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In the classic split delivery vehicle routing problem, the demands of customers can be split 

unconditionally into pieces of any size. However, in the real-world distribution system, the 

customer demands consist of a set of orders on different quantities of goods. During the 

distribution, demands can be spitted, but orders cannot. This paper considers the vehicle 

routing problem with split delivery by order. It formulates the problem as an integer linear 

programming model, creatively applies the binary to the decimal decoder method to represent 

the solution, proposes a heuristic order-insertion procedure, and develops a tabu search 

algorithm. Using the developed algorithm, this paper tests 25 benchmark instances. According 

to the test results, the algorithm proposed has a small gap with the best-known solutions, but 

has an advantage in computing time. 
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1. INTRODUCTION

The vehicle routing problem (VRP) is the core of logistics

and transportation. In this problem, a fleet of homogenous 

vehicles are used to serve a set of customers, and each 

customer is visited by a single vehicle, and the objective is to 

minimize the total transportation cost. The split delivery 

routing problem (SDVRP) relaxes the restriction that each 

customer is visited only once; in other words, a customer is 

allowed to be visited by more than one vehicle. With the split 

delivery allowed, both the traversal distance and the number 

of vehicles are desired to be reduced. 

 In the classic SDVRP, the customer demands can be spitted 

into pieces of any size unconditionally. However, in the real-

world urban logistics distribution system, distribution centres 

provide daily services for B2B and commodity customers in 

urban areas. The customer demands consist of a set of orders, 

each of which has a different quantity of goods. The demands 

can be split, but the order cannot. Therefore, it is necessary to 

further study the VRP with split delivery by order.  

Figure 1 illustrates an example of the DSDVRP with three 

customers and a depot, where the edge labels indicate 

distances and the node labels in parentheses are the customer 

demands. The vehicle capacity is 100. Figure 1(a) shows the 

optimal solution to the classical VRP, which contains three 

direct trips for each customer, and the total distance is 60. With 

split delivery allowed, customer 2 is visited by two vehicles 

(Figure 1(b)). Consequently, the total traversal distance drops 

to 52, and 2 routes are involved. In Figure 1(c), a vector is used 

to denote the customers’ demands. The dimensions of the 

vector represent the number of orders and the component 

represents the quantity of each order. Because customer 2 and 

customer 1 have only one order each, their demands cannot be 

split. Hence, the solution in Figure 1(b) is infeasible for the 

DSDVRP. Figure 1(c) shows the optimal solution to the 

DSDVRP where the demand of customer 3 is split by order. 

The total distance (i.e. 56) is larger than that of the SDVRP. In 

conclusion, if the quantity of each order is 1, the DSDVRP is 

equivalent to the SDVRP; in other words, the DSDVRP is a 

generalization of the SDVRP.  

VRP SDVRP DSDVRP 

Figure 1. Comparison of the VRP, SDVRP and DSDVRP 
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Nakao et al. [1] first defined the problem as the discrete split 

delivery vehicle routing problem (DSDVRP) and proposed a 

heuristic algorithm based on dynamic programming. The 

algorithm was tested in real-world instances of a huge 

manufacturer, and exhibited efficient performance. Salani et al. 

[2] considered the DSDVRP with time windows and 

developed a branch-and-price algorithm. Z. Fu et al. [3] 

studied with the DSDVRP with soft time windows and 

proposed a tabu search algorithm. All these algorithms 

mentioned above took orders as operation objects. There are 

also other researchers who adopted prior split strategies. M. 

Qiu [4] aggregated randomly some orders of each customer 

into a new order in advance, and then transferred the DSDVRP 

into the classic capacitated vehicle routing problem (CVRP). 

Chen et al. [5] also proposed two prior split rules called 

25/10/5/1 or 20/10/5/1 for the SDVRP. The approach of 

considering orders as independent customers can multiply the 

scale of the DSDVRP and make it difficult to solve.  

This paper proposes a new tabu search algorithm, which 

takes customers as operation objects. The remainder of the 

paper is organized as follows. This research is based on the 

theory of SDVRP, so it reviews the literatures on the SDVRP 

in section 2. In section 3, it formulates a mathematic model for 

the DSDVRP and analyzes the properties of optimal solutions. 

In section 4, it develops a tabu search algorithm for solving the 

DSDVRP. In section 5, it presents the computational results. 

Finally, this paper is concluded in section 6.  

 

 

2. LITERATURE REVIEW ON THE SDVRP 

 

The primary motivation to split the customer demands is to 

reduce the traversal cost and the number of vehicles. Dror and 

Trudeau [6] showed that allowing split delivery can save costs. 

Archetti et al. [7] proved that the traversal cost saving that can 

be obtained is at most 50 % and that this bound is tight. These 

authors also studied the properties of optimal solutions. Dror 

and Trudeau [6] proved that the SDVRP is NP-hard. If the 

traversal cost satisfies the triangle inequalities, there exists no 

optimal solution where two routes can cover more than one 

customer (such a configuration is called a 2-split cycle). 

Archetti et al. [7] derived another property of the optimal 

solution: the number of splits is smaller than that of the routes 

if the distance cost satisfies the triangle inequalities.  

Considering that the SDVRP is NP-hard, a variety of 

heuristic procedures for the SDVRP have been proposed. Dror 

and Trudeau [6] first developed a local search algorithm, 

which incorporated k-split interchanges and route additions. 

Archetti et al. [8] presented a tabu search algorithm called 

SPLITABU, which uses two procedures called ORDER 

ROUTES and BEST NEIGHBOUR. With only two 

parameters, SPLITABU is very easy to implement, and the 

variants of SPLITABU can provide high quality results. Chen 

et al. [9] combined a mixed integer program and a variable-

length record-to-record travel algorithm into a new method for 

the SDVRP. The hybrid algorithm outperformed the tabu 

search algorithm proposed by Archetti et al. in solving six test 

problems with 50~199 customers and again performed well in 

solving other five problems where lower bounds exist. In the 

last decade, Silva. et al. [10] proposed an iterated local search 

heuristic algorithm, which is highly competitive.  

Several researchers also focused on the exact solution 

methods. Belenguer, Martinez and Mota [11] studied the 

polyhedron of the SDVRP and found new valid inequalities 

that define facets through a cutting plane algorithm in 

conjunction with a relaxed formulation. The gaps between the 

lower and upper bounds are within 12% for problems with 50, 

75, and 100 customers. Lee et al. [12] modelled a dynamic 

programming model of the SDVRP, which is able to solve test 

problems with up to 7 customers. Jin et al. [13] developed a 

two-stage algorithm which divides the SDVRP into two sub-

problems: the first is an assignment problem that determines 

the clusters of customers served by the same vehicle, and the 

second is a TSP for each cluster. The algorithm can solve test 

problems with up to 22 customers. Arichetti et al. [14] 

proposed a column generation algorithm that solves the test 

problems with up to 100 customers.  

Moreover, several variants of the SDVRP have been studied 

for both theoretical and practical purposes. Gulczynski et al. 

[15] considered the SDVRP with an additional constraint: each 

customer has a minimum delivery amount, which is defined as 

a fixed fraction of the demand. Jia Fu et al. [16] studied the 

split-delivery weighted vehicle routing problem, which takes 

the cargo weight into account. Zuo Fu [3] studied the vehicle 

routing problem with soft time windows and split delivery by 

order in the context of pure distribution with a single depot and 

a heterogeneous fleet of vehicles.  

 

 

3. FORMULATION AND PROPERTIES OF THE 

SOLUTIONS  

 

The DSDVRP is defined on a complete graph G=(N,E), 

where 𝑁 = {0,1, ⋯ , 𝑛} is the set of nodes and E is the set of 

edges. Node 0 denotes the depot, and the others represent the 

n customers. A distance matrix C = (𝑐𝑖𝑗) is defined on the set 

E, each element of which denotes the distance between node i 

and node j. Let 𝑛𝑖 stand for the number of customer i’s orders, 

and 𝑑𝑖
𝑘(𝑘 = 1, ⋯ , 𝑛𝑖) denote the demand of the customer i’s 

k-th order. The total demand of customer i is 𝑑𝑖, which is equal 

to the sum of 𝑑𝑖
𝑘(𝑘 = 1, ⋯ , 𝑛𝑖) , i.e. 𝑑𝑖 = 𝑑𝑖

1 + 𝑑𝑖
2 ⋯ + 𝑑𝑖

𝑛𝑖.  

We assume the following: 

●Each route begins and ends at the depot; 

●The number of vehicles m is unlimited; 

●Each of the vehicles is homogeneous with a capacity of Q; 

●The customers’ demands can be split, but the orders 

cannot. 

𝑥𝑖𝑗𝑙 is a binary variable, which is 1 if vehicle l travels from 

customer i to customer j, and 0 otherwise. 𝑦𝑖𝑘𝑙  is another 

binary variable, which equals to 1 if vehicle l delivers 

customer i’s k-th order, and 0 otherwise. The DSDVRP can be 

modelled as follows.  

 

0 0 1

min
n n m

ij ijl

i j l

c x
= = =

                                                     (1) 

 

s.t.  
0 1

1 0, ,
n m

ijl

i l

x j n
= =

 =                                       (2) 

 

1 1

0, , ; 1, ,
n n

ijk jik

j j

x x i n k m
= =

= = =            (3) 

 

1 1, , ;ij

i S j S

x S k m S N
 

 − =                          (4) 

 

98



 

 

1 1

1, ,
in m

ik ikl i

k l

d y d i n
= =

= =                                       (5) 

 

1 1

1, ,
inn

ik ikl

i k

d y Q l m
= =

 =                                       (6) 

 

1

1, , , 1, , , 1, ,
n

ikl ijl i

j

y x i n k n l m
=

 = = =           (7) 

 

{0,1} 0, , ; 0, , ; 1, ,ijkx i n j n k m = = =               (8) 

 

Formula (1) is the objective function, targeting the 

minimum traversal distance of vehicles. Constraint (2) mean 

that each customer is visited by one vehicle at least; constraint 

(3) imposes the equilibrium condition of goods flow; 

constraint (4) is the classic sub-tour elimination constraint; 

constraint (5) ensures the total demand of customers can be 

satisfied; constraint (6) requires that the delivery amount of 

each vehicle should not exceed its capacity; and constraint (7) 

imposes the connectivity of the route performed by l.  

As mentioned in section 2, Dror and Trudeau [6] proved that 

if the distance satisfies the triangle inequalities, the optimal 

solution to the SDVRP does not contain any k-split cycle (𝑘 ≥
2), which means there is at most one node between any two 

routes in the optimal solution to the SDVRP. However, this 

result does not hold for the DSDVRP. Figure 2 illustrates the 

case. In this example, there are three customers with two 

orders per customer. The capacity of each vehicle is 100, and 

the total demand of all the customers is 200, so the optimal 

solution needs at least two vehicles. First the solution with 

three direct trips from each customer to the depot has a total 

traversal distance of 60. Next, it is clear that no pair of 

customers can be visited in one route without violating the 

vehicle capacity. Further, consider the route visiting each 

customer. The routes of this solution are: 0-1(55)-2(15)-3(30)-

0, 0-1(30)-2(50)-3(20)-0, where the integers in parenthesis are 

the demands delivered by vehicles, and the total distance is 44. 

Then, this solution is optimal, in which each two of the 

customers constitute a 2-split cycle. The example indicates 

that the structure of the optimal solution to the DSDVRP may 

be more complex than that for the SDVRP. 

 

 
 

Figure 2. In the example, the optimal solution has a 2-split 

cycle 

 

 

4. A TABU SEARCH ALGORITHM FOR THE DSDVRP 

 

Since it was developed by Glover in 1988, Tabu Search (TS) 

has been standing out as the best metaheuristic for a variety of 

VRPs. Similar to the Hill-climbing algorithm, TS explores the 

solution space by moving from the current solution 𝑥𝑘 , at 

iteration k, to its best neighbour 𝑥𝑘+1  in the neighbourhood 

𝑁(𝑥𝑘). To avoid cycling, TS uses the tabu list to record some 

attributes of the recently examined solutions, and moves in the 

tabu list are forbidden unless their neighbourhood solution 

satisfies the aspiration criterion. To escape from the local 

optimal solution, several implementations can be adopted, 

such as intermediate infeasible solutions, intensification and 

diversification strategies.  

In this section, a new tabu search algorithm is presented, 

which takes customers as operation objects and uses 

embedded neighbourhood structures based on ejection chains. 

To accelerate neighbourhood search, the Neighbour Route of 

each customer is defined (see definition 1) to reduce the 

solution neighbourhood cardinality. The Neighbour Route will 

be dynamically adjusted during the search process. Of course, 

it may get too strong and forbid high-quality neighbourhood 

solutions. For this reason, the perturbation mechanism is used 

after a given number of non-improving iterations.  

Definition 1 If route r contains at least one of the p 

customers nearest to customer i, r is the Neighbour Route of 

customer i. The set of neighbour routes of customer i is 

denoted by 𝑁𝑅𝑖.  

 

4.1 Representation and decoding method 

 

In the papers by Nakao et al. [1], M. Qiu et al [4] and F. Zuo 

[2], the different orders of the same customer were dealt with 

as independent customers, and the solution was represented by 

a sequence of orders. In this section, a new coding method is 

proposed, which is called the Binary to Decimal Decoder 

method (BDD), to represent solutions of the DSDVRP. For 

example, there is a route represented by an integer string 0-

3(5)-4(3)-6(2)-8(7)-11(5)-0. The integer string outside the 

parentheses represents the service sequence in the route. By 

converting decimal integers in parentheses to binary numbers, 

we can get the message of the orders delivered in the route. 

For example, integer 5 decoded to binary numbers is equal to 

101. From right to left, 101 means only the first and third 

orders of the corresponding customer are delivered in the route. 

Figure 3 shows a route string which can be decoded by BDD.  

 

 
 

Figure 3. Solution representation 

 

4.2 Initial solution 

 

The initial solution is generated by an insertion-based 

algorithm. The insertion of orders can be modelled as the 

knapsack problem, which can be solved by the dynamic 

programming based algorithm. However, Boudia et al. [18] 

pointed out the dynamic programming cannot significantly 

improve the solution found by the greedy heuristic. For the 

sake of computing time, this paper applies the simple greedy 

heuristic in which insertions are performed by the decreasing 

order of 𝑑𝑖
𝑗
. Furthermore, customer node i is permitted to be 

inserted into route r only if the sparse capacity of route r is no 

less than the minimum unrouted order of customer i. 

Algorithm 1 shows the pseudocode of inserting customer 𝑖′𝑠 

unrouted orders into an unforbidden route 𝑟𝑘.  
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Notation:  

L: the list of unrouted customers; 

𝑠𝑟: the sparse capacity of route r; 

𝑞𝑖𝑟: the delivery amount of customer i served by route r; 

𝑈𝑖: the set of unrouted orders of customer i. 

 

Table 1. Pseudocode of inserting i into 𝑟𝑘 

 
Algorithm 1 insert customer 𝑖′𝑠 unrouted orders into an 

unforbidden route 𝑟𝑘 

1: Procedure IOR(𝑈𝑖, 𝑝𝑘); 

2: 𝑈𝑖the list of the unrouted orders of customer i, and the 

orders are sorted by decreasing order; 

3: 𝑞𝑖𝑟 ← 0; 
4: while 𝑝𝑘 ≥ 𝑚𝑖𝑛{𝑑𝑖

𝑗
|𝑑𝑖

𝑗
∈ 𝑈𝑖} do; 

5: for each 𝑑𝑖
𝑗
 in 𝑈𝑖 do; 

6: if 𝑑𝑖
𝑗

≤ 𝑝𝑘; 

7: 𝑈𝑖 ← 𝑈𝑖\{𝑑𝑖
𝑗
}; 

8： 𝑠𝑘 ← 𝑠𝑘 − 𝑑𝑖
𝑗
; 

9： 𝑞𝑖𝑟 ← 𝑞𝑖𝑟 + 𝑑𝑖
𝑗
; 

10: return 𝑈𝑖 and 𝑝𝑘 and 𝑞𝑖𝑟 

 

Table 2. Pseudocode of constructing the initial solution 

 
Algorithm 2 construct the initial solution 

1: Procedure initial construction 

2: initial 𝑅 ← ∅, 𝐿 ← the list of unrouted customers, 𝑘 ← 1; 

3: for each i in L do 

4: 𝑈𝑖 ←the set of unrouted order of i, in which orders are 

sorted by decreasing order of 𝑑𝑖
𝑗
; 

5: 𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈𝐿{𝑐𝑖0}; 

6: 𝑟𝑘 ← (0 − 𝑡 − 0), 𝑅 ← 𝑅 ∪ {𝑟𝑘}, 𝑠𝑘 ← 𝑄 − 𝑑𝑖, 𝑞𝑖𝑘 ← 𝑑𝑖; 

7: update 𝐿 ← 𝐿\{𝑡}; 

8: while 𝐿 ≠ ∅ do 

9: for each i in 𝐿 do 

10: 𝜀∗ ← ∞, 𝜏∗ ← ∞; 

11: for each r in 𝑅 do 

12： if 𝑠𝑘 ≥ 𝑚𝑖𝑛{𝑑𝑖
𝑗
|𝑑𝑖

𝑗
∈ 𝑈𝑖} 

13: 𝜀𝑖𝑟 ← the cheapest cost of inserting i into r; 

14: if 𝜀𝑖𝑟 < 𝜀∗ 

15: 𝜀∗ ← 𝜀𝑖𝑟, 𝑟∗ ← 𝑟𝑖, 𝑖
∗ ← 𝑖; 

16: 𝜏∗ ← 𝜇𝑐0𝑖 − 𝜀𝑖𝑟𝑖
; 

17: if 𝜏∗ < 0 

18: 𝑟∗ ← insert i in the position with the lowest cost of  𝑟∗; 

19: (𝑈𝑖∗ , 𝑝𝑟∗ , 𝑞𝑖∗,𝑟∗) ←IOR(𝑈𝑖∗, 𝑝𝑟∗); 

20: else 

21: 𝑘 ← k + 1, 𝑟𝑘 ← (0 − 𝑖∗ − 0); 

22: 𝑅 ← 𝑅 ∪ {𝑟𝑘}, 𝑠𝑘 ← 𝑄 − ∑ 𝑑𝑖∗
𝑗

𝑑
𝑖∗
𝑗

∈𝑈𝑖∗
, 𝑞𝑖𝑘 ← ∑ 𝑑𝑖∗

𝑗

𝑑
𝑖∗
𝑗

∈𝑈𝑖∗
; 

23: If 𝑈𝑖 = ∅ 

24: 𝐿 ← 𝐿\{𝑖∗}; 

25: return R 

 

This paper develops a parallel insertion heuristic to 

construct the initial solution to the DSDVRP. The routes are 

expanded under the two constructions:  

 

𝜀𝑖𝑟 = (𝑐𝑠𝑖 + 𝑐𝑖𝑡 − 𝜆𝑐𝑠𝑡)                                         (9) 

 

𝜏𝑖𝑟 = 2𝑐0𝑖 − 𝜀𝑖𝑟                                                    (10) 

 

where 𝜀𝑖𝑟 is the lowest generalized cost of inserting customer 

i into route r; and s and t are the preceding and succeeding 

customers, respectively, in route r after customer I is inserted; 

𝜆 is a route shape parameter proposed by Gaskell [19] and 

Yellow [20] to improve the initial solution; 𝜏𝑖𝑟  is a 

discriminant function to decide whether to insert i into route r 

or create a new route with i. The pseudocode of constructing 

the initial solution is summarized in Table 2. 𝐿 is the list of 

unrouted customers, and the first route 𝑟1 is constructed with 

the farthest unrouted customer node from the depot (line 5-7). 

Then the procedure continues to select the insertion candidate 

(line 9-16). If 𝜏∗ < 0 , create a new route with the 

corrosponding customer node, or otherwise insert the node 

into the related route (line 17-22). Update the unrouted 

customer list 𝐿  (line 23-24). Repeat the process until 𝐿  is 

empty.  

 

4.3 Neighbourhood structure 

 

The neighbourhood structure is an important aspect of Tabu 

search applications, where a set of moves are defined to transit 

a current solution into a new one. In order to enhance the 

ability of global searching and prevent early convergence, 

researchers apply a mixed neighbourhood structure that 

usually consists of node-shift or arc-exchange operators. At 

each iteration, a move is achieved by selecting a random one 

or the best of all neighbourhood structures.  

Ejection chain is an innovative neighbourhood structure 

defined by Glover [21]. An ejection chain can be viewed as a 

series of triplets, each consisting of three consecutive nodes in 

a route. And the neighbourhood solution is obtained by 

moving a node to the position occupied by another. As a result, 

the ejection chain procedure provides a way of compressing a 

sequence of moves into a compound move. Inspired by the 

idea, Rego and Roucairol [22] proposed a tabu search for the 

VRP, and A. Fu et al. [23] developed a highly adaptive 

neighbourhood structure, called the split-delivery node 

ejection chain (SNEC), for the split delivery vehicle routing 

problem with the minimum delivery amount. In this section, 

the SNEC is modified in the tabu search phase. The operator 

denoted by SNEC* starts with ejecting customer node i from 

route 𝑟𝑠  to an adjacent route 𝑟𝑡 . If the sparse capacity 𝑟𝑡  is 

enough, locate i in the position of 𝑟𝑠  with the lowest cost. 

Otherwise, transfer some or the entire delivery amount of a 

different customer j in route  𝑟𝑡  to another route 𝑟𝑙 . The 

operator involves the following three types of neighbourhood 

structures.  

Type I: relocation. For customer node 𝑖 ∈ 𝑟𝑠 and  𝑟𝑡 ∈ 𝑁𝑅𝑖, 

remove customer node 𝑖 to the position with the lowest cost 

in 𝑟𝑡 . If i is split between 𝑟𝑠 and 𝑟𝑡, delete the split. This move 

is feasible when 𝑠𝑖 ≥ 𝑞𝑖𝑟𝑖
.  

Type II: ejection chain. Type II is illustrated in Figure 4. 

For customer node 𝑖 ∈ 𝑟𝑠  and route  𝑟𝑡 ∈ 𝑁𝑅𝑖 , remove 

customer node 𝑖 to the position with the lowest cost in 𝑟𝑡 . If 

route  𝑟𝑡  is overloaded, remove customer node 𝑗 ∈ 𝑟𝑡(𝑗 ≠ 𝑖) to 

the position with the lowest cost in 𝑟𝑙 ∈ 𝑁𝑅𝑗 . This move is 

feasible when  𝑟𝑙  has sufficient sparse capacity to serve j. If 

𝑟𝑙 = 𝑟𝑠, the move is similar to the classic 1-1 exchange.  

Type III: new split. Type III is illustrated in Figure 5. For 

customer node 𝑖 ∈ 𝑟𝑠  and route 𝑟𝑡 ∈ 𝑁𝑅𝑖 , remove customer 

node 𝑖 to the position with the lowest cost in 𝑟𝑡. If route  𝑟𝑡  is 

overloaded, shift some orders of customer 𝑗 ∈ 𝑟𝑡(𝑗 ≠ 𝑖) to the 

position with the lowest cost in  𝑟𝑙 ∈ 𝑁𝑅𝑗 . In this case, the 

demand of customer node j is split between 𝑟𝑡  and  𝑟𝑙 . The 

move is feasible when the shifting demand of j can cover the 

lack of capacity 𝑟𝑠. The insertion of customer node j into  𝑟𝑙 

applies IOR.  
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Figure 4. Illustration of Type II 

 

 
 

Figure 5. Illustration of Type III 

 

Once the neighbourhood is triggered by customer node i, 

the reaction of the subsequent process depends on the total 

saving cost. In other words, the nodes, routes and delivery 

amounts of the subsequent process will be selected adaptively, 

leading to the maximum cost saving.  

 

4.4 Perturbation mechanism 

 

To escape the local optimal solution, this paper applies 

strategic perturbation to diversify the local search region. The 

pseudocode of the perturbation procedure is demonstrated in 

Table 3. The perturbation mechanism consists of a destroy 

operator and a repair operator. The destroy operator first 

selects q customer nodes at random and then removes them 

from all their routes (line 2-3). The destroy operator plays a 

role in diversifying the solution space. The repair operator 

reinserts the selected customer nodes into routes (line 8-18).  

Table 3. Pseudocode of perturbating the current solution 

 
Algorithm 3 perturbate the current solution 

1: Procedure perturbation(R) 

2: Lthe list of the q unrouted customers selected at random 

3: Sremove the customer nodes in L from S 

4: for each i in L do 

5: 𝑈𝑖the list of the unrouted orders of customer i, and the 

orders are sorted by decreasing order 

6: while 𝐿 ≠ 𝜙 do 

7: 𝐼∗ ← ∞; 

8: for each 𝑖 in L do 

9: for each 𝑟𝑘 in R do 

10: if 𝑠𝑘 ≥ 𝑚𝑖𝑛{𝑑𝑖
𝑗
|𝑑𝑖

𝑗
∈ 𝑈𝑖} 

11: 𝐼𝑖𝑘 ← the cheapest  cost of insert i into rk 

12: if 𝐼𝑖𝑘 <  𝐼∗ 

13: 𝐼∗ ← 𝐼𝑖𝑘  𝑖∗ ← 𝑖 𝑘∗ ← 𝑟𝑘; 

14: if 𝐼∗ < ∞ 

15: R←insert 𝑖∗ into 𝑟𝑘∗; 

16: else 

17: 𝑖∗ ←select a customer in L at random; 

18: R← 𝑅 ∪ {(0, 𝑖∗, 0)}; 

19: update 𝑈𝑖∗; 

20: If 𝑈𝑖∗ = 𝛷 

21: 𝐿 = 𝐿\{𝑖∗} 

22: return R 

 

4.5 Framework of tabu search  

 

The proposed solution algorithm is a three-phased tabu 

search algorithm. It starts with the initial solution by the initial 

construction procedure. The tabu search phase adopts the 

adaptive neighbourhood structure SNEC*. At each iteration, 

the solution is associated with the attributes (i,j). The inverse 

ejection (j,i) should be forbidden for 𝜃 iterations. The value of 

𝜃  depends on the number of customers and the number of 

routes. Practical experiments indicate that changing the value 

at random is more effective than setting a fixed number. So the 

value of 𝜃 is chosen randomly within the interval [𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥] 
during the search. Nevertheless, the tabu status of an attribute 

can be revoked if the move improves  𝑠∗  (the best solution 

found so far). The aspiration criteria are defined as 𝑓(𝑠) <
𝑓(𝑠∗). If 𝑠∗ is not improved during successive iterations, the 

perturbation procedure will be called for diversifying the 

searching space. At last, every route in  𝑠∗ is re-optimized by 

the 3-opt procedure. Table 4 shows the framework of the tabu 

search.  

 

Table 4. Framework of the tabu search 

 
Algorithm 4 Tabu search 

1: 𝑠 ← initial construction 

2: 𝑠∗ ← 𝑠 𝑓∗ ← 𝑓(𝑠); 

3: counter ← 0; 

4: while counter< maxIters do 

5: 𝑠 ←{SNEC*(s)| s subject to tabu and aspiration 

conditions}; 

6: If 𝑓(𝑠) <  𝑓(𝑠∗) 

7: 𝑠∗ ← 𝑠 𝑓(𝑠∗) ← 𝑓(𝑠) 

8: counter← 0 

9: else counter←counter+1 

10: If counter >perIter 

11: s←perturbation(s) 

12: 𝑠∗ ←post optimize 𝑠∗ by the 3-opt procedure; 

13: return 𝑠∗ 
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5. COMPUTATIONAL RESULTS AND ANALYSIS 

 

The DSDVRP is new in literatures, so there is no benchmark 

instance yet, and what is more, the most related instances used 

by Nakao et al. are also unavailable. This paper uses the test 

instances generated from the TSPLIB and those proposed by 

Chen et al. [9]. For each customer, orders are generated by the 

prior split strategy called 20/10/5/1 rule or 25/10/5/1 rule. For 

details of the rules, please refer to Chen et al. [9]’s paper. The 

number of customers ranges from 21 to 100, and the number 

of orders from 66 to 590. The algorithm proposed here is 

coded in Matlab R2014 a and implemented on a personal 

computer with a 2.40 GHz, i5-2430 processor, 4GB of RAM 

and the Windows 7 operating system.  

 

5.1 Algorithm calibration  

 

The algorithm proposed in this paper has 7 parameters to set: 

1) the route shape parameter (𝜆); 2) the p nearest customer 

nodes (𝑝) ; 3) the q customer nodes selected randomly for 

perturbation (𝑞); 4) the tabu list size (𝜃); 5) the perturbation 

cycle (perIter); 6) the maximum iterations (maxIter); and 7) 

the candidate list size (𝑚). In the initial construction phase, 

the customer nodes far from the depot are given priority to be 

inserted into a route. If the generalized cost of inserting i to r 

is greater than the cost of creating a new directed route, the 

initial construction will create the route (0-i-0). So λ is chosen 

within the interval [0.7,1] . To calibrate the parameter 𝑝 , 

sensitivity analysis is performed on all the test instances, and 

the test results indicate the sensitivity interval of 𝑝 is [8,10]. 𝜃 

is a random integer in the interval [5, 20]. In the perturbation 

phase, q is chosen randomly among 5, 6 or 7. The perIter is 

equal to 10. According to the experiment, the maxIter is fixed 

at 10n, and the candidate list size m at n.  

 

5.2 Test results 

 

Table 5 and 6 present the test results of set 1 and set 2, 

respectively, in which the fifth and sixth columns are the cost 

and computing time of the proposed algorithm. After 

comparison with the results provided by the tabu search 

algorithm developed by M. Qiu. [3], it is found that the 

proposed algorithm outperforms the former in 12 instances 

and equals it in 2 instances among all the 25 instances, as 

shown in Table 5. Table 6 shows that the proposed algorithm 

has better performance in 14 instances and equal performance 

in 5 instances. From the two tables, it can be seen that some 

results yield slightly different costs with the results provided 

by M. Qiu. [3] due to the rounding errors in the cost data. The 

computational results indicate that the proposed sub-

algorithms of IOR and SENC* can better reflect the features of 

the discrete split and diversify the search space of the solution 

in contrast to the prior split strategy.  

 

Table 5. Results for set 1 
 

Instance (20/10/5/1) Order quality 

TS TS 

Cost 
Time(b) 

(Seconds) 
Cost 

Time(c) 

(Seconds) 

eil22 66 375.28 9.38 375.8 1.54 

eil23 73 568.56 19.93 568.56 1.67 

eil30 108 512.72 33.81 498.02 2.68 

eil33 108 837.67 43.75 837.06 3.56 

eil51 188 524.61 54.63 524.61 12.5 

eilA76 284 860.11 80.42 849.61 97.8 

eilB76 256 1037.93 169.64 1034.21 120.9 

eilC76 262 745.92 106.3 746.79 39.16 

eilD76 268 719.05 203.05 687.6 120.45 

eilA101 346 824.09 351.64 826.14 217.89 

eilB101 413 1098.95 402.41 1099.34 311.25 

SD51D1 179 457.67 32.3 459.5 12.25 

SD51D2 205 714.05 62.31 718.69 36.58 

SD51D3 239 971.46 62.12 965.13 55.63 

SD51D4 306 1624.55 180.11 1645.91 43.12 

SD51D5 296 1392.15 203.44 1387.19 44.51 

SD51D6 374 2360.93 230.77 2273.51 77.82 

SD76D1 267 600.19 44.97 601.43 15.32 

SD76D2 329 1413.73 147.32 1226.5 90.12 

SD76D3 377 1702.57 207.87 1546.33 116.34 

SD76D4 427 2171.96 357.99 2179.1 213.03 

S101D1 352 742.97 412.44 749.93 101.34 

S101D2 431 1448.28 510.01 1412.98 343.27 

S101D3 491 1957.34 597.31 1947.62 533.71 

S101D5 590 3225.7 601.64 3013.44 617.34 

average 289.4 1155.54 205.02 1127.00 129.19 
bi7-4500U, 2.4GHz, 12GB 
ci5-2430, 2.40 GHz, 4GB 

 

As to the computing time, even if the performance of the 

experiment computer used in this paper is lower than that in 

M. Qiu. [3], the proposed algorithm still works competitively. 

In Table 5 and 6, the average computing time of the proposed 

algorithm is 129.19 and 132.88, respectively, which is much 

shorter than that provided by M. Qiu. [3]. For the instances 

with larger order quantities, the computing speed of the 

proposed algorithm is obviously better than that provided by 

M. Qiu. [3]. This has something to do with the scale of the 

instance. M. Qiu. [3] aggregated randomly some orders of 

each customer into a new order in advance, and then 

transferred the DSDVRP into the classic capacitated vehicle 
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routing problem (CVRP). Such approach will multiply the 

scale of the instance and make the search space more complex. 

On the contrary, the proposed algorithm keeps the number of 

customer nodes unchanged. Therefore, the convergence of the 

proposed algorithm is faster.

 

Table 6. Results for set 2 

 

Instance (25/10/5/1) 
Order 

quality 

TS TS 

Cost 
Time(b) 

(Seconds) 
Cost 

Time(c) 

(Seconds) 

eil22 69 375.28 7.59 375.8 1.54 

eil23 74 568.56 19.91 568.56 1.67 

eil30 110 512.72 39.31 498.02 2.68 

eil33 108 837.67 48.81 837.06 3.56 

eil51 187 524.61 49.44 524.61 12.5 

eilA76 291 853.83 77.61 849.61 97.8 

eilB76 254 1047.26 109.11 1034.21 120.9 

eilC76 264 744.71 152.08 745.79 39.16 

eilD76 168 699.34 248.25 687.6 120.45 

eilA101 347 826.00 362.01 826.14 217.89 

eilB101 419 1116.82 396.87 1104.34 311.25 

SD51D1 179 458.29 31.2 459.5 12.25 

SD51D2 200 717.57 71.63 718.69 36.58 

SD51D3 242 975.76 44.94 965.13 55.63 

SD51D4 278 1673.9 193 1645.91 93.12 

SD51D5 290 1399.96 230.4 1387.19 44.51 

SD51D6 340 2310.32 244.1 2273.51 77.82 

SD76D1 267 599.41 57.66 601.43 15.32 

SD76D2 314 1422.75 162.9 1327.5 90.12 

SD76D3 379 1709.04 211 1546.33 116.34 

SD76D4 399 2179.1 404.96 2179.1 213.03 

S101D1 352 732.46 455.66 749.93 121.61 

S101D2 416 1437.42 534.45 1412.98 343.27 

S101D3 500 1989.13 587.63 1947.62 535.74 

S101D5 569 3228.09 693.4 3096.14 637.34 

average 280.64 1157.60 217.36 1134.51 132.88 

 

Table 7. Comparison for set 2 
 

Instance 
Best-known 

Solution 

VRPHAS TS TS 

Gap 

(%) 

Time(b) 

(Seconds) 

Gap 

(%) 

Time(b) 

(Seconds) 

Gap 

(%) 

Time(c) 

(Seconds) 

eil22 375.28(c) 0.00 1.65 0.00 16.97 0.14 3.08 

eil23 568.56(c) 0.00 1.58 0.00 39.84 0.00 3.34 

eil30 497.53(c) 0.00 2.18 3.05 73.12 0.10 5.36 

eil33 826.41(c) 0.00 3.51 1.36 92.56 1.29 7.12 

eil51 524.61(c) 0.00 9.37 0.00 104.07 0.00 25.00 

eilA76 849.6(c) 0.00 17.76 0.50 158.03 0.00 195.60 

eilB76 1024.44(c) 0.00 18.81 1.32 278.75 0.95 241.80 

eilC76 745.92 0.35 15.36 0.00 258.38 0.12 78.32 

eilD76 684.53(c) 0.00 14.72 2.16 451.3 0.45 240.90 

eilA101 814.51(c) 0.00 14.73 1.18 713.65 1.43 435.78 

eilB101 1098.95(c) 0.02 21.61 0.00 799.28 0.04 622.50 

SD51D1 459.5(q) 0.4 7.23 0.00 63.50 0.4 24.50 

SD51D2 709.25(q) 0.39 11.46 0.00 133.94 0.65 73.16 

SD51D3 948.06(c) 0.00 15.88 0.07 107.06 0.03 111.26 

SD51D4 1562.01(c) 0.00 18.90 2.00 373.11 3.37 136.24 

SD51D5 1333.67(c) 0.00 19.66 1.50 433.84 1.15 89.02 

SD51D6 2169.10(c) 0.00 28.04 3.10 474.87 1.48 155.64 

SD76D1 598.94(q) 2.35 15.07 0.00 102.63 0.21 30.64 

SD76D2 1087.40(c) 0.00 21.54 26.10 310.22 9.44 180.24 

SD76D3 1427.86(c) 0.00 34.28 17.80 418.87 7.00 232.68 

SD76D4 2079.76(c) 0.00 29.74 1.60 762.95 1.89 426.06 

S101D1 726.59(q) 0.42 22.02 0.00 868.1 0.94 222.95 

S101D2 1378.43(c) 0.00 37.16 1.73 1044.46 0.00 686.54 

S101D3 1874.81(c) 0.00 39.49 1.70 1184.94 1.21 1069.45 

S101D5 2791.22(c) 0.00 45.44 12.20 1295.04 4.82 1254.68 

average  0.16 18.69 3.09 422.38 1.48 262.07 
creferenced by Chen [5] 
Qreferenced by Qiu[3] 
bi7-4500U, 2.4GHz, 12GB 
ci5-2430, 2.40 GHz, 4GB 
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Table 7 shows the comparison of the proposed algorithm 

with other representative algorithms in these instances. Chen 

et al. [5] tested the instances, combined their prior strategies 

(20/10/5/1 rule or 25/10/5/1 rule) and the open source code 

VRPH (Gröer, 2011). The algorithm proposed by Chen et al. 

[5] is called VRPHAS. The results reported by VRPHAS are 

the better ones in terms of running both split rules and the 

computing time is the amount of time to run both. In order to 

compare the results of VRPHAS, the data are simply 

processed in Table 5 and 6. In Table 7, columns 5 and 7 show 

the gaps between the smaller costs in Table 5-6 and the best-

known solutions, and columns 6 and 8 show the sum of the 

computing time in Table 5-6. VRPHAS performs with an 

average gap of 0.16%, which is lower than 1.48% for the 

proposed algorithm. The results indicate that the algorithm has 

some limitations, but may have room for improvement if 

combined with classical VRP search methods. 

 

 

6. CONCLUSION  

 

This paper studies a new variant of the VRP: the discrete 

split vehicle routing problem. It creatively applies the binary 

to decimal decoder method to obtain the solution, proposes a 

heuristic order-insertion procedure, and develops a new tabu 

search algorithm, which combines the adaptive 

neighbourhood structure and the perturbation strategy. 

Experiments are carried out on two test sets, and the test results 

suggest that the sub-algorithms of IOR and SENC*are effective 

to the DSDVRP. This study enriches the theory of the 

DSDVRP. Further research will focus on improving the global 

search ability of the algorithm. 
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