 Wine problem 

This dataset stems from a chemical analysis of wines 
produced in a specific Italian region, though sourced from 
three different grape varieties. The analysis accurately 
quantified the concentrations of 13 distinct chemical 
compounds across the three wine types. The dataset comprises 

13 attributes, representing three classes, and contains a total of 
178 data samples. 

 
4.1.3 Artificial problem (Random Function) 

For our study, we've generated an artificial dataset using the 
rand function in MATLAB. This dataset features four 
attributes and a collection of 100 data vectors. 

 
4.1.4 Artificial problem I 

The formulation of this problem respects the classification 
rule stated by Engelbrecht [18] as follows: 
 

class = �
1  if (𝑧𝑧1 ≥ 0.7) or �(𝑧𝑧1 ≤ 0.3)
  and (𝑧𝑧2 ≥ −0.2 − 𝑧𝑧1)�
0  otherwise 

 (3) 

 
A total of 400 data vectors were randomly created, with 

𝑧𝑧1, 𝑧𝑧2 ∼ 𝑈𝑈(−1, 1). 
 

4.1.5 Artificial problem II 
This problem is a 2-dimensional problem featuring four 

distinct classes. An intriguing aspect of this problem is that 
just one of the input dimensions significantly influences class 
formation. 

A total of 600 patterns were drawn from four independent 
bivariate normal distributions, where classes were distributed 
according to for 𝑖𝑖 = 1,⋯ ,4, where p is the mean vector and 𝜇𝜇 
is the covariance matrix; 𝑚𝑚1 = -3, 𝑚𝑚2 = 0, 𝑚𝑚3 = 3, and 𝑚𝑚4= 6. 
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4.2 Basic criteria 

 
4.2.1 Quantization error 

The primary objective focuses on minimizing the average 
squared quantization error, which quantifies the discrepancy 
between a data point and its corresponding representation. The 
mathematical formulation of this quantization error is as 
follows: 
 

𝑄𝑄𝑒𝑒 = � 
𝐾𝐾

𝑗𝑗=1

��  

𝑁𝑁𝑗𝑗

𝑖𝑖=1

�𝑥𝑥𝑖𝑖
𝑗𝑗 − 𝑐𝑐𝑗𝑗�

2
/𝑁𝑁𝑗𝑗� /𝐾𝐾  (5) 

 
• 𝑄𝑄𝑒𝑒: The quantization error. 
• 𝑐𝑐𝑗𝑗: The centroid of cluster j. 
• N: The total number of particles. 
• 𝑁𝑁𝑗𝑗: The number of particles in cluster j. 
• xi: A particle. 

 
Lower quantization errors indicate superior data clustering. 
 

4.2.2 Execution time 
Execution time refers to the total time spent on the data 

clustering process. Minimizing execution time is desirable. 
 

4.2.3 Intercluster distance 
The intercluster distance is the separation between the 

centroids of clusters [19], as described in the Eq. (6): 
 

Inter = ��𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑗𝑗��
2
 (6) 

16



 

 
where, 𝑐𝑐𝑖𝑖  and 𝑐𝑐𝑗𝑗  represent the centroids of clusters i and j, 
respectively. 

Larger intercluster distances indicate more effective data 
clustering, as they signify greater separation between clusters. 

 
4.2.4 Intra-cluster distance 

The intra-cluster distance, also known as the distance 
between particles and centroids within a cluster, is a key 
measure. It can be better understood by Utilizing the formula 
provided in the subsequent Eq. (7). 
 

Intra =
1
𝑛𝑛
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�𝑥𝑥𝑖𝑖
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where, 

• C is the number of clusters. 
• 𝑐𝑐𝑗𝑗 is the centroid of cluster j. 
• N is the number of particles. 
• �𝑥𝑥𝑖𝑖

𝑗𝑗 − 𝑐𝑐𝑗𝑗�  is the distance between particles and the 
centroid of their respective clusters. Smaller intra-cluster 
distances indicate more cohesive and better-defined data 
clusters. 

 
4.2.5 Accuracy 

Clustering operates under the premise that two documents 
are allocated to the same cluster exclusively when they 
demonstrate similarity. Accuracy serves as the metric for 
quantifying the percentage of accurate decisions. and is often 
referred to as the Rand Index. It can be understood using the 
formula presented in the following Eq. (8): 
 

Accuracy = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁)/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝑇𝑇𝑁𝑁) (8) 
 
• TP: This refers to making accurate decisions where two 

similar documents are properly allocated to the same cluster. 

• TN: This entails true negative decisions, which involve 
correctly assigning two dissimilar documents to different 
clusters.  

• FP: This signifies incorrect decisions where two dissimilar 
documents are wrongly assigned to the same cluster.  

• FN indicates false negative decisions, where two similar 
documents are erroneously assigned to different clusters.  

Higher accuracy indicates better data clustering, as it 
reflects a greater number of correct decisions regarding 
document similarities and cluster assignments.  

 
4.3 Experimental results  

 
In our performance evaluation, we take into account four 

key criteria: Execution time, quantization error, intra-cluster 
distance, and inter-cluster distance. 

 
4.3.1 Evaluation based on execution time 

Execution time, which refers to the total time required for 
the data clustering process, is a crucial performance metric. 

Table 1 provides a summary of the algorithm comparison in 
terms of execution time. 

An algorithm is generally considered more efficient when it 
requires less execution time. In this context, Figure 3 presents 
a line chart that illustrates the execution times of the K-means, 
PSO, and hybrid clustering algorithms across several 
benchmark datasets. This visual representation provides an 
intuitive understanding of each algorithm's computational 
cost. Furthermore, Figure 4 offers a comparative analysis 
using a bar chart, allowing for a clearer interpretation of 
execution time differences across datasets and facilitating the 
evaluation of each method's computational efficiency.  

 
4.3.2 Evaluation based on quantization error 

The quantization error plays a crucial role in evaluating the 
performance of these algorithms. Table 2 offers a concise 
overview of the comparison among these algorithms 
concerning Quantization Error. 

 
Table 1. Performance evaluation based on execution time 

 
Algorithms Iris Wine Artificial Dataset Artificial Problem I (400) Artificial Problem II (600) 

K-means 3.13 3.73 2.94 4.12 5.08 
PSO 4.63 5.19 3.96 5.64 6.82 

Hybrid 7.34 8.76 5.62 8.45 10.11 
 

 
 

Figure 3. Line chart comparing inter execution time 
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Figure 4. Across benchmark datasets execution time comparison of clustering algorithms 
 

Table 2. Performance evaluation based on quantization error 
 
Algorithms Iris Wine Artificial Dataset Artificial Problem I (400) Artificial Problem II (600) 

K-means 0.6521 1.5901 2.2266 0.9840 0.2640 
PSO 0.5782 1.4199 1.8758 0.7690 0.2520 

Hybrid 0.4873 1.1167 1.6364 0.7680 0.2500 
 

 
 

Figure 5. Line chart comparing quantization error 
 

 
 

Figure 6. Quantization error comparison of clustering algorithms across benchmark datasets 
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Minimizing quantization error remains a fundamental 
objective in clustering, as it indicates the effectiveness of an 
algorithm in capturing the intrinsic structure of the data. Figure 
5 presents a line chart illustrating the quantization error values 
obtained by K-means, PSO, and the proposed Hybrid approach 
across five benchmark datasets. This graphical representation 
enhances the interpretability of the comparative performance. 
In parallel, Figure 6 provides a bar chart that reinforces the 
observation that the Hybrid method consistently yields the 
lowest quantization error values.  

The results highlight the superiority of the Hybrid algorithm 
over the standalone techniques, confirming its enhanced 
capability to produce compact and representative clusters.  

 
4.3.3 Evaluation based on intra cluster distance  

Intra-cluster distance, denoting the proximity between 

particles and centroids within a cluster, is pivotal in assessing 
the quality of clustering [36]. The definition of intra-cluster 
distance can be found in the equation. Table 3 offers a 
comprehensive comparison of these algorithms concerning 
intra-cluster distance. 

In clustering evaluation, the intra-cluster distance is a key 
metric used to assess the compactness of clusters. A smaller 
intra-cluster distance indicates that data points within a cluster 
are closely grouped, which generally reflects higher clustering 
quality and internal consistency. 

To assess and compare the performance of the K-means, 
PSO, and the proposed hybrid algorithm, experiments were 
conducted on five benchmark datasets: Iris, Wine, Artificial, 
Artificial I, and Artificial II. The results, in terms of intra-
cluster distance, are visualized in Figure 7 and Figure 8 for 
clarity and intuitive understanding. 

 
Table 3. Performance evaluation based on intra-cluster distance 

 
Algorithms Iris Wine Artificial Dataset Artificial Problem I Artificial Problem II 

K-means 1.6498 3.2015 2.3694 3.678 0.911 
PSO 1.94 3.0625 1.6169 3.826 0.873 

Hybrid 1.6205 2.7064 1.8381 3.823 0.869 
 

 
 

Figure 7. Line chart comparing intra-cluster distances 
 

 
 

Figure 8. Bar chart comparing intra-cluster distances 
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As illustrated in Figure 7, the line chart reveals that the 
hybrid method consistently achieves lower intra-cluster 
distances across most datasets compared to the individual 
algorithms. This trend indicates that the hybrid approach is 
more effective in forming tightly packed clusters. 

 In addition, Figure 8 presents a bar chart offering a direct 
visual comparison of intra-cluster distances for all three 
algorithms across the datasets. This form of visualization 
emphasizes the superiority of the hybrid model, particularly in 
datasets where both K-means and PSO show higher intra-
cluster variation. 

These findings suggest that the hybrid algorithm benefits 
from the global search capabilities of PSO and the local 

refinement strength of K-means, resulting in more coherent 
clustering outcomes. The consistently lower intra-cluster 
distances validate the hybrid approach’s capacity to discover 
high-quality clustering structures. 
 
4.3.4 Evaluation based on inter-cluster distance  

The inter-cluster distance, which measures the separation 
between cluster centroids, is a fundamental metric for 
assessing clustering quality. This concept, further defined by 
an equation, is summarized comparatively for different 
algorithms in Table 4. Generally, higher inter-cluster distances 
indicate better clustering performance by reflecting clearer 
separation and stronger distinction between groups.

 
Table 4. Performance evaluation based on inter-cluster distance 

 
Algorithms Iris Wine Artificial Dataset Artificial Problem I Artificial Problem II 

K-means 1.6598 1.1863 1.4869 1.7710 0.7960 
PSO 1.4134 1.2476 1.3937 1.1420 0.8150 

Hybrid 1.7579 1.4346 1.5976 1.1510 0.8140 
 

 
 

Figure 9. Comparison of inter-cluster distances-line chart 
 

 
 

Figure 10. Comparison of inter-cluster distances-bar chart 
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Inter-cluster distance serves as a critical measure of 
clustering quality, as it reflects how well-separated the 
resulting clusters are. A larger inter-cluster distance generally 
indicates a more effective clustering algorithm, as it suggests 
clearer boundaries and greater dissimilarity between groups. 

To improve the interpretability of these results and enable a 
visual comparison between the algorithms, Figure 9 presents 
the inter-cluster distances using a line chart, showing 
performance trends across the five datasets. In parallel, Figure 
10 provides a bar chart offering a more direct and dataset-
specific comparison. Together, these visualizations illustrate 
the relative effectiveness of K-means, PSO, and the proposed 

hybrid approach in achieving meaningful separation between 
clusters. 

The method presented in this study demonstrates larger 
inter-cluster distances when compared to both individual 
algorithms, offering compelling evidence of its superiority.  

 
4.3.5 Comparison based on accuracy 

Accuracy, which signifies the ratio of correctly grouped 
data items into the most suitable clusters, serves as a crucial 
metric for evaluating the performance of clustering 
algorithms. Table 5 offers a comprehensive comparative 
analysis of these algorithms in terms of accuracy. 

 
Table 5. Performance comparison based on accuracy 

 
Algorithms Iris Wine Artificial Dataset Artificial Problem I Artificial Problem II 

K-means 76.18% 72.63% 68.69% 70.42% 66.25% 
PSO 81.27% 82.12% 78.32% 83.10% 79.87% 

Hybrid 88.20% 86.73% 82.31% 89.45% 85.62% 
 

 
 

Figure 11. Accuracy comparison (line chart) 
 

 
 

Figure 12. Comparative accuracy of clustering algorithms on benchmark datasets 
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Accuracy, which signifies the ratio of correctly grouped 
data items into the most suitable clusters, serves as a crucial 
metric for evaluating the performance of clustering 
algorithms. Table 5 offers a comprehensive comparative 
analysis of these algorithms in terms of Accuracy. 

Accuracy is a fundamental metric for evaluating clustering 
algorithms, where higher accuracy signifies a more effective 
approach in correctly assigning data points to their respective 
clusters. To visually illustrate and compare these accuracy 
scores, Figure 11 and Figure 12 offer a comprehensive 
overview: Figure 11 displays the results in a line chart, while 
Figure 12 presents the same data in a bar chart format, enabling 
clear and direct comparison of each algorithm’s performance. 

The presented method showcases superior accuracy when 
compared to both individual algorithms. This clear superiority 
underscores the advantage of the proposed approach. 
Achieving higher accuracy, it outperforms individual 
algorithms and offers a more reliable and accurate solution for 
the problem at hand. This finding strengthens the argument 
that the proposed approach is the preferred choice for 
achieving accurate and robust clustering results. 

5. CONCLUSION

This project delved into the utilization of swarm intelligence 
meta-heuristic optimization techniques in the realm of AI 
through an exhaustive analysis of existing literature and 
practical experiments. Swarm intelligence algorithms [21] 
have demonstrated their utility in tackling complex 
optimization challenges within AI. These algorithms offer key 
advantages such as robustness, flexibility, parallelism, and 
global search capabilities, thus enhancing the accuracy, 
efficiency, and robustness of AI applications, spanning 
machine learning, data mining, pattern recognition, and 
optimization. 

In this study, we investigated the application of 
metaheuristic optimization techniques based on swarm 
intelligence in the field of AI. Our primary objective was to 
assess the advantages of these algorithms across various AI 
applications, with a specific focus on data clustering. 

We observed that integrating metaheuristic optimization, 
particularly by combining the K-means algorithm with PSO, 
holds promising prospects for enhancing the performance of 
clustering algorithms. By fine-tuning the centroids' positions 
using PSO, we managed to expedite the convergence of 
clustering algorithms while enhancing their precision, a 
critical aspect in effectively managing complex datasets. 

Furthermore, our approach facilitated exhaustive 
exploration of the solution space, enabling us to pinpoint the 
optimal cluster centroids. This represents a significant 
advancement in the AI domain, where solution quality is 
paramount. 

Additionally, we introduced a novel cooperative algorithm 
leveraging PSO and the K-means algorithm. Our hybrid 
approach amalgamates PSO's global search capability with K-
means' rapid convergence, thus circumventing the limitations 
of both methods. 

The outcomes of our experiments illustrated that our hybrid 
approach outperformed K-means and PSO algorithms 
individually. We observed improved convergence, lower 
quantization errors, larger inter-cluster distances, and smaller 
intra-cluster distances, all while maintaining a similar 
execution time. 

In conclusion, our study reaffirmed the efficacy and 
relevance of the hybrid approach combining K-means and 
PSO in the realm of data clustering. By delivering promising 
results and opening up new research avenues, this study 
contributes to enriching the toolkit of AI researchers and 
fostering future advancements in the field of data clustering. 
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