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The detection of financial fraud has become an increasingly critical concern in today’s 

data-driven economy, necessitating the development and application of robust analytical 

methods. This research undertakes a comparative analysis of various clustering 

techniques, specifically partitioning methods such as k-means, k-medoids, CLARA, 

CLARANS, BIRCH, and density-based algorithms like DBSCAN and OPTICS, 

alongside hierarchical clustering methods. By evaluating these algorithms, the study aims 

to identify the most effective method for un- covering patterns indicative of fraudulent 

activities within financial datasets. To gauge the performance of these clustering 

techniques, several evaluation metrics will be employed, including the Rand Index, 

Adjusted Rand Index (ARI), silhouette coefficient, and Davies-Bouldin Index (DBI). The 

Rand Index serves as a foundational measure for assessing clustering efficacy by 

quantifying agreement between predicted and true clusters. The ARI enhances this 

evaluation by accounting for chance agreements, thereby providing a more nuanced 

understanding of clustering performance. The silhouette coefficient offers insights into 

the cohesion and separation of clusters, while the DBI assesses cluster quality by 

evaluating intra-cluster and inter- cluster distances. This comprehensive analysis not only 

aims to determine the optimal clustering method for financial fraud detection but also 

seeks to contribute to the broader field of unsupervised machine learning. By 

systematically comparing the strengths and weaknesses of various clustering approaches, 

this research endeavours to provide valuable insights and guidelines for practitioners in 

the finance sector, enhancing their ability to detect and mitigate fraudulent activities 

effectively. 
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1. INTRODUCTION

Nowadays, many financial companies are manipulating 

their financial reports and committing fraud to gain their 

financial benefits. So, there is a severe need to eradicate such 

crimes, and so fraud detection has become much more 

important. Many methods have been identified to detect fraud. 

One of the methods is to use machine learning and develop 

tools for identification and fraud detection. We have a lot of 

algorithms using which tools have been developed. These 

algorithms are used to learn or identify whether the financial 

statements are fraudulent or non-fraudulent. These algorithms 

can be divided into 2 categories according to their learning 

process. The first is supervised learning, and the second is 

unsupervised learning. 

Supervised learning is the process of learning on a set of 

labeled data, whereas unsupervised learning is the process of 

learning on a set of unlabeled data. Basically, this learning 

method is used for finding patterns and relationships in the data. 

In this paper, we are going to use some of the unsupervised 

learning algorithms that are used to check their capability of 

identifying the patterns that lead to fraud detection. 

Clustering comprises a wide range of methodologies aimed 

at identifying subgroups or clusters by characterizing objects 

within a dataset, ensuring that objects within the same group 

exhibit similarity while differing from those in other groups. 

The fundamental principle of clustering is that data within a 

cluster should exhibit high similarity to one another while 

demonstrating significant dissimilarity from data in other 

clusters. Various clustering approaches exist, including 

partitioning methods, hierarchical methods, and density-

based methods. 

The K-Means algorithm [1] is a very effective unsupervised 

learning method that adeptly partitions datasets into discrete 

clusters based on the inherent similarities among data points. 

This approach functions on a centroid-based paradigm, 

wherein each cluster is linked to a central point referred to as 

the centroid. The primary aim of K-Means is to enhance the 

clustering of data points so that similar or proximate points are 

aggregated, resulting in cohesive clusters. The procedure 

entails the iterative allocation of data points to the closest 

centroid and the subsequent recalibration of the centroid’s 

location based on the average of the allotted points, finally 

enhancing the clusters until convergence is reached. 

The K-Medoids algorithm [2] is a strong clustering 

technique that resembles K-Means but differs fundamentally 

by employing medoids rather than centroids. A medoid is 

characterized as the most centrally situated point inside a 
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cluster, rendering K-Medoids very proficient in managing 

datasets containing outliers. In contrast to K-Means, which is 

significantly affected by outliers, K-Medoids prioritizes the 

minimization of the aggregate distance between the medoid 

and all other points in the cluster, thus enhancing the 

clustering’s robustness against data anomalies. 

K-Means and K-Medoids are classified as partitioning

methods, a vital group of clustering approaches in data 

analysis. These methods are essential for analyzing and 

comprehending intricate datasets, allowing researchers and 

practitioners to reveal concealed patterns and correlations 

within the data. Utilizing the advantages of these algorithms 

enables the attainment of significant insights and facilitates 

informed decision-making across many applications, 

including market segmentation and image processing. 

The agglomerative clustering technique [3] is distinguished 

for its effective bottom-up methodology in clustering. It 

commences with each individual data point regarded as a 

separate cluster. As the algorithm advances, it methodically 

consolidates these clusters according to their intrinsic 

commonalities, thereby creating larger and more significant 

groupings. The iterative merging procedure persists until it 

fulfills a user- defined condition or until all clusters 

amalgamate into a singular cohesive cluster. A dendrogram, 

resembling a tree structure, functions as a visual representation 

of the hierarchical clustering process. This graphic represents 

individual data points as leaf nodes and clusters as root nodes, 

offering a clear comprehension of the relationships and 

hierarchies within the data. 

CLARA [4], an acronym for “Clustering Large 

Applications,” represents a significant advancement in the k-

medoids (PAM) methodology. It is intended to facilitate the 

management of datasets containing numerous objects, 

typically exceeding several thousand observations. This novel 

method proficiently tackles the issues related to computational 

duration and memory capacity through the utilization of a 

strategic sampling methodology. By choosing representative 

samples from the dataset, CLARA can execute clustering 

without processing the complete dataset simultaneously, thus 

optimizing the clustering procedure and improving efficiency. 

CLARANS [5], an acronym for Clustering Large 

Applications based on Randomized Search, is a unique 

partitioning technique for clustering, especially beneficial in 

geographical data mining. This method is proficient in 

revealing patterns and relationships inherent in spatial datasets, 

which may encompass distance-related, directionally related, 

or topological information, such as data depicted on a road 

map. CLARANS employs advanced spatial data mining 

algorithms to identify and categorize patterns, hence 

enhancing understanding of the geographical relationships 

among data points. BIRCH [6], or Balanced Iterative Reducing 

and Clustering utilizing Hierarchies, is an innovative 

multiphase clustering technique that functions through two 

essential phases: the formation of the Clustering Feature (CF) 

Tree and the implementation of global clustering. The initial 

phase focuses on compressing extensive datasets into more 

compact, denser areas known as CF vectors. This approach 

accomplishes substantial data reduction while encapsulating 

three critical summary statistics: count (N), linear sum (LS), 

and squared sum (SS), to accurately depict densely packed 

sub-clusters. The resultant CF Tree establishes a multilevel 

hierarchy that effectively consolidates smaller clusters into 

bigger, more complete entities, employing the notion of vector 

addition to optimize clustering efficiency. 

DBSCAN [7], which stands for Density-Based Spatial 

Clustering of Applications with Noise, is an innovative 

technique that employs the distances among data points to 

create clusters. It functions according to two essential 

parameters: minPts and ε. The minPts option specifies the 

lowest number of points necessary to form a valid cluster, 

whilst the ε parameter establishes the maximum distance 

within which points are regarded as belonging to the same 

cluster. The procedure commences by randomly selecting a 

point from the dataset and finding all surrounding points 

within the ε distance. If the quantity of nearby points meets or 

surpasses the minPts level, they are collectively considered 

part of the same cluster. This procedure is recursively 

implemented for all sites identified within the cluster. If the 

quantity of nearby points is insufficient to meet the minPts 

criterion, the algorithm designates that point as an outlier. The 

classification procedure persists until each point in the dataset 

has been assessed and categorized, culminating the 

algorithm’s function after all points have been designated as 

either belonging to a cluster or classified as outliers. OPTICS, 

an acronym for Ordering Points to Identify the Clustering 

Structure, is a robust density-based clustering method that 

resembles DBSCAN yet offers the exceptional capability to 

identify clusters of diverse densities and geometries. This 

capacity is especially beneficial for identifying clusters with 

varying densities in large, high-dimensional datasets. The core 

premise of OPTICS [8] is to clarify the clustering structure of 

a dataset by recognizing density-connected points. The 

algorithm carefully creates a density- based representation of 

the data using an ordered list of points referred to as the 

reachability plot. Every item in this list is linked to a 

reachability distance, measuring the accessibility of that item 

from other places in the collection. Points with comparable 

reachability distances are likely to be part of the same cluster, 

hence improving the overall efficacy and precision of the 

clustering process. 

The objective of this work is to determine the most accurate 

clustering method, utilizing a dataset that includes class values 

solely for the purpose of assessing algorithmic accuracy. 

Evaluation measures are employed  to  examine  the  quality 

of clustering findings. These measures assess the internal 

coherence of clusters and the inter-cluster separation. 

Prevalent evaluation criteria comprise the Rand Index, 

adjusted Rand Index, silhouette score, Davies-Bouldin index, 

among others. We employed these methods to ascertain the 

efficiency of the algorithms presented in this research. 

A confusion matrix [9] is an effective instrument that offers 

a detailed overview of a machine learning model’s efficacy, 

especially regarding classification tasks. This matrix visually 

represents the counts of true positives, true negatives, false 

positives, and false negatives generated by the model on a 

specified test dataset. Through the analysis of these values, 

practitioners can obtain insights into the model’s performance, 

pinpointing specific areas of proficiency or deficiency. The 

confusion matrix is particularly advantageous for assessing 

classification models that seek to allocate categorical labels to 

input examples, facilitating a detailed comprehension of the 

model’s predicted performance. The Rand Index is a vital 

indicator for evaluating the effectiveness of clustering 

methods. Clustering, an unsupervised machine learning 

technique, aims to aggregate analogous data points into unified 

clusters. The Rand Index assesses the quality of clusters by 

evaluating the concordances and discordances between pairs 

of data points in the predicted clusters relative to those in the 
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actual clusters. The Rand Index [10] produces a singular 

numerical score that represents the ratio of agreements, 

offering a definitive measure of the clustering algorithm’s 

efficacy. This metric is essential for assessing the similarity 

across diverse clustering results, enabling researchers to 

evaluate the efficacy of different approaches or algorithms 

utilized in the analysis. The Adjusted Rand Index (ARI) [10] 

refines the Rand Index by incorporating a correction for chance 

agreements in the comparison of clusterings. This 

modification is especially crucial in situations when the 

quantity of clusters or their dimensions may occur solely by 

random chance, as the conventional Rand Index may yield 

deceptive outcomes in these circumstances. The Adjusted 

Rand Index computes the Rand Index while considering the 

anticipated degree of similarity between two random 

clusterings of an identical dataset. This enhances the ARI as a 

more robust instrument for clustering analysis, enabling a 

more precise evaluation of the alignment of clusters generated 

by various methods with one other or with reference clustering, 

also known as the ground truth. Another essential statistic in 

the evaluation of clustering quality is the silhouette coefficient. 

This metric analyzes the suitability of each data point’s 

assignment to its respective cluster by measuring two essential 

aspects: cohesion and separation. Cohesion relates to how 

closely associated a data point is to other points within the 

same cluster, while separation denotes how distinctly a point 

is positioned compared to points in other clusters. The 

silhouette coefficient varies from -1 to 1, with a value 

approaching 1 indicating effective clustering, a value around 0 

implying possible cluster overlap, and a value close to -1 

suggesting potential misclassification of the point. A superior 

silhouette score indicates effective clustering, characterized by 

distinct boundaries between clusters and cohesive groups 

within them. A diminished score may indicate errors, such as 

incorrect point assignments to clusters or overlapping clusters. 

The Davies-Bouldin Index (DBI) [11] is a crucial indicator for 

assessing the validity of clustering solutions. This index 

computes the average similarity between each cluster and its 

most analogous cluster, based on two essential elements: 

within-cluster distance and between-cluster distance. The 

within-cluster distance represents the mean distance from data 

points to their corresponding cluster centroid, whereas the 

inter-cluster distance quantifies the distance between the 

centroids of distinct clusters. The DBI is calculated as the mean 

of the greatest similarity ratios for each cluster, with a larger 

similarity ratio signifying inadequate separation and 

delineation of clusters. A reduced DBI value signifies a more 

effective clustering solution. To utilize the DBI for assessing 

clustering results, one may calculate the index across different 

clustering techniques or parameter configurations and juxta- 

pose the findings. The clustering approach with the lowest 

Davies-Bouldin Index (DBI) is deemed the most successful. 

The DBI can aid in identifying the ideal number of clusters for 

a dataset. By graphing DBI values against varying cluster 

counts, analysts can discern the “elbow point,” characterized 

by a substantial decline in DBI, succeeded by a plateau. This 

point represents the ideal equilibrium between intra-cluster 

similarity and inter-cluster dissimilarity, assisting practitioners 

in determining the suitable number of clusters for their data 

analysis. 

A confusion matrix is a matrix that encapsulates the 

performance of a machine learning model on a certain set of 

test data. It serves to illustrate the quantity of correct and 

incorrect examples depending on the model's predictions. It is 

frequently utilized to assess the efficacy of classification 

algorithms designed to predict a categorical label for each 

input occurrence. 

Accuracy serves as a metric to evaluate the model’s 

performance. It is the proportion of accurate occurrences to the 

total instances. 

The Rand Index is a statistic employed to assess the efficacy 

of a clustering method. Clustering is an unsupervised machine 

learning technique employed to aggregate analogous data into 

a singular cluster, with the Rand Index indicating the efficacy 

of the clustering process. It evaluates the accumulation of data 

point pairs within the expected cluster compared to the actual 

cluster. The Rand Index yields a singular score reflecting the 

degree of concordance between the two groups. 

The Rand Index is a metric used to assess the similarity 

between two distinct data clusterings. It evaluates the degree 

of concordance between the clusters generated by two distinct 

methods or algorithms. 

However, the Rand Index does not account for the potential 

of accidental agreements between the two parties. The 

Adjusted Rand Index (ARI) is frequently employed to address 

unpredictability. The Adjusted Rand Index (ARI) enhances the 

Rand index to produce a statistic that can take on negative 

values when the agreement is below what random chance 

would predict, but a value of 1 indicates total agreement. 

The Adjusted Rand Index (ARI) is an enhancement of the 

Rand index (RI) that accounts for randomness in assessing the 

similarity of two data clusterings. This measure is utilized in 

clustering analysis to evaluate the concordance of clusters 

generated by various approaches or algorithms with one 

another or with a reference clustering (ground truth). 

In scenarios where the quantity or dimensions of clusters in 

the dataset may arise by random chance, the Rand Index may 

produce deceptive outcomes. The Adjusted Rand Index 

mitigates this drawback by accounting for random agreements. 

It calculates the Rand Index, considering the anticipated 

resemblance between two random clusterings of identical data. 

The silhouette coefficient measures the extent to which each 

data point corresponds with its assigned cluster. It incorporates 

data concerning both cohesion (the closeness of a data point to 

other points within its cluster) and separation (the distance of 

a data point from points in different clusters). 

The coefficient ranges from -1 to 1, where a value close to 

1 indicates well-clustered data points, a value near 0 suggests 

overlapping clusters, and a value near -1 signifies misclassified 

data points. 

An elevated silhouette score [12] indicates that the data 

points are well-clustered, demonstrating clear separation 

across clusters and robust cohesiveness within each cluster. A 

reduced silhouette score suggests that the grouping may lack 

precision, marked by overlapping groups or points improperly 

allocated to their respective clusters. 

The Davies-Bouldin index (DBI) is a statistic for cluster 

validity that measures the average similarity between each 

cluster and its nearest counterpart. Similarity is assessed based 

on two criteria: intra-cluster distance and inter-cluster distance. 

The within-cluster distance is the average distance of data 

points in a cluster to its centroid. The between-cluster distance 

denotes the separation between the centroids of two separate 

clusters. 

The DBI denotes the average of the maximum similarity 

ratios for each cluster. The similarity ratio is determined by 

dividing the sum of within-cluster distances by the distance 

between clusters. A high similarity ratio signifies that the 
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clusters exhibit insufficient separation or definition. A 

diminished DBI indicates a more optimal clustering solution. 

What is the procedure for employing the DBI to evaluate 

your clustering solution? One can calculate the DBI for 

different clustering methodologies or parameters and conduct 

a comparison analysis. The alternative with the minimal DBI 

is the most advantageous. The DBI can be employed to 

determine the optimal number of clusters for your dataset. One 

can plot the DBI values for different cluster metrics and 

discern the elbow point, where the DBI exhibits a significant 

decrease followed by a plateau. This is the optimal number of 

clusters that balance intra-cluster similarity and inter-cluster 

dissimilarity. 

The above algorithms are being used in this paper as they 

are rooted in their ability to perform unsupervised learning 

effectively, allowing them to discover hidden patterns and 

natural groupings in data without the need for labeled 

examples. These algorithms are highly versatile, working 

across different domains and data types, and can handle 

multidimensional datasets, making them useful for 

exploratory data analysis, segmentation, and pattern 

recognition. They help in simplifying complex data by 

organizing it into clusters, which can improve interpretability 

and support downstream tasks like classification or anomaly 

detection. Additionally, many of these methods are available 

in popular machine learning libraries, making them accessible 

and practical for real-world applications. Together, they offer 

a balance of efficiency, scalability, robustness to noise, and 

adaptability to various data structures.  

2. LITERATURE REVIEW

Huang et al. [13] presented a novel dual GHSOM (Growing 

Hierarchical Self-Organizing Map) approach for detecting 

fraudulent financial reporting (FFR) and extracting relevant 

features from financial data. They utilize a dataset of 762 

financial statements from 144 publicly traded companies in 

Taiwan, identifying 72 fraudulent and 72 non-fraudulent 

samples. The study demonstrates that the topological patterns 

of FFR can effectively distinguish between fraudulent and 

non-fraudulent samples, achieving promising results in 

classification and feature extraction. The proposed method 

shows effectiveness with Type I and Type II errors below 20%, 

indicating reliable decision support for identifying potential 

FFR categories. 

The study conducted experiments using real fraudulent 

financial reporting (FFR) statements to validate the proposed 

dual GHSOM approach, demonstrating its effectiveness in 

detecting FFR and extracting relevant features. The 

experimental results indicated that the topological patterns of 

FFR follow a non-fraud-central spatial relationship, 

suggesting the potential of these patterns for effective FFR 

detection. The classification results of the dual GHSOM 

approach were compared with other methods, showing its 

superiority in identifying fraudulent samples and extracting 

salient characteristics of fraud behaviors. 

Li et al. [14] presented an integrated approach for automatic 

cluster detection, optimization, and interpretation in financial 

data, addressing the complexity of human behaviors and data 

distributions. They introduce a new cluster quality evaluation 

criterion that guides base clustering algorithms to detect hyper- 

ellipsoidal clusters adaptively. The proposed method includes 

a revised support vector data description model to refine 

cluster centroids and scopes, enhancing interpretability. 

Experiments on ten financial datasets demonstrate the 

algorithm’s efficiency in identifying a reasonable number of 

clusters suitable for financial mining tasks. 

The study proposed a new clustering approach called Ad- 

Ellip, which effectively detects hyperellipsoidal clusters in 

financial data. Ada-Ellip demonstrated superior performance 

in terms of cluster quality evaluation, achieving reasonable 

cluster numbers and tight clusters with high data point 

similarities. The algorithm was notably faster than traditional 

methods, making it suitable for large-scale financial datasets. 

Ten financial benchmark datasets were used to show that Ada- 

Ellip is good at automatically finding and interpreting clusters, 

which makes it useful for tasks like fraud detection and credit 

evaluation. 

Thiprungsri and Vasarhelyi [15] explored the use of cluster 

analysis for anomaly detection in accounting, specifically in 

auditing group life insurance claims. They identify 

discrepancies by grouping claims with similar characteristics 

and flagging small- population clusters for further 

investigation. The dataset consists of 208 attributes related to 

claims, with 169 identified as possible anomalies based on 

cluster membership probabilities. The study emphasizes the 

importance of domain knowledge in evaluating clustering 

results and suggests that cluster analysis can enhance fraud 

detection techniques in auditing. 

The study identified a total of 169 claims as possible 

anomalies based on cluster-based outliers. It was determined 

that 568 claims had a probability of less than 0.6 of belonging 

to their assigned clusters, marking them as potential anomalies. 

The clustering procedure utilized simple K-means, resulting in 

eight clusters from a dataset of 40,080 claims paid in the first 

quarter of 2009. The analysis revealed that clusters with small 

populations exhibited unusual characteristics, such as high 

interest-to-beneficiary payment percentages and extended 

periods between death dates and payment dates. 

Tatusch et al. [16] presented a novel approach to detecting 

financial restatements using a modified, dynamic version of 

the DBSCAN clustering algorithm. They analyze data from 

9300 companies over a 20-year period (1998–2017) to identify 

restatements based on four definitions. The modified DBSCAN 

algorithm excels in precision, achieving over 50% accuracy in 

classifying firm-years as restatement or non-restatement years. 

The study highlights the importance of data processing 

methods over sheer data volume in improving detection 

efficiency. The paper presents a modified version of the 

DBSCAN clustering algorithm, achieving over 50% 

accuracy with just two or three features. The model 

demonstrates high efficiency in detecting restatement years 

compared to non-restatement years. Precision values vary, 

with the best performance noted at 65.6% for original data 

and 56.7% for processed features. The results indicate that 

non-restatements are generally better identified than 

restatements, highlighting the model’s strengths in precision 

over accuracy. Overall, the approach outperforms prior 

methods in identifying financial restatements. 

Herman et al. [17] investigated the financial performance of 

Hungarian and Romanian food retail companies using two 

clustering methods: K-Mean and K-Medoid. The paper 

highlights that the choice of clustering method significantly 

influences the assessment of financial performance, with K- 

Means producing a wider variety of groups and K-Medoid 

offering more balanced results. The research emphasizes the 

necessity of cluster analysis for large databases with variable 
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quantitative data to achieve accurate results. The findings 

suggest that careful selection of clustering methods is crucial 

depending on the data and research objectives. 

The study revealed that the K-Mean and K-Medoid 

clustering methods yield different results when evaluating the 

financial performance of Hungarian and Romanian food retail 

companies. The K-Mean method produced a greater variety of 

groups and a larger range of results, reflecting significant 

fluctuations in values. Conversely, the K-Medoid method 

resulted in more uniform group distributions and was less 

sensitive to outliers, providing a more balanced evaluation. 

The analysis confirmed the necessity of cluster analysis for 

large databases with variable quantitative data to achieve 

accurate results. 

Huang et al. [18] presented a machine learning-based K- 

Means clustering method aimed at enhancing financial fraud 

detection in an increasingly digital financial landscape. The 

paper highlights the limitations of traditional rule-based 

detection methods, emphasizing the adaptability and precision 

of machine learning approaches. By clustering large volumes 

of transaction data, the method identifies anomalous patterns 

and behaviors, facilitating timely fraud detection. The re- 

search aims to improve resource allocation within financial 

institutions, focusing monitoring efforts on high-risk areas to 

mitigate fraud’s impact. Overall, the study contributes to 

establishing a more secure transaction environment in the 

finance industry. 

The paper demonstrates that the K-Means clustering 

algorithm is effective in financial fraud detection, revealing 

distinct clusters of fraudulent and non-fraudulent transactions. 

The analysis indicates that the fda model outperforms the 

xgbTree model in identifying fraudulent transactions, with 

sensitivity of 99.72 and 98.28, respectively. The clustering 

results show that most fraud cases are concentrated in one 

specific cluster, while other clusters contain minimal fraud 

cases. The study emphasizes the importance of cluster analysis 

in understanding fraud patterns and improving detection 

methods within financial institutions. 

Deng and Mei [19] designed a clustering model V-KOSM 

combining SOM and K-Means clustering, which is based upon 

a cluster validity measure, the silhouette index. This model 

takes advantage of SOM where the results of SOM were 

applied to K-Means by avoiding one of the disadvantages of 

SOM (unclear clustering boundaries of nodes). As there is no 

consistency in the results every time the silhouette index is 

applied to validate the results. 100 financial statements of 

Chinese companies are chosen between 1999 and 2006. 

47 financial ratios were selected as recognition variables. 

When the V-KOSM method was applied, the results ranged in 

accuracy from 0.79 to 0.89. In this process, only financial 

ratios were taken, and if non-financial ratios were taken, the 

accuracy could have been increased. 

The experimental results indicated that the V-KSOM model 

achieved an average accuracy rate of 89 percent in detecting 

fraudulent financial statements (FFS) from the tested data. The 

best performance was noted with a silhouette index value of 

0.2707, which corresponded to 46 correctly identified 

fraudulent cases out of 50. In comparison, traditional methods 

like hierarchical clustering and k-means clustering yielded 

lower accuracy rates, not exceeding 85 percent. The study 

emphasized the importance of using a clustering validity 

measure, such as the silhouette index, to enhance the model’s 

effectiveness. 

Sabau [20] surveyed clustering techniques applied in 

financial fraud detection over the twelve years, highlighting 

the increasing importance of data mining methods in 

combating fraud. It emphasizes the effectiveness of clustering, 

particularly k-means and its variants, in identifying fraudulent 

activities through data segmentation. The research 

encompasses both standalone and hybrid approaches, 

showcasing various applications and methodologies used in the 

literature. The findings underline the necessity of 

understanding fraud definitions and taxonomies to enhance 

detection and prevention strategies. 

The paper surveys various clustering techniques applied in 

financial fraud detection over a span of twelve years, from 

2000 to 2011, highlighting the increasing relevance of data 

mining methods in this field. It identifies k-means and its 

variations as the most commonly used clustering methods for 

outlier detection in fraudulent transactions. The research also 

categorizes the literature into standalone and hybrid techniques, 

emphasizing the importance of real datasets for quantifiable 

results. Additionally, it discusses the significance of 

understanding fraud definitions and taxonomies for effective 

detection and prevention strategies [9, 10]. 

3. RESEARCH AND DISCUSSION

In this paper, we use different clustering algorithms to 

compare the accuracy of the algorithms that split the data into 

fraudulent and non-fraudulent types. As the methodology we 

use is unsupervised, we assume to get less accuracy over the 

different algorithms used. For this purpose, we use partitioning 

methods (K-Means, K-Medoids (CLARA, CLARANS)), 

hierarchical methods (AGNES), and density-based methods 

(DBSCAN). 

The dataset we have used is taken from GitHub and consists 

of 1,46,045 records, out of which 1,45,081 records are non- 

fraudulent, and 964 records are fraudulent. It contains fraud 

labels, feature variables, and related variables (e.g., fyear, 

gvkey, and p aaer). The variable “misstate” is the fraud label 

(1 denotes fraud, and 0 denotes non-fraud). The dataset 

contains 28 raw accounting variables and 14 financial ratio 

variables. Initially, the data cleaning methods were used to 

preprocess the dataset. Firstly, the blank data has been 

removed from the dataset. Secondly the duplicate data records 

were also removed in the process of data cleaning. 

In the related work, we have tried to generate clusters with 

2 divisions (clusters) where all the objects fall into either of the 

2 cluster categories fraudulent or non-fraudulent. As per the 

problem statement, we have used 3 different sizes of datasets, 

which we call low end, middle end, and high end. Depending 

upon execution permits, we take different counts for the above 

sizes that may vary over different algorithms. Low end 

represents the small sized dataset, middle end represents 

average sized dataset, and high end represents large sized 

dataset. Basically these 3 dataset sizes have been taken as input 

to check the performance of the algorithms over different sizes 

of the datasets. As for the results, we have taken the average 

accuracy of up to 5 different data instances. We have 

calculated the above average accuracy for 3 different sized 

datasets as mentioned above. Finally, we have taken overall 

average of the 3 sized results to get single result for each 

algorithm [12-15].  

We have used confusion matrix to calculate accuracy 

among different algorithms. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

where, TP = true positive, TN = true negative, FP = false 

positive and FN = false negative. We get the accuracy results 

as shown in Table 1. 

Table 1. The accuracy results 

Accuracy 

K Means 0.987 

K Medoids 0.931 

Agglomerative 0.981 

CLARA 0.939 

CLARANS 0.712 

BIRCH 0.984 

The algorithms that generate higher accuracy predict correct 

partitions into clusters. So, the algorithms k-Means, K-

Medoids, Agglomerative, CLARA, and BIRCH performed 

well, which got more than 0.9 on the scale of 1 [16]. 

Then random index score is calculated for all the selected 

algorithms. The random index is calculated using the formula 

𝑅 =
𝑎 + 𝑏

𝑛/2

where, a=the count of element pairs that belong to the same 

cluster; b=the count of element pairs that are assigned to 

different clusters; n/2=total count of element pairs in the 

dataset. 

The results are tabulated in Table 2. 

Table 2. Results of RIS 

Random Index Score (RIS) 

K Means 0.974 

K Medoids 0.872 

Agglomerative 0.964 

CLARA 0.893 

CLARANS 0.653 

BIRCH 0.969 

DBSCAN 0.956 

OPTICS 0.982 

According to random index score method, higher the 

random index score means more accurate clusters they 

generate. As per the results K-means, Agglomerative, BIRCH, 

DBSCAN, OPTICS generates better values for random index 

score above 0.9 on a scale of 1 [17]. 

Next adjusted random index score is calculated for the 

selected algorithms. 

Adjusted random index score is calculated using the 

formula: 

𝐴𝑅𝐼 =
𝑅 − 𝐸

Max(𝑅) − 𝐸

where, R=The Rand index value (as defined previously), 

E=The expected value of the Rand index for random clusters, 

Max(R)=The maximum achievable value of the Rand index 

(always 1). 

The results are shown in Table 3. 

When we check these results, we find that DBSCAN, 

OPTICS, and CLARANS generate optimal results. Here in 

calculating Adjusted random index score, less the score means 

more the cluster accuracy the algorithms generate [18]. 

Table 3. Results of ARIS 

Adjusted Random Index Score (ARIS) 

K Means 0.012 

K Medoids 0.018 

Agglomerative 0.016 

CLARA 0.013 

CLARANS 0.009 

BIRCH 0.014 

DBSCAN -0.009

OPTICS 0.007

Next, we tested the algorithms with silhouette score. The 

formula for calculating silhouette score is: 

𝑆(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max (𝑎(𝑖), 𝑏(𝑖))

where, 𝑎(𝑖) =
1

|𝐶(𝑖)|−1
 ∑ 𝑑(𝑖, 𝑗)𝐶(𝑖),𝑖≠𝑗 , and 𝑏(𝑖) =

𝑚𝑖𝑛𝑖≠𝑗 (
1

|𝐶(𝑖)|
 ∑ 𝑑(𝑖, 𝑗)𝑗∈𝐶(𝑗) ), C(i) is the cluster assigned to

the ith data point and d(i,j) is the distance between data points 

i, j.  

The results for silhouette scores are given in Table 4. 

Table 4. Results of SS 

Silhouette Score (SS) 

K Means 0.965 

K Medoids 0.884 

Agglomerative 0.957 

CLARA 0.894 

CLARANS 0.212 

BIRCH 0.961 

DBSCAN -0.825

OPTICS 0.975

Table 5. Results of DBS 

Davies Bouldin Score (DBS) 

K Means 0.609 

K Medoids 0.901 

Agglomerative 0.617 

CLARA 0.823 

CLARANS 3.251 

BIRCH 0.584 

DBSCAN 1.628 

OPTICS 0.601 

As per silhouette score method the result near to 1 

represents better clustering partition and near -1 represents 

worst clustering partition. When we check the results, we find 

K-Means, Agglomerative, BIRCH, and OPTICS generate

better clusters when number of clusters are taken as 2(because

as per the requirement we need to take only 2 clusters

fraudulent and non-fraudulent) [19].

Finally, we tested the algorithms with Davies Bouldin score 

method. The formula to calculate Davies Bouldin score index 

is 

𝐷𝐵 =
1

𝑘
 ∑ max (

Δ(𝑋𝑖) + Δ(𝑋𝑗)

𝛿(𝑋𝑖 , 𝑋𝑗)
)

𝑘

𝑖=1
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where, ΔXk is the intra cluster distance within the cluster Xk. 

δ(Xi, Xj) is the intercluster distance between the clusters Xi and 

Xj. The results of Davies Bouldin score are given in Table 5. 

Figure 1. Clustering algorithms with their performance 

evaluation 

As per Davies Bouldin score method less index represents 

good clustering, and data is well clustered. according to the 

results we observe that K Means, Agglomerative, BIRCH, and 

OPTICS generate better results over other algorithms. 

We will now have an overall summary of the results. The 

average performance measures were recorded. The results 

generated by the K-Means algorithm are accuracy of 0.987, 

random index score of 0.974, adjusted random index score of 

0.012, silhouette score of 0.965, and Davis Bouldin score of 

0.609. The results of K-Medoids are accuracy 0.931, random 

index score 0.872, adjusted random index score 0.018, 

silhouette score 0.884, and Davis Bouldin score 0.901. The 

results of the agglomerative clustering method are accuracy 

0.981, random index score 0.964, adjusted random index score 

0.016, silhouette score 0.957, and Davies Bouldin score 0.617. 

The results of CLARA are accuracy 0.939, random index score 

0.893, adjusted random index score 0.013, silhouette score 

0.894, and Davis Bouldin score 0.823. The results recorded for 

CLARANS are accuracy 0.712, random index score 0.653, 

adjusted random index score 0.009, silhouette score 0.212, and 

David Bouldin score 3.251. The results for BIRCH are 

accuracy 0.984, random index score 0.969, adjusted random 

index score 0.014, silhouette score 0.961, and Davis Bouldin 

score 0.584. The results for DBSCAN are random index score 

0.956, adjusted random index score -0.009, silhouette score -

0.825, and Davis Bouldin score 1.628. The results for OPTICS 

are random index score 0.982, adjusted random index score 

0.007, silhouette score 0.975, and Davis Bouldin score 0.601. 

The graphical representations of the above results 

algorithmically are given in Figure 1. and the evaluation 

methodically in Figure 2. 

When we consolidated all the results, we added the best 

performances of the algorithms in Table 6 which shows the 

best algorithms that perform well in different methods we 

compare. 
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Figure 2. Performance evaluation of different evaluation 

methods 

Table 6. The best performances of the algorithms 

Algorithm 
Proved Best with 

Methods 

Total Best 

Performances 

K-Means
accuracy, RIS, SS, 

DBS 
4 

K-Medoids accuracy 1 

Agglomerative 
accuracy, RIS, SS, 

DBS 
4 

CLARA accuracy 1 

CLARANS ARIS 1 

BIRCH 
accuracy, RIS, SS, 

DBS 
4 

DBSCAN RIS, ARIS 2 

OPTICS ARIS, SS, DBS 3 
Note: RIS: Random Index Score; ARIS: adjusted random index score;  

SS: Silhouette Score; DBS: Davies Bouldin score

So, from above table we find that K-Means, Agglomerative, 

BIRCH, and OPTICS algorithms generate better clusters and 

were proved true with at least 3 methods out of 5 used for 

testing. Moreover, we remove K-Means and Agglomerative 

algorithms from the list as they do not support large sized 

datasets, and we are searching for better algorithms that suits 

well for huge datasets. After overall comparison, we can 

conclude that among the clustering methods tested, BIRCH 

and OPTICS algorithms are found to be performing well over 

large datasets to detect the fraudulent statements over the given 

dataset. 

4. CONCLUSION

In conclusion, this in-depth study of a wide range of 

clustering algorithms—including well-known ones like k-

means, k-medoids, agglomerative clustering, CLARA, 

CLARANS, BIRCH, DBSCAN, and OPTICS—shows both 

the pros and cons of each method when it comes to finding 

complex patterns that are signs of financial fraud in all its 

forms. This study gives us a lot of useful information about the 

clustering techniques that work best for finding fraud in 

financial systems. It does this by carefully judging their 

performance against a wide range of criteria, such as their 

ability to scale, their resistance to noise, and their ability to 

recognize complex non-linear structures. The results of this in-

depth study suggest that while traditional methods like k-

means and agglomerative clustering may be better in terms of 

simplicity and speed, more advanced algorithms like 

DBSCAN and OPTICS consistently show a higher level of 

performance when it comes to managing and analyzing 

complex datasets that often have a lot of noise and different 

densities, which is what happens in real life. Finally, the result 

shows that BIRCH and OPTICS algorithms outperformed 

other algorithms in different accuracy reports. This large body 

of research ultimately makes a meaningful contribution to the 

ongoing efforts to improve the tools used to detect fraud in 

financial systems. This makes it possible to create more 

advanced analytical methods that can effectively adapt to the 

constantly changing nature of fraud activities. 
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