
Modified Lightweight Advanced Encryption Standard for Lightweight Embedded
Applications

Andi Sama1* , Meyliana2 , Yaya Heryadi1 , Taufik Roni Sahroni3

1 Computer Science Department BINUS Graduate Program - Doctor of Computer Science, Bina Nusantara University, Jakarta
11480, Indonesia
2 Information System Department School of Information System, Bina Nusantara University, Jakarta 11480, Indonesia
3 Industrial Engineering Department BINUS Graduate Program-Master of Industrial Engineering, Bina Nusantara University,
Jakarta 11480, Indonesia

Corresponding Author Email: andi.sama@binus.ac.id

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.150415 ABSTRACT

Received: 16 February 2025
Revised: 16 March 2025
Accepted: 22 March 2025
Available online: 30 April 2025

Cryptography enables data integrity, authentication, non-repudiation, and confidentiality.
AES, the Advanced Encryption Standard, is part of data confidentiality in cryptography
and among the strongest and most effective for implementation difficulty and security for
block cipher – the symmetric algorithm that encrypts and decrypts plaintext using the
same key. Lightweight AES is a modified AES for lightweight applications like
Embedded Systems or the Internet of Things (IoT). Research suggested modifications to
128-bit AES for lightweight applications prioritizing MixColumns, SubBytes, ShiftRows,
round reduction, and Key expansion. This paper presents MLAES, the modified
lightweight 128-bit AES, by modifying subsets of AES components: the S-box table
within the SubBytes function and the MixColumns constants within the MixColumns
function, including reductions to number of rounds. Although using a different method,
the findings conclude that the MLAES algorithm, which is evaluated on the same dataset
consisting of plaintexts and keys as the state-of-the-art, has the result of an average
avalanche effect at 53.6719%. MLAES is 0.6250% better than state-of-the-art
(53.0469%).

Keywords:
advanced encryption standard, AES, AES
modification, embedded applications,
lightweight cryptography

1. INTRODUCTION

ICS, as part of Industry 4.0, is defined as in study [1]
"supervisory and regulatory control systems used to control
production systems within a local area, such as a factory, using
centralized data acquisition".

The focus of IT security for a long time has been the CIA
[2-4]. However, integrity and availability are the top priorities
for OT security [5], followed by confidentiality, with safety
being considered, like ensuring data flow security [6].

As part of OT, such as in manufacturing facilities, ICS
consists of specially made devices (embedded systems, such
as SoC or hardware-based FPGA [7]) with unique
characteristics: low-cost and constrained memory, processing,
and I/O. Cryptographic features are generally absent from
embedded systems [2].

The Guide for OT Security (Protect, Data Security in Cyber
Security framework) suggests encrypting data to guarantee its
integrity and confidentiality in transit and at rest. The guide is
one of the standards set by the NIST [5].

To prevent unauthorized exposure, ISO/IEC 62443
mandates maintaining the secrecy of information on
communication channels (data in transit) and data repositories
(data at rest). ISA99, developed by ISA, merged with ISO/IEC
27001 and became ISO/IEC 62443.

Secrecy is the goal of cryptography [8]. The word "cryptos"
comes from the Greek word "Kryptos," which means "secret
or hidden." Cryptography makes data confidentiality (it's a
secret), authentication and access control (truly believes that
this is you), non-repudiation (the sender cannot deny that they
sent the message), and data integrity (tamper-proof, the
information we receive is the same as it was sent) possible.

According to study [9], symmetric encryption encrypts and
decrypts plaintext using a single key, i.e., the same key is used
for both processes. The symmetric algorithm is sometimes
called the shared-key algorithm since the same key is utilized
for encryption and decryption.

Asymmetric encryption encrypts and decrypts plaintext
using distinct keys [9]. The second key decrypts the ciphertext,
while the first encrypts the plaintext. The first and second keys
have a mathematical relationship.

1.1 Confusion and diffusion

In paper [10], Shannon described the properties of
confusion and diffusion. Encryption is based on these two
characteristics.

Confusion means that the ciphertext (the encrypted message)
looks very different from the plaintext. The process should be
non-linear, with no easily recognizable pattern. Confusion

International Journal of Safety and Security Engineering
Vol. 15, No. 4, April, 2025, pp. 787-796

Journal homepage: http://iieta.org/journals/ijsse

787

https://orcid.org/0009-0005-1700-7051
https://orcid.org/0000-0003-4142-4312
https://orcid.org/0000-0001-7966-2573
https://orcid.org/0000-0002-8497-3947
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.150415&domain=pdf

complicates the relationship between the key and ciphertext.
A cipher with confusion should work, such as each bit in the
ciphertext, depending on the many bits in the key.

Diffusion means that many characters change in the
ciphertext if we change a character in the plaintext. The
ciphertexts will differ significantly even if there is a change in
only one character in the plaintext. Diffusion spreads out the
statistical structure of the plaintext. A cipher with diffusion
should work such that changing any bit of the plaintext results
in a change of about 50% of the ciphertext.

A good cipher should have both confusion and diffusion.
“In block ciphers, the common techniques to achieve
confusion and diffusion are substitution boxes, permutations,
and key expansion” [11].

1.2 Advanced Encryption Standard (AES)

Numerous symmetric and asymmetric encryption
techniques exist. When it was discovered to be weak, the
widely used symmetric algorithm DES/3DES was replaced
[12]. AES is a strong symmetric block cipher [9, 13] with
alternative block sizes for key lengths of 128 (16 Bytes), 192
(24 Bytes), or 256 bits (32 Bytes). Many cryptographic
services, particularly those that guarantee data confidentiality,
are built on block ciphers.

For instance, when using a block cipher with a 128-bit block
size, the plaintext and the key must be equally divided into 16-
byte blocks for encryption. To finish the last block, the
remaining bytes less than 16 will be expanded to 16 bytes
using padding, with the selected pattern. Every block goes
through independent encryption and decryption [11].

Table 1 summarizes the key lengths of three AES algorithm
variations.

Table 1. Three key lengths of AES algorithm

AES Algorithm Key Length (BITs) # of Round
AES-128 128 10
AES-192 192 12
AES-256 256 14

In today's environment, when numerous IoT devices need
to connect wirelessly, LWC is an important and rapidly
expanding field. IoT devices need simple methods for
communication security because they have limited resources.
LWC is a set of encryption technology solutions that include
low-complexity computing devices.

It seeks to increase the use of cryptography on low-resource
devices while maintaining high security [11].

AES is regarded as one of the strongest and most effective
algorithms in terms of implementation difficulty and security
[13]. According to studies [13-15], and others, modifying the
current AES algorithm for lightweight applications is possible.
This includes hardware implementations like voice message
encryption in FPGA [16], compact AES-like S-box
implementation in FPGA [17], and compact 8-bit S-box
implementation for generic hardware [18].

The top three research topics in experimentation are the IoT
as the platform, OT—On-Premises as the environment, and
laboratory as experiment deployment. For the AES key length
selection, the research trend focused on 128 bits. Out of 23
articles, research trends on AES algorithm component
modification include modifying the MixColumns (47.83%)
[16, 19-28], SubBytes (30.43%) [21, 24, 26-29], ShiftRows
(21.74%) [23, 24, 26, 28, 30], reducing the number of rounds

(17.39%) [19, 25, 28, 31], and Key expansion (13.04%) [24,
26, 29].

The top three effects of modifying the AES algorithm to its
performance as lightweight AES are speed/time, hardware
design efficiency, and the avalanche effect.

An increase in the avalanche effect translates to an increase
in security for the AES algorithm [32]. However, this area of
research has been underexplored.

The state-of-the-art [32, 33] stated that the average
avalanche effect was 53.0469%, 4.2969% better for plaintext
bitflip than AES. The author provided the dataset in 10 sets of
16-byte plaintext pairs, in which the second plaintext has a
bitflip of the first plaintext. The dataset includes a single 16-
byte key.

This study has three research questions (RQ). RQ 1: “What
are the AES-128 components to modify for a lightweight and
better AES in terms of increased security? RQ2: “What are the
metrics to measure such an algorithm?” RQ3: “Can the
modified algorithm be better than the state of the art?”

This paper's main theoretical contribution is the Modified
Lightweight AES-128 algorithm, or MLAES, aimed at low-
power, lightweight computing platforms. MLAES is more
secure than the state-of-the-art, outperforming it by 0.6250%.
The practical contribution is the possible implementation of
MLAES for low-power, lightweight embedded computing
systems, such as PLC or the IoT.

The structure of the paper is shown in Figure 1. The
introduction comes first, then the method and main results, and
finally, the discussion and conclusion parts. There are three
steps in the method: reverse engineering of AES-128,
restructuring the AES-128 by modifying selected components
(S-box table, MixColumns, and round) for increased security
and lightweight, and measuring the increase in security with
hamming distance and the avalanche effect.

Figure 1. Paper organization

2. METHOD

Figure 2 illustrates that the experiment involves three stages.
First, we seek to understand how the AES algorithm works and
the potential modifications of its components to achieve better
security and lightweight applications. Second, we modify the
selected components.

788

Figure 2. Experiment method

Finally, using MLAES, we calculate the hamming distance

and avalanche effect using the dataset [32, 33]. The average
avalanche effect difference over a data series is compared to
the state-of-the-art.

The AES-128 source code [34] with the C programming
language, a Notepad++ editor, and the GCC compiler on the
Windows 11 OS are supporting tools for modifying the AES-
128 to MLAES.

2.1 Dataset

The same single 16-byte key, 11111111111111111110 (in
hexadecimal), and ten sets of 16-byte plaintexts, 16-byte
plaintexts with bitflip, and ciphertexts from the reference
paper are used throughout the experiment.

2.2 Stage 1 - Select AES-128 components to modify

The overall structure of AES-128 (encryption, from
plaintext to ciphertext; and decryption, from ciphertext to
plaintext) is shown in Figure 3 [11].

The AddRoundKey function performs the XOR operation
of the plaintext with the corresponding AES key generated
from the Key expansion function.

During encryption, the SubBytes function substitutes the
current value of each byte taken from the S-box ta, and the 16
by 16 table contains one hexadecimal byte to provide
confusion. Decryption uses the InvS-box table [11].

Row 0 of the input state is kept unchanged in the ShiftRows
transformation, while the other three rows, r = 1, 2, and 3, are
all rotated to the left by r byte(s). This guarantees that one
column's four bits are distributed across four distinct columns
[11].

Strong diffusion is provided by the MixColumns function,
which uses a linear function to work on the state column-by-
column during encryption. In the input state, every byte in a
column is substituted by twice that byte, three times the
subsequent byte, the subsequent byte, and the subsequent byte

in the column. Each column circularly uses bytes. During
decryption, the InvMixColumns function reverses the
MixColumns transformation [11].

2.3 Stage 2 - MLAES, modification of the AES-128
algorithm

The modifications to the AES-128 algorithm are only for
selected components: the S-Box table within the SubBytes
function, the MixColumns function, and the number of rounds.

The KeyExpansion and Shiftrows functions are kept
unchanged in their original form.

2.3.1 Modification to S-box table

The changes are made only to the S-box table. The
SubBytes function, which generates confusion using the S-box
table, is kept unchanged.

S-box transformation function:

𝑌𝑌 = (𝑋𝑋2 + √(𝑋𝑋3.14)) 𝑚𝑚𝑚𝑚𝑚𝑚 16 (1)

Eq. (1) defines the S-box transformation function. By
swapping the rows and columns at the center coordinates, the
16-row by 16-column AES S-box table, consisting of 1 byte
each (unsigned), is transformed into the MLAES S-box table.

Table 2. The center coordinates (X, Y)

X Y

X Y

X Y
0 0 5 5 10 9
1 2 6 4 11 4
2 6 7 6 12 1
3 14 8 10 13 1
4 8 9 0 14 3

 15 7

Table 3. The center coordinates in the S-box table

 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Table 2 lists all calculated center coordinates. X represents

rows containing unsigned bytes running from 0 to 15
sequentially. Y represents the columns 𝑋𝑋,𝑌𝑌 ∈ {0. .15}. For X
= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15, the
formula calculated Y = 0, 2, 6, 14, 8, 5, 4, 6, 10, 0, 9, 4, 1, 1,
3, 7, in sequence, respectively.

Please refer to Table 3, which illustrates all the calculated
center coordinates (highlighted).

Each value in the MLAES S-box table (Table 4) contains an
unsigned byte consisting of two nibbles (the first 4 bits and the

789

second 4 bits). This is the index to perform byte substitution in
the MLAES SubBytes function.

Algorithm 1 illustrates how the S-box transformation
function works.

For example, let’s see the illustration of the first byte
entering the SubBytes function (in AES and MLAES, the input
to the SubBytes function is 128-bit, and the output is also 128-
bit).

If the first byte is 0x4F (4F in hexadecimal, 01001111 in
binary), then the first nibble is 0x4, and the second nibble is
0xF. The SubBytes function will look at the S-box table to find
the value in row 0x4 and column 0xF.

For the AES-128 (as in Table 3), the value for the selected
row and column is 0x84. Therefore, the first-byte 0x4F input
is transformed to 0x84 first-byte output until the 16th byte (128
bits is 16 bytes).

Likewise, applying the same transformation using the
MLAES S-box table (Table 4), the SubBytes function
transforms 0x4F to 0x41 (row 0x4 and column 0xF in the
MLAES S-box table contain 0x41).

2.3.2 Modification to number of rounds

MLAES reduces the number of rounds from 10 (in AES-
128) to 8 to make it lightweight.

2.3.3 Modification to MixColumns constant

Following the modification of the S-box table and number
of rounds, the MixColumns constant, used by the MixColumns
function, is changed from{2, 3, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 3, 1,
1, 2} as in the AES-128 to {1, 2, 1, 3, 3, 1, 2, 1, 1, 3, 1, 2, 2,
1, 3, 1}.

Algorithm 1: Swapping rows & columns at center
coordinates

Input
 AES S-box table as uint8 sboxArray [16];

Process
First, define center coordinates (X, Y) for swapping rows &
columns of S-box table according to S-box transformation
function (Equation 1), Y = f(X), where X are rows and Y are
columns. The S-box table is 16 by 16 array. X, Y are in decimal.

 For (int i=0; i<16; i++) do

 Y[i] = f(X);

 End
centerRow=X; centerCol=Y;

Then, for every row in the S-box table, from the first row on the
top to the last row at the bottom, switch at the centerRow and
centerColumn.

 For (int i=0; i<16; i++) do
 uint8 temp = sboxArray[centerRow][i];
 sboxArray[centerRow][i] = sboxArray[i][centerCol];
 sboxArray[i][centerCol] = temp;
 End

Output
 MLAES S-box table as uint8 sboxArray [16];

Figure 3. AES-128 algorithm

Table 4. MLAES S-box table

790

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 01 5E 7C 12 14 6B C5 DB F2 A7 30 E7 BA 70 7B 8C
1 81 BD 93 27 C8 D1 A3 9E 83 32 0C 37 25 B5 C7 89
2 D4 A4 F7 72 AF 59 F0 C0 FA A2 AD 4E B4 F6 7D 42
3 DC 66 8E 11 6D ED 8F DF 1A 0A EC AE 8B 1D 28 BB
4 F9 7A 44 E2 7F 20 85 08 C4 02 36 6C E8 61 9B 41
5 CB 4C B1 96 39 FC 5B CF 97 BE 6E D5 A6 03 D9 E6
6 B6 FF 5A 9A 21 6A CC D2 5F DA A0 8D 1C 48 69 BF
7 88 0E 33 94 A9 4D F5 68 34 5C 17 F1 71 D8 31 15
8 3B E3 24 18 B3 06 49 84 7E D6 AC F4 74 57 87 2D
9 EE 95 D0 80 62 53 09 79 E0 D3 67 2B FE D7 AB 76
A 60 5D 90 07 3D 2A 22 73 B8 1B 63 56 DD 35 1E 99
B 6F B9 47 E9 EA 3F 82 0F C2 CD 46 43 50 3C 26 A8
C CA 86 AA CE 13 00 2C B0 3A B7 4F EF C9 3E F8 A1
D DE C1 9C 55 65 4A 10 54 29 91 64 1F 4B 78 EB 8A
E 04 23 05 C3 19 58 2F 75 E4 E1 0B FB 98 2E B2 0D
F 51 40 38 F3 BC 9D 92 16 E5 77 A5 45 FD C6 9F 52

Table 5 illustrates the 4×4 matrix for these two
MixColumns constants. On the left is the MixColumns
constant used by AES 128-bit, and on the right is the
MixColumns constant used by MLAES 128-bit.

Table 5. MixColumns constants for AES and MLAES

AES 128-bits MLAES 128-bits
2 3 1 1 1 2 1 3
1 2 3 1 3 1 2 1
1 1 2 3 1 3 1 2
3 1 1 2 2 1 3 1

2.4 Stage 3 - Measure hamming distance, avalanche effect

2.4.1 Hamming Distance (HD)
Eq. (2) illustrates the formula for HD: the number of bits

changed in the ciphertext from the corresponding bit in the
plaintext.

Calculating hamming distance:

𝐻𝐻𝐻𝐻 = ∑ (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 𝑋𝑋𝑋𝑋𝑋𝑋 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛)𝑁𝑁𝑁𝑁−1
𝑛𝑛=0 (2)

NB is the total number of bits in either ciphertext1 or
ciphertext2, counted as 1 if the corresponding bit in the
ciphertext1 and ciphertext2 are different; otherwise, it is 0. For
AES-128, NB is 128, so the counter n runs from 0 to 127.
plaintext1 and plaintext2 are the inputs to the cipher (AES or
MLAES) before being converted to ciphertext1 and
ciphertext2.

Ciphertext1 and ciphertext2 are the encrypted formats of
plaintext1 and plaintext2. Because AES is a block cipher, NB
(plaintext) = NB (ciphertext).

2.4.2 Avalanche Effect (AE)
The avalanche effect is a desirable cipher effect typically

found in block ciphers and cryptographic hash functions. In
this way, if the input is changed slightly, the output changes
significantly. “Changing a few bits in the plaintext results in a
lot of changes in the ciphertext, which is known as avalanche
effect, i.e., a small change in either the key or the plaintext
should cause a drastic change in the ciphertext” [11].

For example, the output changes significantly if we change
one bit in the input. Every single bit of the output depends on
every bit of the input.

The formalization of the avalanche effect, the “strict
avalanche criterion,” states that a change in a single bit of the
input results in changes in each output bit with a probability of
50%.

Calculating the avalanche effect:

𝐴𝐴𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁
𝑇𝑇𝑇𝑇𝑇𝑇

 ∗ 100% (3)

The AES shows a strong avalanche effect [35]. A significant
modification to the algorithm has even been explored,
although it deviated significantly from the original AES
algorithm [36].

Eq. (3) illustrates the formula to calculate the avalanche
effect [33], AE.

NBC is the number of bits changed between two ciphertexts
based on the original plaintext and the plaintext after the bitflip.
For AES-128, NBC <= NB. NB is 128 for AES-128. NB is the
total number of bits in the plaintext. TNB is the total number
of bits in the ciphertext. Since AES is a block cipher, the
number of bits of plaintext equals to the number of bits of the
ciphertext.

3. RESULTS AND DISCUSSION

The hamming distance and average avalanche effect for the
AES-128 are illustrated in Table 6. The average avalanche
effect of 50.3906% fulfills Shannon’s confusion and diffusion
properties, in which changing any bit of the plaintext results in
a change of about 50% of the ciphertext.

MLAES extends the average avalanche effect to more than
what is provided by the AES-128.

3.1 AES component modifications in MLAES

Following the modifications of selected components of the
AES-128 (modified the S-box table within the SubBytes
function, the MixColumns function with selected
MixColumns constant, and the number of rounds), the results
for hamming distance and average avalanche effect over a
series of datasets for MLAES are listed in Table 7.

The average avalanche effect with the MLAES S-box table,
round reduction to 8, and the selected matrix constant is
53.6719%.

Reducing the round to less than eight does not improve the
average avalanche effect.

Keeping the same MLAES S-box table and round = 8 and
further experimenting with different combinations of
MixColumns constants does not improve the average
avalanche effect to more than 53.6719%.

There are other MixColumns constants when applied with
MLAES, however, resulting in an average avalanche effect
precisely the same as the reference paper [33] of 53.0469%,
although using a different approach to modify the AES-128
components.

The reference paper chose a different method to modify
AES-128. Only one component, the MixColumns function,
was modified by replacing it with a permutation function that
mapped 128-bit input to 128-bit output. The remaining
components, including the number of rounds, were kept
unchanged: key expansion, SubBytes, and ShiftRows.

Table 6. Hamming distance and avalanche effect for AES

791

Test Plaintext (hex) Ciphertext (hex) HD AE (%)

1 123456789abcdef0123456789abcdef0 171434671d73293b813735a3f0729fbf

 123456789abcdef0123456789abcdef1 136ed3e12aae2b10c0816c286ba91095 65 50.7813

2 112233445566778899aabbccddeeff00 d0eaf9d89e42dd3997b755aae1fb9ac0

 112233445566778899aabbccddeeff01 d337dd2f8ed0e59ae5e61e07f886704e 62 48.4375

3 1ee823570972bb0f30d05938c132d612 8a1c6abfb04f7c4f67ec9bbfbabf568c

 1ee823570972bb0f30d05938c132d613 e4c3e8a6b336533e190a9846d1bc344c 64 50.0000

4 e1172357097244f030d059373ecd2944 ef1c0496e756a5e74a995cdad5063f15

 e1172357097244f030d059373ecd2945 0471e37a2c75b2eca64c35d58d089054 69 53.9063

5 00112233445566778899aabbccddeeff a69cc9f963aaf0e581f1bd07c7b6d1ca

 00112233445566778899aabbccddeefe edfa2d406e2e423df2dc75a5cc11abc6 60 46.8750

6 5452555354204e4f204f4e4521585858 dd1a152f9c15d48b0f4bf090434e39db

 5452555354204e4f204f4e4521585859 bd3af1e3898c23a914655ac09b25bd85 57 44.5313

7 4a454e53454e53454154484f41434c41 6ffa9b92f6b843729d7ccb28e626f7cb

 4a454e53454e53454154484f41434c40 6556e5e782aaa58754e5c9db978c07a9 64 50.0000

8 41636c612c4a616b6520526f756b6500 eed141cd534ac474ab5a030f23de5d64

 41636c612c4a616b6520526f756b6501 1e38bd4e53000191c888a84ecde77eb1 63 49.2188

9 41434c414a494e44524f414c57594e4e f79274633d7d5337b043801f752d224f

 41434c414a494e44524f414c57594e4d d780b39ae376ad4a5da6692072895520 76 59.3750

10 4d59204d45535341474520495320494e e5fc7b53f83cdbf3560ce4afb2c6ef87

 4d59204d45535341474520495320494d 8b7b3a8181ab16ea79eba07583c16931 65 50.7813

 Average Avalanche Effect: 50.3906

Table 7. Hamming distance and avalanche effect for MLAES

Test Plaintext (hex) Ciphertext (hex) HD AE (%)

1 123456789abcdef0123456789abcdef0 b7009d3694c0979b4e6f33e519de8e3f

 123456789abcdef0123456789abcdef1 f1ca6c63f27888f12855477285a49508 68 53.1250

2 112233445566778899aabbccddeeff00 c3edfb0c710eda7a67a4fef4ade0797b

 112233445566778899aabbccddeeff01 26ea0ce0352c591b6ac2adee0635fd96 62 48.4375

3 1ee823570972bb0f30d05938c132d612 1a8d2bba3a26cb54e366e9bb4713319d

 1ee823570972bb0f30d05938c132d613 57ff371acc4f1cf62abc5328eff62176 65 50.7813

4 e1172357097244f030d059373ecd2944 5c059dfa55fc5c325e363a25ca924589

 e1172357097244f030d059373ecd2945 87544927888cd008abcbb9ea2038ac7b 76 59.3750

5 00112233445566778899aabbccddeeff c983e69895638b2655dc0b3058ef33d0

 00112233445566778899aabbccddeefe abef8127c23ddf43d8b63ce8bb20d7c1 70 54.6875

6 5452555354204e4f204f4e4521585858 17931e3d9359d2744fbb53a413d072a1

 5452555354204e4f204f4e4521585859 e92cc179380ca28820f5ee5cad6fed58 87 67.9688

7 4a454e53454e53454154484f41434c41 2e15be6de661170077301dc292755e71

 4a454e53454e53454154484f41434c40 2258c98f487375d4e4a2e2bdd8d20784 70 54.6875

8 41636c612c4a616b6520526f756b6500 9b07ad9a41f460cd628b5a7a48cad89e

 41636c612c4a616b6520526f756b6501 1db1d4a8c22758de58f01ecbc27d8bff 62 48.4375

9 41434c414a494e44524f414c57594e4e 231a78b67cd26d76d0b26625b02a29c5

 41434c414a494e44524f414c57594e4d 9eab4d1df3ba616958c8170cad321183 60 46.8750

10 4d59204d45535341474520495320494e d02a02cd32c6a259961ba9ade407b1fb

 4d59204d45535341474520495320494d e2ed29cf8c01f5e07e579c10a459eab4 67 52.3438

 Average Avalanche Effect: 53.6719

The comparison summary on the experiment, using the
dataset from the reference paper (the same set of plaintexts and

key), is provided in Table 8. The table compares average
hamming distances (AvgHD) and average avalanche effects

792

(AvgAE) across plaintexts in the dataset. The table presents
the results from three categories: the results of the reference
paper [33] (for AES, LAES algorithms), results of this paper
(for AES, MLAES algorithms), and the additional results by
the independent cryptographic tool (for the AES algorithm).
The results computed with cryptool2 [37] serve as a reference,
as some of the calculated ciphertexts between the reference
paper and this paper, for the AES algorithm, have different
results. Cryptool2 confirms that the result for the AES
algorithm computed in this paper is the same as calculated
with Cryptool2, for the given dataset.

Table 8. Average hamming distance and average avalanche
effect on plaintext bitflip

Reference Paper AvgHD1) AvgAE2)
AES 62.4000 48.7500

LAES 67.9000 53.0469
This Paper

AES 64.5000 50.3906
MLAES 68.7000 53.6719

Cryptool2
AES 64.5000 50.3906

Figure 4. MLAES Inverse S-box table

Figure 5. A comparison of hamming distances, AES, and
modified AES

The findings summarize that the average avalanche effect in
MLAES is 4.9219% and 0.6250% better than calculated AES
and LAES in the reference paper, respectively.

MLAES's average avalanche effect is 3.2813% better than
the calculated AES in this paper and concurs with the

calculated AES in cryptool2, respectively.
Across the dataset, Figure 4 compares hamming distances

for AES and LAES in the reference paper with AES and
MLAES in this paper, including AES from cryptool2. Figure
5 illustrates the comparison for the avalanche effect, with
highlighted values showing for MLAES.

3.2 Decryption in MLAES

Hamming distance and avalanche effect are all derived from
the encryption process. We have the key with the first plaintext
and, through encryption, produce the first ciphertext. Likewise,
we have the key with the second plaintext producing the
second ciphertext. Then, we calculate the bit differences
between the first ciphertext and the second ciphertext by
observing the number of changed bits from the first ciphertext
to the second ciphertext.

As AES is a symmetric algorithm, we use the same key to
reverse this process to decrypt the ciphertexts and get the
plaintexts. This means getting the first plaintext from the first
ciphertext and the second plaintext from the second ciphertext.

The sequence of executed functions is also reversed. In
encryption, the flow is SubBytes, Shiftrows, and finally,
MixColumns run for several rounds. As in AES, MLAES does
not use MixColumns in the last round.

In decryption, the sequence is reversed. The process starts
from the last round, where no MixColumns function, and
proceeds to the next rounds with MixColumns, Shiftrows, and
SubBytes in sequence.

Note that, in MLAES, there is no modification to the
Shiftrows function.

3.3 Modification to inverse S-box table

Figure 6. A comparison of avalanche effects, AES, and
modified AES

As the encryption process transformed the AES S-box table
to the MLAES S-box table, the decryption process for MLAES
must use the inverse MLAES S-box table. Figure 6 illustrates
the MLAES inverse S-box table.

68
62 65

76
70

87

70
62 60

67

 -

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10

Hamming Distance

 Ref. Paper AES Ref. Paper LAES This Paper AES

 This Paper MLAES Cryptool2

53.1250%

48.4375%
50.7813%

59.3750%

54.6875%

67.9688%

54.6875%

48.4375%
46.8750%

52.3438%

0.0000%

10.0000%

20.0000%

30.0000%

40.0000%

50.0000%

60.0000%

70.0000%

80.0000%

1 2 3 4 5 6 7 8 9 10

Avalanche Effect

Ref. Paper AES Ref. Paper LAES This Paper AES

This Paper MLAES Cryptool2

793

The inverse S-box table is created from the S-box table.
The 16 by 16 byte of S-box table is arranged in rows and
columns. The content of each row and column becomes the
index of the inverse S-box table. The one-byte content of each
cell in the inverse S-box table is the row and column in the S-
box table in which the first nibble is the row; the second nibble
is the column, hence becoming a byte.

3.4 Modification of the inverse MixColumns constant

The inversed MixColumns Constant for MLAES is derived
from the MLAES MixColum Constant. This calculation is not
straightforward as we need to find an inverse matrix in the
Galois field within the finite set of elements, in this case 28,
equal to 256 elements. Table 9 illustrates the AES and MLAES
inverse MixColumns Constants. AES inverse MixColumns
constant has been provided in standard AES, while MLAES
MixColums constants are calculated using the Galois library
[38] in Python.
3.5 Modification to the number of rounds

The number of rounds is eight, as applied in the encryption
process.

Table 9. Inverse MixColumns constants for AES and

MLAES

AES 128-bits MLAES 128-bits
E B D 9 1 3 1 2
9 E B D 2 1 3 1
D 9 E B 1 2 1 3
B D 9 E 3 1 2 1

Table 10 illustrates the dataset with encryption and

decryption results. The encryption process encrypts the
plaintexts and keys, resulting in ciphertexts. Using the same
keys as in the encryption process, the decryption process
decrypts the ciphertexts to restore the original plaintexts.

The restored plaintexts are then compared to the original
plaintexts, byte-by-byte, to ensure all bytes are matched.

Table 10. MLAES, validating encryption and decryption results

Plaintext (P, hex) Ciphertext (C, hex) Decrypted Ciphertext (DC, hex) P=DC?

123456789ABCDEF0123456789ABCDEF0 B7009D3694C0979B4E6F33E519DE8E3F 123456789ABCDEF0123456789ABCDEF0 Match
123456789ABCDEF0123456789ABCDEF1 F1CA6C63F27888F12855477285A49508 123456789ABCDEF0123456789ABCDEF1 Match

112233445566778899AABBCCDDEEFF00 C3EDFB0C710EDA7A67A4FEF4ADE0797
B 112233445566778899AABBCCDDEEFF00 Match

112233445566778899AABBCCDDEEFF01 26EA0CE0352C591B6AC2ADEE0635FD96 112233445566778899AABBCCDDEEFF01 Match
1EE823570972BB0F30D05938C132D612 1A8D2BBA3A26CB54E366E9BB4713319D 1EE823570972BB0F30D05938C132D612 Match
1EE823570972BB0F30D05938C132D613 57FF371ACC4F1CF62ABC5328EFF62176 1EE823570972BB0F30D05938C132D613 Match
E1172357097244F030D059373ECD2944 5C059DFA55FC5C325E363A25CA924589 E1172357097244F030D059373ECD2944 Match
E1172357097244F030D059373ECD2945 87544927888CD008ABCBB9EA2038AC7B E1172357097244F030D059373ECD2945 Match

00112233445566778899AABBCCDDEEFF C983E69895638B2655DC0B3058EF33D0 00112233445566778899AABBCCDDEEFF Match
00112233445566778899AABBCCDDEEF

E ABEF8127C23DDF43D8B63CE8BB20D7C1 00112233445566778899AABBCCDDEEF
E Match

5452555354204E4F204F4E4521585858 17931E3D9359D2744FBB53A413D072A1 5452555354204E4F204F4E4521585858 Match
5452555354204E4F204F4E4521585859 E92CC179380CA28820F5EE5CAD6FED58 5452555354204E4F204F4E4521585859 Match
4A454E53454E53454154484F41434C41 2E15BE6DE661170077301DC292755E71 4A454E53454E53454154484F41434C41 Match
4A454E53454E53454154484F41434C40 2258C98F487375D4E4A2E2BDD8D20784 4A454E53454E53454154484F41434C40 Match
41636C612C4A616B6520526F756B6500 9B07AD9A41F460CD628B5A7A48CAD89E 41636C612C4A616B6520526F756B6500 Match
41636C612C4A616B6520526F756B6501 1DB1D4A8C22758DE58F01ECBC27D8BFF 41636C612C4A616B6520526F756B6501 Match
41434C414A494E44524F414C57594E4E 231A78B67CD26D76D0B26625B02A29C5 41434C414A494E44524F414C57594E4E Match
41434C414A494E44524F414C57594E4D 9EAB4D1DF3BA616958C8170CAD321183 41434C414A494E44524F414C57594E4D Match
4D59204D45535341474520495320494E D02A02CD32C6A259961BA9ADE407B1FB 4D59204D45535341474520495320494E Match
4D59204D45535341474520495320494D E2ED29CF8C01F5E07E579C10A459EAB4 4D59204D45535341474520495320494D Match

4. CONCLUSION AND FUTURE WORK

4.1 Conclusion

This research paper proposes a lightweight, modified
Advanced Encryption algorithm, MLAES, based on the AES
algorithm.

The increase in security is measured with the Hamming
distance and the avalanche effect. The findings conclude that
the average avalanche effect in MLAES (53.6719%), tested
with the same dataset, is compared to the state-of-the-art result
(53.0469%), showing MLAES is 0.6250% better.

This has answered RQ1: Some possible components of
AES-128 to modify are the S-box table within SubBytes and
MixColumns, including reducing the number of rounds. RQ2:
The metrics to measure for better security are Hamming
distance and Avalanche effect. RQ3: Evaluated on the same
dataset, MLAES shows a 0.6250% improvement in the

measured average avalanche effect (53.6719%), meaning
better security than state-of-the-art (53.0469%).

The AES algorithm is the foundation for the MLAES
algorithm (128 bits). Its primary design goal is quick, safe, and
effective for a lightweight device. Except for Key expansion
and ShiftRows, the changes are restricted to the S-box table in
SubBytes, MixColumns, and round components.

One practical implication of this research is using MLAES
for low-power embedded systems, such as edge computing
and Internet of Things devices.

4.2 Limitations

The modification of the AES algorithm is based on AES
with a 128-bit key, AES-128. As the standard, AES supports
different key variations, AES-192 and AES-256. The
algorithm modifications of AES with a 192-bit key and AES
with a 256-bit key are not within the scope of this study.

794

4.3 Future work

Future theoretical research on algorithm enhancements may
include exploring transformations in an S-box table within
SubBytes with different S-box transformation functions.
Modifying the ShiftRows and MixColumns algorithms is
another possible area. All algorithm modifications shall
consider lightweight computing power and limited resources
in embedded systems.

Future practical implementation research may include
implementing the MLAES algorithm on edge computing or
IoT devices. MLAES can strengthen the security of data
transfers between SCADA and MES or SCADA and PLC
systems in Industry 4.0, for example, and it can also include
connectivity to other external systems such as IoT devices or
even the Cloud.

REFERENCES

[1] Buchanan, S.S. (2022). Cyber-attacks to industrial
control systems since stuxnet: A systematic review.
Capitol Technology University.

[2] Alrumaih, T.N., Alenazi, M.J., AlSowaygh, N.A.,
Humayed, A.A., Alablani, I.A. (2023). Cyber resilience
in industrial networks: A state of the art, challenges, and
future directions. Journal of King Saud University-
Computer and Information Sciences, 35(9): 101781.
https://doi.org/10.1016/j.jksuci.2023.101781

[3] Canonico, R., Sperlì, G. (2023). Industrial cyber-physical
systems protection: A methodological review.
Computers & Security, 135: 103531.
https://doi.org/10.1016/j.cose.2023.103531

[4] Yoo, H., Ahmed, I. (2019). Control logic injection
attacks on industrial control systems. In ICT Systems
Security and Privacy Protection: 34th IFIP TC 11
International Conference, SEC 2019, Lisbon, Portugal,
pp. 33-48. https://doi.org/10.1007/978-3-030-22312-0_3

[5] Stouffer, K., Pease, M., Tang, C., Zimmerman, T.,
Pillitteri, V., Lightman, S., Hahn, A., Saravia, S., Sherule,
A., Thompson, M. (2023). NIST Special Publication
NIST SP 800-82r3 Guide to Operational Technology
(OT) Security. NIST: Gaithersburg, MD, USA.
https://doi.org/10.6028/NIST.SP.800-82r3

[6] Jayalaxmi, P., Saha, R., Kumar, G., Kumar, N., Kim, T.H.
(2021). A taxonomy of security issues in Industrial
Internet-of-Things: Scoping review for existing solutions,
future implications, and research challenges. IEEE
Access, 9: 25344-25359.
https://doi.org/10.1109/ACCESS.2021.3057766

[7] Patnala, T.R., Jayanthi, D., Majji, S., Valleti, M.,
Kothapalli, S., Karanam, S.R. (2020). A modernistic way
for KEY generation for highly secure data transfer in
ASIC design flow. In 2020 6th International Conference
on Advanced Computing and Communication Systems
(ICACCS), Coimbatore, India, pp. 892-897.
https://doi.org/10.1109/ICACCS48705.2020.9074200

[8] Mishra, R., Bhanodiya, P. (2015). A review on
steganography and cryptography. In 2015 International
Conference on Advances in Computer Engineering and
Applications, Ghaziabad, India, pp. 119-122.
https://doi.org/10.1109/ICACEA.2015.7164679

[9] Rahmani, M.K.I. (2021). Cryptographic Algorithms and

Protocols. A Step Towards Society 5.0: Research,
Innovations, and Developments in Cloud-Based
Computing Technologies, pp. 11-20. CRC Press.
https://doi.org/10.1201/9781003138037-2

[10] Shannon, C.E. (1949). Communication theory of secrecy
systems. The Bell System Technical Journal, 28(4): 656-
715. https://doi.org/10.1002/J.1538-
7305.1949.TB00928.X

[11] Mammeri, Z. (2024). Cryptography: Algorithms,
Protocols, and Standards for Computer Security. Wiley.
https://doi.org/10.1002/9781394207510

[12] Dworkin, M.J. (2023). Advanced Encryption Standard
(AES). https://doi.org/10.6028/NIST.FIPS.197-upd1

[13] John, S. (2023). Advanced encryption standard modified
for cryptographic applications. International Research
Journal of Modernization in Engineering Technology
and Science, 5(8): 2188-2197.
https://doi.org/10.56726/IRJMETS44294

[14] Cecchinato, N., Toma, A., Drioli, C., Oliva, G., Sechi, G.,
Foresti, G.L. (2022). A secure real-time multimedia
streaming through robust and lightweight AES
encryption in UAV networks for operational scenarios in
military domain. Procedia Computer Science, 205: 50-57.
https://doi.org/10.1016/J.PROCS.2022.09.006

[15] Lavanya, R., Karpagam, M. (2020). Enhancing the
security of AES through small scale confusion operations
for data communication. Microprocessors and
Microsystems, 75: 103041.
https://doi.org/10.1016/J.MICPRO.2020.103041

[16] Kumar, K., Ramkumar, K.R., Kaur, A. (2022). A
lightweight AES algorithm implementation for
encrypting voice messages using field programmable
gate arrays. Journal of King Saud University-Computer
and Information Sciences, 34(6): 3878-3885.
https://doi.org/10.1016/J.JKSUCI.2020.08.005

[17] Malal, A., Tezcan, C. (2024). FPGA-friendly compact
and efficient AES-like 8 × 8 S-box. Microprocessors and
Microsystems, 105: 105007.
https://doi.org/10.1016/J.MICPRO.2024.105007

[18] Rashidi, B. (2021). Compact and efficient structure of 8-
bit S-box for lightweight cryptography. Integration, 76:
172-182. https://doi.org/10.1016/J.VLSI.2020.10.009

[19] Illy, A., Yélémou, T., Tall, H., Dandjinou, T.M. (2022).
An improvement of the AES protocol to optimize energy
consumption in IoT. In 2022 IEEE Multi-conference on
Natural and Engineering Sciences for Sahel's Sustainable
Development (MNE3SD), Ouagadougou, Burkina Faso,
pp. 1-5.
https://doi.org/10.1109/MNE3SD53781.2022.9723173

[20] Gamido, H.V. (2020). Implementation of a bit
permutation-based advanced encryption standard for
securing text and image files. Indonesian Journal of
Electrical Engineering and Computer Science, 19(3):
1596-1601.
https://doi.org/10.11591/ijeecs.v19.i3.pp1596-1601

[21] Lakshmi, M.B., Murthy, P.K. (2024). Modified advanced
encryption standard for more secure communication.
Journal of Emerging Technologies and Innovative
Research, 7(11): 226-233.

[22] Devi, K.Y., Chakravarthy, V.V.S.S.S. (2020). Design of
light weight encryption algorithm for data privacy in
light weight devices using 128 bit key. International
Journal of Research, 7(5): 221-229.

[23] Mohammad, H.M., Abdullah, A.A. (2022).

795

Enhancement process of AES: A lightweight
cryptography algorithm-AES for constrained devices.
TELKOMNIKA (Telecommunication Computing
Electronics and Control), 20(3): 551-560.
https://doi.org/10.12928/telkomnika.v20i3.23297

[24] Fadhil, M.S., Farhan, A.K., Fadhil, M.N. (2021). A
lightweight AES algorithm implementation for secure
IoT environment. Iraqi Journal of Science, 62(8): 2759-
2770. https://doi.org/10.24996/ijs.2021.62.8.29

[25] Qabajeh, L., Tahboub, R., AbuJoodeh, M. (2023). A new
lightweight AES for IoT. 2023 International Conference
on Information Technology (ICIT), Amman, Jordan, pp.
397-404.
https://doi.org/10.1109/ICIT58056.2023.10226005

[26] Fadhil, M.S., Farhan, A.K., Fadhil, M.N., Al-Saidi, N.M.
(2020). A new lightweight AES using a combination of
chaotic systems. In 2020 1st. Information Technology to
Enhance E-Learning and Other Application (IT-ELA,
Baghdad, Iraq, pp. 82-88. https://doi.org/10.1109/IT-
ELA50150.2020.9253099

[27] Vaz, Y.S., Mattos, J.C., Soares, R.I. (2023). Improving
an ultra lightweight AES for IoT applications. In 2023
IEEE 9th World Forum on Internet of Things (WF-IoT),
Aveiro, Portugal, pp. 1-6. https://doi.org/10.1109/WF-
IoT58464.2023.10539597

[28] Vimalkumar, J., Babu, H.R., Bhaskar, M. (2023). FPGA
implementation of modified lightweight 128-Bit AES
algorithm for IoT applications. In 2023 IEEE
International Symposium on Smart Electronic Systems
(iSES), Ahmedabad, India, pp. 306-309.
https://doi.org/10.1109/iSES58672.2023.00069

[29] Purohit, S., Deshpande, V., Ingale, V. (2023). FPGA
implementation of the AES algorithm with lightweight
LFSR-based approach and optimized key expansion. In
2023 IEEE International Conference on Public Key
Infrastructure and its Applications (PKIA), Bangalore,
India, pp. 1-7.
https://doi.org/10.1109/PKIA58446.2023.10262697

[30] Hammod, D.N. (2022). Modified lightweight AES based
on replacement table and chaotic system. In 2022
International Congress on Human-Computer Interaction,
Optimization and Robotic Applications (HORA),
Ankara, Turkey, pp. 1-5.
https://doi.org/10.1109/HORA55278.2022.9799804

[31] Abdalrazzaq, A.S., Alabady, S.A. (2022). Design and
implementation of a lightweight and fast tiny advanced
encryption standard algorithm. Jordan Journal of
Electrical Engineering, 8(4): 340.
https://doi.org/10.5455/jjee.204-1658696772

[32] Salman, R.S., Farhan, A.K., Shakir, A. (2022).
Lightweight modifications in the Advanced Encryption
Standard (AES) for IoT applications: A comparative
survey. In 2022 International Conference on Computer
Science and Software Engineering (CSASE), Duhok,
Iraq, pp. 325-330.
https://doi.org/10.1109/CSASE51777.2022.9759828

[33] Acla, H.B., Gerardo, B.D. (2019). Security analysis of
lightweight encryption based on advanced encryption
standard for wireless sensor networks. In 2019 IEEE 6th
International Conference on Engineering Technologies
and Applied Sciences (ICETAS), Kuala Lumpur,

Malaysia, pp. 1-6.
https://doi.org/10.1109/ICETAS48360.2019.9117387

[34] Wu, M. Understanding AES & Rijndael.
https://github.com/matt-wu/AES/tree/master, accessed
on Dec. 14, 2024.

[35] Webster, A.F., Tavares, S.E. (2000). On the design of S-
boxes. In Advances in Cryptology-CRYPTO'85. Lecture
Notes in Computer Science, 523-534.
https://doi.org/10.1007/3-540-39799-X_41

[36] Kalaiselvi, R.C., Vennila, S.M. (2021). Security
enhancement using custom-AES and its performance
evaluation on avalanche effect-A new approach.
INDIAN Journal of Computer Science and Engineering,
12(3): 591-597.
https://doi.org/10.21817/indjcse/2021/v12i3/211203092

[37] Esslinger, B., Kopal, N., Wacker, A. CrypTool 2: An
Open-Source E-Learning Project for Cryptography and
Cryptanalysis. https://www.cryptool.org/en/ct2/,
https://github.com/CrypToolProject/CrypTool-2,
accessed on Dec. 16, 2024.

[38] Python Software Foundation, “galois PyPI,”
https://pypi.org/project/galois/, accessed on Dec. 22,
2024.

NOMENCLATURE

3DES Triple DES
AES Advanced Encryption Standard
CIA Confidentiality, Integrity, and Availability
CPU Central Processing Unit
DES Data Encryption Standard
FPGA Field Programmable Gate Array
GCC Gnu Compiler Collection
HD Hamming Distance
ICS Industrial Control Systems
I/O Input/Output
IoT Internet of Things
IIoT Industrial IoT
IEC International Electrotechnical Commission
ISA Industrial Automation and Control Systems

Security
ISA99 International Society of Automation
ISO International Standard Organization
LWC Lightweight Cryptography
IT Information Technology
LAES Lightweight AES
MES Manufacturing Execution System
MLAES Modified LAES
NBC Number of bits changed
NIST National Institute of Standards and

Technology
OT Operational Technology
OS Operating System
PLC Programmable Logic Controller
RQ Research Question
SCADA Supervisory Control and Data Acquisition
SoC System on Chip
TNB Total number of bits
XOR eXclusive OR

796

	1. Introduction

