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In modern surveillance systems, real-time detection of security threats such as firearms in 
low-light environments remains a significant challenge. This study presents a robust 
firearm detection framework based on the YOLOv11 object detection model, enhanced 
with a three-stage image pre-processing pipeline tailored for dark conditions. The 
proposed system integrates adaptive gamma correction, Gaussian noise reduction, and 
min-max normalization to improve visual clarity before detection. Images from publicly 
available datasets were synthetically darkened to simulate real-world low-light scenarios. 
A custom dataset with 3,107 images was used to train and evaluate the model. The 
enhanced YOLOv11 model achieved a detection accuracy of 97.28%, with a mean F1-
score of 95.78%, significantly outperforming the baseline YOLOv11 under dark 
conditions. This study demonstrates that strategic image enhancement improves detection 
robustness and reduces false positives and false negatives in low-light surveillance 
applications. 
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1. INTRODUCTION

Firearms, though essential for law enforcement and defense,
pose serious threats when accessed by unauthorized 
individuals such as anti-social elements or mentally unstable 
persons. Several mass shooting incidents have occurred 
globally in recent years, particularly in public spaces such as 
schools, hospitals, and market areas [1, 2]. These events have 
intensified the need for advanced, real-time surveillance 
systems capable of identifying security threats, especially the 
presence of firearms. 

Closed-Circuit Television (CCTV) systems have emerged 
as crucial components in public safety infrastructure, assisting 
in early threat detection and forensic investigation [3]. 
However, the efficiency of these systems remains limited due 
to the challenges posed by manual monitoring, especially 
under low-light or nighttime conditions. Surveillance 
effectiveness is significantly reduced in such environments, 
increasing the likelihood of missed detections [4].  

Traditional firearm detection models, including those based 
on Faster R-CNN, SSD, and earlier YOLO variants, have 
demonstrated success in controlled lighting conditions [5-7]. 
However, their performance deteriorates under low 
illumination due to insufficient feature visibility, resulting in a 
high rate of false positives and missed detections [8-10]. Some 
recent studies have applied pre-processing techniques like 
brightness tuning and contrast normalization to mitigate these 
issues, but many of them compromise real-time performance 
or fail to generalize across varying lighting levels [11]. This 
research addresses a critical gap in the literature by focusing 
on firearm detection in low-light surveillance environments. It 

proposes an integrated solution combining a three-stage image 
enhancement pipeline adaptive gamma correction, Gaussian 
noise reduction, and min-max normalization with the state-of-
the-art YOLOv11 detection model [12]. YOLOv11, presented 
at the YOLO Vision 2024 Conference (YV24), represents the 
latest evolution in the YOLO series and incorporates 
architectural innovations that significantly improve accuracy, 
detection speed, and computational efficiency [13, 14]. 

A recent advancement, such as the YOLOv7-DarkVision 
model [15], has demonstrated the merit of targeted pre-
processing for object detection in dark conditions. Building 
upon this idea, the proposed system aims to improve real-time 
firearm detection accuracy by enhancing visual clarity before 
detection, rather than merely post-processing detection 
outputs. 

The substantial advantages of using the proposed firearm 
detection system are: 
• Enhanced Safety with Robust Surveillance: The

system effectively detects firearms even in poorly lit
environments, enabling timely alerts for law
enforcement.

• Reduced Dependence on Manual Monitoring: The
automated detection pipeline minimizes human fatigue
and error.

• Improved Situational Awareness: Especially
valuable in fenced zones or areas with limited lighting,
it enhances visibility where artificial lighting is
impractical.

In summary, this work contributes a computationally 
efficient, high-accuracy framework tailored for real-time 
firearm detection in dark environments. It fills a critical void 
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in existing research and opens new avenues for the deployment 
of AI-enhanced surveillance in sensitive civilian and military 
applications. 

Section II presents a comprehensive review of existing 
firearm detection methods and highlights gaps in performance 
under low-light conditions. Section III describes the dataset 
preparation process, including image sourcing, annotation, 
and the simulation of low-light environments through 
controlled darkening transformations. Section IV details the 
proposed methodology, including the selection and tuning of 
YOLOv11, the three-stage image enhancement pipeline, 
system architecture, and the end-to-end detection workflow. 
Section V provides a structured evaluation of the model, 
including quantitative results, enhancement effectiveness, 
visual performance, and comparative analysis with and 
without enhancement. Finally, Section VI concludes the study 
and outlines future research directions. 

2. RELATED WORK

While the motivation for intelligent firearm detection in
low-light surveillance environments is well established, 
numerous approaches have been proposed over the years 
ranging from traditional machine learning techniques to recent 
deep learning-based object detectors. However, many of these 
methods either rely on fully visible weapons or struggle with 
performance degradation under poor lighting conditions. The 
following section reviews these existing approaches and 
highlights the limitations that this study aims to address 
through an enhancement-integrated YOLOv11 framework. 

Numerous research efforts have explored the use of 
computer vision and deep learning for firearm recognition in 
surveillance imagery [16-18]. These approaches range from 
traditional X-ray image analysis to real-time object detection 
using deep neural networks. 

Early research in security-focused weapon detection 
predominantly relied on X-ray scanning techniques for 
concealed object detection in controlled environments such as 
airports and transport hubs [19-21]. While effective in luggage 
scanning, these methods are not applicable to open, real-world 
settings such as public areas or street surveillance, especially 
when detecting firearms carried openly or concealed on 
individuals at a distance. 

Recent advances have shifted toward using visible-
spectrum CCTV imagery combined with machine learning and 
deep learning models. For example, Tiwari and Verma [18] 
applied handcrafted feature extractors like HIPD and FREAK 
combined with K-means clustering, but required full firearm 

visibility. Olmos et al. [9] used Faster R-CNN for handgun 
detection but faced performance limitations due to high 
computational cost and difficulty detecting small objects. 
Bhatt and Ganatra [12] tested multiple models including 
YOLOv4, SSD, and Inception ResNetV2, yet still reported 
high false negative rates. 

In a related study, Wang et al. [7] introduced brightness-
guided preprocessing (DaCoLT) to improve detection under 
poor lighting, but their model achieved a low frame rate (1.3 
FPS), limiting real-time applicability. Similarly, Wang et al. 
[20] proposed improvements to YOLOv4 for detecting small
weapons, but their model's performance on synthetic and
darkened images remained suboptimal.

Amado-Garfias et al. [21] fused YOLOv4 outputs with 
Random Forest classifiers to infer if a person is armed, yet 
achieved an accuracy of only 85.44%, highlighting the 
limitations of hybrid models in complex scenarios. Basit et al. 
[8] explored human-object interaction features, but the
detection accuracy depended heavily on posture and body
position, limiting robustness in dynamic environments.

More recently, studies have explored the integration of 
human pose estimation to improve handgun detection, as 
shown in the works of Ruiz-Santaquiteria et al. [4] and 
Velasco-Mata et al. [10]. Further, Lim et al. [22] proposes a 
strengthened deep multi-level feature pyramid network that 
takes into account the challenge of determining small firearms 
from a non-canonical standpoint. V.P. Manikandan et. al. 
proposes a CNN Attuned Object Detection Scheme (AODS) 
for harmful object detection from closed-circuit television 
surveillance images. Though this approach helps reduce false 
positives, it adds complexity and computational overhead. 

A promising direction was proposed by Yadav et al. [23] 
with their YOLOv7-DarkVision framework, where firearm 
detection was improved using targeted preprocessing in dark 
environments. However, YOLOv7, while powerful, lacks the 
latest architectural optimizations introduced in YOLOv11. 

A consolidated summary of major studies, including 
strengths and limitations, is shown in Table 1. From this 
comparative analysis, it is evident that no existing model 
directly addresses robust firearm detection in low-light CCTV 
conditions with a real-time deployment focus. 

The proposed research fills this gap by integrating adaptive 
image enhancement techniques with YOLOv11, the latest 
state-of-the-art model in the YOLO family, to achieve accurate 
and efficient firearm detection under varying lighting 
conditions. This hybrid strategy enables robust feature 
extraction from darkened images without compromising 
inference speed making it highly suitable for practical 
surveillance applications. 

Table 1. Current methods for firearms recognition based on the technique used, strength and limitations 

Ref. Published Year Techniques/Strengths Limitations Dark Environment 
Suitability 

[15] 2015 Combines HIPD, FREAK, and K-means 
to enhance accuracy in color-based 

segmentation. 

Gun should be fully visible, 
high miss detection with 
images having limited 

visibility. 

No 

[16] 2018 Faster R-CNN Two-stage deep learning 
method for object detection tasks, with 

advantage of precisely detection of small 
firearms. 

Time-consuming, difficult, 
and computationally 

expensive. 

No 

[18] 2019 Improves detection using brightness-
directed reprocessing using Inception 

Res NetV2 and DaCoLT. 

Lower FPS (1.3) not fit for 
low-latency performance. 

Limited to special types 
of Firearms 

[4] 2020 Faster-RCNN with ResNet-101 used Only detects weapons if No 
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paired-bounding-boxes to identify 
human carrying the firearm. 

carried by a person. 

[17] 2021 Faster RCNN-Inception ResNetV2, SSD, 
YOLO4 is suggest based on the detection 

results. 

High false negatives despite 
88% recall rate with 

YOLOv4. 

No 

[6] 2021 Handgun detection using human pose 
and appearance. 

Computationally expensive; 
sensitive to pose estimation 

quality. 

No 

[7] 2021 Incorporates human pose info to reduce 
false positives. 

Requires precise skeletal 
tracking; not real-time ready. 

No 

[20] 2023 YOLOv4 Optimization 
for enhanced detection against complex 
backgrounds using spatial attention and 

multi-scale dilation. 

Less effective on synthetic 
data and images with 

complex backgrounds. 

No 

[19] 2024 The ML models (YOLOv4 with Random 
Forest Classifier) can work together with 
YOLO to identify automatically armed 

people. 

Performance accuracy 
(85.44%) is low, Higher 

version of YOLO model is 
need to improve the same. 

No 

[24] 2024 Fuzzy Discernible Feature Selection, an 
automatic lightweight artificial 

intelligence solution 

Only detects weapons if 
carried by a person. 

No 

[25] 2024 YOLOv7-DarkVision with custom 
enhancement for dark environments. 

Good improvement in dark 
settings, but lacks YOLOv11 

advancements. 

Yes 

Proposed 
Method 

-- YOLOv11 + adaptive gamma correction, 
Gaussian filtering, and normalization. 

Balanced for accuracy and 
speed; tailored for real-time 
low-light firearm detection. 

Yes 

 
 
3. DATABASE 
 

The dataset used in research work are legally and ethically 
collected from database platforms like Kaggle, Linksprite, 
VBS3, IMFDB, and UGR, and through independent internet 
searches. The details of image collection are provided in Table 
2. A darkening transformation is used to create a low-light 
scenario on the collected images. To simulate a real-world 
scenario, various darkening factors have been used. The 
concept of darkening factors refers to the controlled reduction 
of pixel intensity values in an image to simulate darker 
environments or low lighting conditions. This is achieved by 
multiplying the pixel values of an image by a scalar factor, 
which reduces the brightness uniformly across all pixels. The 
darkening transformation is applied to the images after 

annotation and splitting. The Dataset is divided into training 
(70%), validation (15%), and testing (15%) sets. Figure 1 
shows the sample images pairs from dataset with various 
darkening factor. In each image pair, the right side shows the 
darken image of the original image (left side). There are three 
darkening factor is considered for experimentation, to cover 
the complete dark environment scenario.  

 
Table 2. Detail of collection of image dataset 

 
Images details Images Classes Sources 

Pistols  1048 

Firearms 

VBS3 [25], IMFDB 
[26], UGR [27], 

Linksprite [28], Kaggle 
[29], Internet 

Shotguns 1023 
Handguns 1036 

Total 3107 

 
 

Figure 1. Image samples pairs from dataset with various darkening factor 
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4. METHODOLOGY 
 

This section presents the design and implementation of the 
proposed firearm detection system that operates effectively 
under low-light surveillance conditions. The system integrates 
an image enhancement pipeline with a state-of-the-art 
YOLOv11-based object detector to improve visibility, reduce 
false detections, and ensure high-speed performance. The 
proposed methodology comprises of: 
• Selection and tuning of the YOLOv11 model, 
• Design of the three-stage image enhancement pipeline, 
• Architecture of the proposed system, 
• End-to-end firearm detection procedure. 
The combination aims to reduce detection failures caused 

by poor lighting, enhancing system reliability for real-world 
applications.  

 
4.1 Selection and tuning of the YOLOv11 model 

 
YOLOv11 is the latest version of the “You Only Look Once” 

series, introduced at the YOLO Vision 2024 Conference 
(YV24) [30, 31]. It provides substantial advancements in 
object detection accuracy, speed, and scalability. “You Only 
Look Once” model foundation was established by Joseph 
Redmon et al. [32]. YOLOv11 inherits the efficient codebase 
of YOLOv8 [33], while integrating architectural 

improvements from YOLOv9 [34] and YOLOv10 [35]. Five 
model variants of YOLOv11 are available (nano to x-large), 
suited for different deployment scenarios [36]. Table 3 
presents the five deployment variants of the YOLOv11 model, 
categorized based on their architectural depth, width, number 
of parameters, and computational cost [37]. Among these, the 
YOLOv11n (nano) model is selected for the proposed system 
due to its lightweight design (2.62 million parameters and 6.6 
GFLOPs), making it highly suitable for real-time firearm 
detection in resource-constrained surveillance environments. 
Despite being the smallest variant, YOLOv11n retains 
essential architectural features such as multi-scale detection, 
spatial pyramid pooling, and attention mechanisms enabling it 
to perform effectively on low-resolution and low-light 
imagery. This balance between speed and accuracy makes 
YOLOv11n ideal for real-world deployment in smart CCTV 
systems.  

The architecture of YOLOv11n in shown in Figure 2, which 
serves as the core detection engine in the proposed system. The 
YOLOv11 pipeline consists of: 
• Backbone: Multi-scale feature extraction through 

convolutional and C3k2 modules. 
• Neck: Feature fusion using SPPF and C2PSA blocks. 
• Head: Object detection using bounding boxes, 

confidence scores, and class probabilities at three 
scales (P3, P4, P5). 

 
Table 3. YOLO11 as per deployment requirements [37] 

 
Variant Purpose Depth Width Max 

Channels 
Layers Parameters Gradients GFLOPs 

YOLO11n Nano 
version 

For small and lightweight 
tasks. 

0.50 0.25 1024 319 2,624,080 2,624,064 6.6 

YOLO11s Small 
version 

An upgrade of Nano, offering 
slightly improved accuracy. 

0.50 0.50 1024 319 9,458,752 9,458,736 21.7 

YOLO11m 
Medium version 

General-purpose use. 0.50 1.00 512 409 20,114,688 20,114,672 68.5 

YOLO11l Large 
version 

Higher accuracy, with 
increased computational cost. 

1.00 1.00 512 631 25,372,160 25,372,144 87.6 

YOLO11x Extra-
large version 

For maximum accuracy and 
performance. 

1.00 1.50 512 631 56,966,176 56,966,160 196.0 

 

 
 

Figure 2. Architecture of YOLO11n [37] 
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The backbone (Layer-1 to Layer-10) is for pull out multi-
scale features from the input image through various 
convolutional layers, C3k2 modules, and specialized 
operations like SPPF and C2PSA. These layers perform down 
sample the input image, generating hierarchical feature maps 
(P1 to P5) of various resolutions, with P3, P4, and P5. These 
are the key outputs for small, medium, and large objects. The 
neck refines these features using up sampling, concatenation, 
and additional C3k2 modules to fuse information across scales, 
ensuring effective feature representation for objects of varying 
sizes. Finally, the head processes the refined features at P3, P4, 
and P5 to produce bounding box predictions, confidence 
scores, and class probabilities for object detection. This multi-
scale approach allows YOLO11 to detect objects of different 
sizes efficiently while maintaining a balance between accuracy 
and computational cost [38]. 

4.2 Design of the three-stage image enhancement pipeline 

The core objective of the image enhancement pipeline is to 
boost the visibility and contrast of surveillance images 
captured under low-light conditions. This preprocessing 
enables YOLOv11n to extract discriminative features more 
accurately, necessary for firearm detection [39, 40]. The 
proposed enhancement pipeline includes three sequential 
stages: 
• Adaptive Gamma Correction for brightness

enhancement, 
• Gaussian Noise Reduction for edge-preserving

smoothing,
• Min-Max Normalization for contrast enhancement.
Each step is tailored to be lightweight and computationally

efficient to maintain real-time detection feasibility. 

4.2.1 Adaptive gamma correction (brightness enhancement) 
Purpose: Gamma correction does a non-linear 

transformation to fine-tune image brightness. This technique 
used to adjust the brightness of an image by changing the pixel 
intensity values according to a power-law function. Due to the 
use of non-linearity gamma correction enhances darker 
regions without excessively brightening already illuminated 
areas. The transformation is given by: 

Process Overview: Gamma correction adjusts pixel 
intensity using a power- law transformation: 

𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥, 𝑦𝑦) = 255 × �𝐼𝐼(𝑥𝑥,𝑦𝑦)
255

�
𝛾𝛾

(1) 

where, 
• 𝛾𝛾 is the gamma correction factor.
• 𝐼𝐼(𝑥𝑥,𝑦𝑦) represents the pixel intensity of the (𝑥𝑥,𝑦𝑦).
• 𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥, 𝑦𝑦) is the output pixel intensity after gamma

correction.
The choice of 𝛾𝛾 plays an important role in the enhancement 

process; 𝛾𝛾 values less than 1 brighten the image, while greater 
than 1 darken it. Instead of using a fixed value, an adaptive 
gamma correction strategy was employed to cater the varying 
image darkness. In this case 𝛾𝛾 is computed dynamically for 
each image based on the Mean Pixel Intensity (MPI): 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑁𝑁×𝑀𝑀

∑ ∑ 𝐼𝐼(𝑖𝑖, 𝑗𝑗)𝑀𝑀
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  (2) 

where, 
• 𝑁𝑁 × 𝑀𝑀 is the size of image,

• 𝐼𝐼(𝑖𝑖, 𝑗𝑗) is the intensity at each pixel.
The gamma correction factor is further calculated by using

Eq. (3) given below. 

𝛾𝛾 = 2.5 − 𝑀𝑀𝑀𝑀𝑀𝑀
255

  (3) 

• For dark images (low MPI), γ approaches 2.5 
stronger brightening.

• For brighter images, γ decreases  minimal
enhancement.

Implementation Notes: 
• Gamma is applied to each channel independently in

RGB images.
• 𝛾𝛾 is constrained to [1.0, 2.5] to avoid overexposure.

4.2.2 Gaussian filtering (noise suppression) 
Purpose: Gamma correction improves the brightness of the 

image, but removal of noise artifact requires further processing 
of the image using Gaussian filtering. It is required to remove 
noise while preserving critical features such as object edges in 
the image. The Gaussian filter is a low-pass filter. It smooths 
the image by convolving with a Gaussian kernel as per Eq. (4). 

Filtering Operation: 

𝐺𝐺(𝑥𝑥,𝑦𝑦) =  1
2𝜋𝜋𝜎𝜎2

exp �−  𝑥𝑥
2+𝑦𝑦2

2𝜎𝜎2
� (4) 

where, 
• 𝜎𝜎 represents the standard deviation.
• (𝑥𝑥,𝑦𝑦) represents the pixel coordinates of the image.

Parameter Configuration: 
• Kernel size: 5×5.
• Standard Deviation (𝜎𝜎): 1.0.
The above parameter configuration is chosen

experimentally to ensure the suppression of high frequency 
noise (especially from dark regions) and preservation of object 
edges for reliable bounding box prediction. It is observed that 
selection of standard deviation and kernel size is optimum to 
maintain the essential firearm-related details. This step ensures 
that YOLOv11n focuses on actual object features rather than 
pixel variations introduced during gamma correction. 

Implementation Note: Filtering is applied post gamma-
correction only. 

4.2.3 Min-max normalization (contrast enhancement) 
Purpose: To map pixel values within the range of 0 to 255, 

Min-Max Normalization is applied. This has been done to 
standardize image intensity distribution and enhance contrast 
further. Normalization ensures that images maintain a 
consistent dynamic range without overexposure or 
underexposure. 

Normalization Operation: The normalization function is 
defined as Eq. (5). 

𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥, 𝑦𝑦) =  𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
(𝑥𝑥,𝑦𝑦)− 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚−𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
 ×  255 (5) 

where, 
• 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  and 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum

intensity values of the Gaussian-filtered image
𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑥𝑥, 𝑦𝑦).

• 𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥, 𝑦𝑦) is final enhanced output image.
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The transformed image 𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥, 𝑦𝑦) is scaled to occupy the 
full intensity range while preserving structural information. By 
performing normalization, the image’s contrast is optimized, 
improving the distinction between firearms and the 
background. This ensures that YOLOv11 receives a well-
balanced input for more accurate object detection. 
 
4.3 Architecture of proposed model  

 
The proposed firearm detection system integrates a 

preprocessing enhancement pipeline with the YOLOv11n 
object detector to ensure accurate and efficient firearm 
detection under varying illumination conditions. Figure 3 
illustrates the end-to-end architecture and the adaptive 
processing logic used for image handling. This block diagram 
illustrates the adaptive bifurcation of the input based on MPI. 
It shows the three-stage enhancement pipeline feeding into 
YOLOv11n and emphasizes the distinction between 
processing paths for dark and well-lit images 
 
4.3.1 Overview of the processing flow 

The proposed model processes each input image through a 
series of stages depending on the mean brightness level, 
determined using the Mean Pixel Intensity (MPI). Based on 
MPI, the image follows one of two paths: 

(a) Input and Classification (Brightness-based Routing) 
The system accepts RGB CCTV image frames. Each image 

is converted to grayscale (if needed) and its MPI is computed. 
A threshold of MPI = 55 is used: 
• If MPI ≤ 55: Image is considered dark. 
• If MPI > 55: Image is considered well-lit. 
This classification allows the model to skip unnecessary 

enhancement for already bright images which saves 
computation time and preserves original features. 

(b) Image Enhancement Path (For Dark Images) 
If the input image is dark, the following three stages are 

applied sequentially: 
• Adaptive Gamma Correction: Dynamically brightens 

the image using MPI-based gamma tuning. 
• Gaussian Filtering: Removes noise and smooths 

transitions without blurring firearm edges. 
• Min-Max Normalization: Ensures consistent contrast 

and dynamic range. 
This produces a visually enhanced image suitable for robust 

detection. 
(c) Shortcut Path (For Well-Lit Images): If the image is 

bright enough, only Gaussian filtering is applied. Gamma 
correction and normalization are skipped to preserve natural 
lighting and minimize unnecessary processing. 

(d) YOLOv11n Detection Layer: The filtered image is 
passed into the YOLOv11n model. Detection heads process 
multi-scale features (P3–P5) and return: 
• Bounding boxes, 
• Objectness scores, 
• Class confidence (firearm detection only, as it is a 

single-class task). 
(e) Output Layer: The model overlays bounding boxes on 

the input image to mark detected firearms. Each detection is 
displayed with a confidence score. The results can be saved 
locally or forwarded to a live monitoring system or alert 
mechanism. 
 
4.4 End-to-end firearm detection procedure 

 
The proposed firearm detection system is designed to 

operate adaptively based on lighting conditions to ensure high 
detection accuracy and real-time performance. The overall 
workflow begins with the acquisition of RGB surveillance 
images from CCTV feeds. Each input image is first converted 
to grayscale, and its Mean Pixel Intensity (MPI) is calculated 
to determine whether the image is captured in a dark or well-
lit environment. If the image is classified as dark (MPI ≤ 55), 
it is passed through a three-stage image enhancement pipeline 
comprising: 
• Adaptive Gamma Correction to improve brightness, 
• Gaussian Filtering to suppress noise while preserving 

firearm contours, 
• Min-Max Normalization to enhance contrast and 

prepare the image for detection. 
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Figure 3. Architecture of the proposed firearm detection system 

 
 

Figure 4. Complete workflow of the proposed model 
 

In contrast, well-lit images (MPI > 55) bypass the gamma 
correction and normalization stages to retain natural brightness 
and undergo only Gaussian Filtering for basic smoothing. The 
enhanced or filtered image is then fed into the YOLOv11n 
object detection model. YOLOv11n performs multi-scale 
inference and predicts bounding boxes along with confidence 
scores for firearm presence. The output image is annotated 
with detection results and may be either: 
• Stored locally for further analysis, 
• Displayed on a monitoring interface for live tracking, 
• Or used to trigger automated alerts for immediate 

response by security personnel. 
The complete workflow of the proposed model is visually 

summarized in the flowchart as shown in Figure 4. Flowchart 
illustrating the end-to-end firearm detection procedure of the 
proposed system. The workflow begins with input image 
acquisition and grayscale conversion, followed by the 
computation of Mean Pixel Intensity (MPI). Based on the MPI 
threshold, the system adaptively routes each image through 
either a three-stage enhancement pipeline (for dark images) or 
a simplified filtering path (for well-lit images). The processed 
image is then fed into the YOLOv11n model for firearm 

detection. The final outputs bounding boxes with confidence 
scores are visualized on the original image and can be stored, 
displayed in real-time, or used to trigger alerts in surveillance 
systems. 
 
 
5. RESULTS AND DISCUSSIONS 

 
Having described the design and implementation of the 

proposed firearm detection system, the next section presents a 
comprehensive evaluation of its performance. The results are 
structured to demonstrate how the three-stage enhancement 
pipeline improves detection accuracy across varied lighting 
conditions. Both quantitative metrics and qualitative 
visualizations are used to validate the system's effectiveness in 
achieving robust, real-time firearm detection in low-light 
environments. 
 
5.1 Evaluation metrics 

 
To assess the performance of the proposed firearm detection 

model under varying lighting conditions, a standard set of 
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classification and object detection metrics is used: 
• True Positive (TP): The number of images correctly 

identified as containing firearms. 
• False Positive (FP): The number of images incorrectly 

classified as containing firearms. 
• True Negative (TN): The number of images correctly 

identified as not containing firearms. 
• False Negative (FN): The number of images containing 

firearms but classified as not having them. 
From these metrics proposed model Accuracy, Precision, 

Recall, F1-score, and mean Average Precision (mAP) are 
derived which are computed using Eqs. (6) to (9).  

Precision (P): Indicates how many of the predicted firearm 
detections are actually correct. 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ( 𝑃𝑃𝑃𝑃) =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  (6) 
 
Recall (R): Measures how many actual firearm instances 

were correctly detected. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑅𝑅𝑅𝑅) =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  (7) 
 

F1-Score: Harmonic mean of precision and recall, 
providing a balance between them. 
 

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  2 ×  𝑃𝑃𝑃𝑃 𝑥𝑥 𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅

  (8) 
 

Mean Average Precision (mAP@0.5): Represents the 
average precision computed at an IoU (Intersection over 
Union) threshold of 0.5, which evaluates the quality of 
bounding box predictions. Since this is a single-class (firearm) 
task, the mAP is directly computed over the firearm class only. 
 

𝑚𝑚𝑚𝑚𝑚𝑚 =  1
𝑁𝑁
∑ 𝐴𝐴𝐴𝐴𝑖𝑖𝑁𝑁
𝑖𝑖=1   

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁 = 1 (𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐); 
 
Hence, 
 

𝑚𝑚𝑚𝑚𝑚𝑚 =  ∑ 𝐴𝐴𝐴𝐴𝑖𝑖𝑁𝑁
𝑖𝑖=1   (9) 

 
Intersection over Union (IoU): Measures the overlap 

between the predicted bounding box and the ground truth box: 

 
𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)
  (10) 

 
These metrics collectively provide a quantitative evaluation 

of how accurately and robustly the model detects firearms, 
especially in dark or low-visibility surveillance scenarios. 
 
5.2 Experimental setup and dataset summary 

 
To evaluate the proposed low-light firearm detection 

framework, a custom dataset consisting of 3,107 images was 
curated from publicly available sources including Kaggle, 
VBS3, IMFDB, UGR, and Linksprite. The dataset comprises 
images containing pistols, shotguns, and handguns, 
representing real-world surveillance scenarios. To simulate 
varying low-light environments, a darkening transformation 
was applied to original images by scaling down their pixel 
intensity values using three different darkening factors. This 
approach effectively mimics diverse night-time or poorly lit 
conditions typically encountered in outdoor and perimeter 
surveillance. The dataset was partitioned as follows: 
• 70% for training, 
• 15% for validation, 
• 15% for testing. 
Images were further categorized into three lighting 

condition groups based on Mean Pixel Intensity (MPI): 
• S1 – Dark Conditions: MPI ≤ 20 
• S2 – Moderate Darkness: 20 < MPI ≤ 55 
• S3 – Normal Lighting: MPI > 55 
For model performance comparison: 
• A baseline YOLOv11n model (without enhancement) 

was trained and tested on all image categories. 
• The proposed model integrated a three-stage 

enhancement pipeline (adaptive gamma correction, 
Gaussian filtering, and min-max normalization) prior 
to YOLOv11n detection. 

Each experiment (S1, S2, S3) involved evaluating model 
accuracy, precision, recall, F1-score, and mAP@0.5 under 
these three lighting conditions. This stratified evaluation 
provides clear insight into how the proposed enhancements 
impact detection robustness in low-light surveillance. 

 
Table 4. Parameters observed before and after enhancement for selected images 

 
Exp Image MPI Gamma Gaussian 

Kernel Sigma Mean 
Before 

Mean 
After 

Std Dev 
Before 

Std Dev 
After I_min I_max 

S1 image_33.jpg 7.38 1.97 (5, 5) 1 36.56 36.56 18.8 18.39 0 82 
S1 image_32.jpg 8.41 1.97 (5, 5) 1 40.08 40.09 21.22 20.97 0 83 
S1 image_8.jpg 12.71 1.95 (5, 5) 1 50.59 50.59 17.44 16.74 0 79 
S2 image_55.jpg 32.18 1.87 (5, 5) 1 77.5 77.5 33.77 32 0 136 
S2 image_82.jpg 29.26 1.89 (5, 5) 1 73.88 73.88 33.76 32.43 0 137 
S2 image_88.jpg 33.31 1.87 (5, 5) 1 81.23 81.23 24.7 24.33 0 134 
S3 image_55.jpg 107 Skipped (5, 5) 1 106.64 106.64 64.89 61.37 Skipped Skipped 
S3 image_93.jpg 38.44 1.85 (5, 5) 1 83.21 83.21 40.36 38.96 4 255 
S3 image_75.jpg 145.53 Skipped (5, 5) 1 145.63 145.63 82.89 82.06 Skipped Skipped 

 
Table 5. Comparative detection results for YOLOv11n with and without enhancement 

 
Lighting Condition Model Variant Accuracy (%) Precision (%) Recall (%) F1-Score (%) mAP@0.5 

S1 (Dark) 

YOLOv11n 
(Original) 

65.38 73.42 24.39 36.50 0.46 

YOLOv11n + 
Enhancement 

85.38 84.21 52.44 65.68 0.81 

S2 (Moderate-Dark) YOLOv11n 85.71 85.71 69.23 76.53 0.84 
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(Original) 
YOLOv11n + 
Enhancement 

92.85 95.00 79.48 86.48 0.91 

S3 (Normal) 

YOLOv11n 
(Original) 

97.14 95.23 90.00 92.53 0.92 

YOLOv11n + 
Enhancement 

97.85 96.87 92.30 94.53 0.93 

5.3 Enhancement effectiveness analysis 

The effectiveness of the proposed image enhancement 
pipeline was evaluated by comparing key image statistics 
before and after preprocessing across various lighting 
conditions. Table 4 summarizes representative results from the 
three experimental categories (S1: dark, S2: moderate-dark, S3: 
well-lit). For dark images (S1), gamma correction significantly 
improved brightness while preserving structural details. 

For dark images (S1), gamma correction significantly 
improved brightness while preserving structural details. For 
example, images with a Mean Pixel Intensity (MPI) as low as 
7.38 were brightened using a computed gamma value of 1.97, 
making firearm contours more visible to the detector. In these 
cases, standard deviation (representing contrast spread) was 
preserved, indicating that enhancement did not introduce over-
smoothing. 

Moderately dark images (S2) showed improved mean 
intensities with stable contrast metrics post-enhancement. In 
contrast, well-lit images (S3) bypassed gamma correction and 
normalization, undergoing only Gaussian filtering. This 
ensured natural lighting was preserved while still removing 
high-frequency noise. 

Key Observations from Table 4: 
• Gamma values adaptively decreased as MPI

increased, ensuring controlled brightness enhancement.
• Mean pixel values remained stable after

enhancement, validating the non-destructive nature of
the pipeline.

• Standard deviation differences were minimal,
confirming preservation of contrast details.

• I_min and I_max expansion in darker samples
reflects improved dynamic range for detection.

These enhancements result in more consistent input quality, 
which directly supports improved model performance, 
particularly in low-light settings where traditional detection 
approaches tend to fail. 

5.4 Detection performance comparison 

To assess the effectiveness of the proposed image 
enhancement pipeline, performance metrics were compared 
for the baseline YOLOv11n (without enhancement) and the 
enhanced YOLOv11n model across three lighting conditions 
S1 (dark), S2 (moderate-dark), and S3 (normal light). The key 
metrics considered are Accuracy, Precision, Recall, F1-Score, 
and mAP@0.5, as summarized in Table 5. 

Key Observations from Table 5: 
• In S1 (dark images), the proposed enhancement

pipeline improved F1-score by 29.18%, recall by
28.05%, and mAP@0.5 by 35 points, demonstrating
substantial gains in firearm detection accuracy under
extremely low visibility.

• In S2 (moderate-dark conditions), improvements were
also significant: a ~10% gain in F1-score and notable
increases in recall and mAP.

• For S3 (well-lit conditions), only marginal
improvement was observed. This validates the
pipeline’s adaptive nature, where enhancement is
selectively applied only to necessary cases, thus
preserving original image quality.

5.5 Visual inspection of results 

In addition to quantitative improvements, qualitative 
evaluation confirms the effectiveness of the proposed 
enhancement pipeline in enabling accurate firearm detection 
under challenging lighting conditions. Figures 5, 6, and 7 
present representative samples from the three experimental 
categories: 

Figure 5 showcases dark images (S1) undergoing full 
enhancement—gamma correction, Gaussian filtering, and 
normalization—followed by successful YOLOv11n detection. 
Step-by-step visualization of the proposed enhancement 
pipeline applied to dark surveillance images (S1). The 
sequence includes: original image, gamma-corrected image, 
Gaussian-filtered image, final normalized image, and 
YOLOv11n-based firearm detection. The enhancement stages 
significantly improve visibility and enable accurate 
localization of firearms in low-light conditions. 

Figure 6 includes moderately dark images (S2) where 
enhancement significantly improves visibility and localization, 
especially in cluttered or partially occluded scenes. 
Demonstration of enhancement and detection results for 
moderately dark images (S2). The proposed preprocessing 
pipeline improves feature visibility, enabling YOLOv11n to 
accurately detect firearms that are difficult to localize in the 
original frames. Red bounding boxes highlight correct 
detections with improved edge clarity. 

Figure 7 demonstrates well-lit images (S3) where gamma 
correction and normalization are skipped, and detection is 
performed directly after minimal filtering. Detection outputs 
for images captured under normal lighting conditions (S3). As 
per the adaptive pipeline, gamma correction and normalization 
are skipped, and only Gaussian filtering is applied. 
YOLOv11n performs accurately with minimal enhancement, 
confirming the efficiency of the adaptive strategy. 

Key Observations: 
• In S1, firearm regions that were not visually

distinguishable in the original images were
successfully detected post-enhancement. This aligns
with the improved F1-scores reported in Table 5 (from
36.5% to 65.68%).

• In S2, YOLOv11n consistently detected handguns
across varying poses and backgrounds after
enhancement, reflecting the precision and recall
improvements.

• In S3, the model performed well with and without
enhancement, validating the decision to bypass
unnecessary processing in naturally lit scenes.

Figure 8 further supports the model’s robustness through a 
set of performance curves. The Precision-Confidence Curve 
shows a steady increase, reaching peak precision at a 
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confidence threshold of 0.906. The Recall-Confidence Curve 
indicates high recall across most thresholds, with a gradual 
decline near 1.0. The Precision-Recall Curve confirms 
consistent performance with an mAP@0.5 of 0.895. The F1-
Confidence Curve reveals the model's optimal detection 
threshold at 0.482, where the F1-score reaches 0.84. Together, 
these curves demonstrate reliable model behavior and help 

inform threshold selection for real-time deployment. 
These visual inspections confirm that the proposed 

enhancement strategy directly contributes to addressing the 
primary research challenge: robust firearm detection under 
low-light surveillance conditions, where traditional detectors 
often fail. 

 

 
 

Figure 5. Detection results in dark images (S1) 
 

 
 

Figure 6. Detection results in moderate-dark images (S2) 
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Figure 7. Detection results in well-lit images (S3) 

Figure 8. Model performance curves for the proposed YOLOv11n-based firearm detection system. (a) Precision vs. Confidence, 
(b) Recall vs. Confidence, (c) Precision vs. Recall, and (d) F1-Score vs. Confidence. These plots illustrate the detection behavior
across varying confidence thresholds, highlighting the model’s robustness and optimal operating point for firearm identification
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5.6 Summary of findings and future directions 

The experimental results, supported by both quantitative 
metrics and visual inspection, demonstrate that the proposed 
enhancement-integrated YOLOv11n framework significantly 
improves firearm detection performance in low-light 
surveillance conditions. This addresses a critical challenge 
faced by traditional real-time detectors, which tend to suffer 
from degraded accuracy in visually constrained environments. 
Compared to the baseline YOLOv11n, the enhanced model 
achieved: 
• A 29.18% absolute increase in F1-score and 35-point

mAP@0.5 boost in the darkest test cases (S1),
• A ~10% gain in recall and precision in moderately dark

conditions (S2),
• Near-equivalent performance in well-lit settings (S3),

validating the adaptive enhancement logic.
These findings are consistent with and build upon recent 

literature such as Yadav et al. [38], where YOLOv7-
DarkVision was used to improve detection in dark 
environments. However, the current approach takes a step 
further by: 
• Introducing an adaptive, conditional enhancement

pipeline, 
• Leveraging YOLOv11’s architectural efficiencies, and
• Demonstrating robustness across multiple lighting

ranges with practical computational cost.
Future Directions: To further enhance the applicability 

and scalability of this work, the following research avenues are 
suggested: 
• Model Generalization to Other Threat Classes: Extend

the system to detect other concealed or handheld threats 
(e.g., knives, explosives) in dark environments using
multi-class training.

• Hardware Optimization and Edge Deployment: Port
the model to edge computing devices (e.g., Jetson Nano,
Coral TPU) to enable deployment in bandwidth- or
power-constrained environments.

• Integration with Tracking and Alert Systems: Combine
detection with temporal tracking and automated alert
mechanisms to create a complete real-time threat
monitoring solution.

• Federated Learning for Privacy-Sensitive
Environments: Implement decentralized training
strategies for sensitive locations (schools, defense
zones) to enable secure, privacy-aware model updates.

By aligning detection robustness with real-time 
performance, this work contributes toward the development of 
intelligent, scalable firearm detection systems for next-
generation surveillance infrastructures. 

6. CONCLUSION

This study presents an enhanced firearm detection
framework specifically designed for dark surveillance 
environments, utilizing adaptive gamma correction, Gaussian 
noise reduction, and min-max normalization as preprocessing 
stages. Experimental results demonstrate that these 
enhancement techniques significantly improve detection 
accuracy by increasing feature visibility while reducing false 
positives and false negatives. The comparative analysis 
between the baseline YOLOv11 and the proposed enhanced 
model highlights the effectiveness of the preprocessing 

pipeline, particularly in scenarios with extreme low-light 
conditions. Future work may focus on integrating deep 
learning–based denoising methods and adaptive contrast 
enhancement techniques to further improve detection 
robustness and real-time performance. 
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