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Cryptography enables data integrity, authentication, non-repudiation, and confidentiality. 
AES, the Advanced Encryption Standard, is part of data confidentiality in cryptography 
and among the strongest and most effective for implementation difficulty and security for 
block cipher – the symmetric algorithm that encrypts and decrypts plaintext using the 
same key. Lightweight AES is a modified AES for lightweight applications like 
Embedded Systems or the Internet of Things (IoT). Research suggested modifications to 
128-bit AES for lightweight applications prioritizing MixColumns, SubBytes, ShiftRows,
round reduction, and Key expansion. This paper presents MLAES, the modified
lightweight 128-bit AES, by modifying subsets of AES components: the S-box table
within the SubBytes function and the MixColumns constants within the MixColumns
function, including reductions to number of rounds. Although using a different method,
the findings conclude that the MLAES algorithm, which is evaluated on the same dataset
consisting of plaintexts and keys as the state-of-the-art, has the result of an average
avalanche effect at 53.6719%. MLAES is 0.6250% better than state-of-the-art
(53.0469%).
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1. INTRODUCTION

ICS, as part of Industry 4.0, is defined as in study [1]
"supervisory and regulatory control systems used to control 
production systems within a local area, such as a factory, using 
centralized data acquisition". 

The focus of IT security for a long time has been the CIA 
[2-4]. However, integrity and availability are the top priorities 
for OT security [5], followed by confidentiality, with safety 
being considered, like ensuring data flow security [6]. 

As part of OT, such as in manufacturing facilities, ICS 
consists of specially made devices (embedded systems, such 
as SoC or hardware-based FPGA [7]) with unique 
characteristics: low-cost and constrained memory, processing, 
and I/O. Cryptographic features are generally absent from 
embedded systems [2]. 

The Guide for OT Security (Protect, Data Security in Cyber 
Security framework) suggests encrypting data to guarantee its 
integrity and confidentiality in transit and at rest. The guide is 
one of the standards set by the NIST [5]. 

To prevent unauthorized exposure, ISO/IEC 62443 
mandates maintaining the secrecy of information on 
communication channels (data in transit) and data repositories 
(data at rest). ISA99, developed by ISA, merged with ISO/IEC 
27001 and became ISO/IEC 62443. 

Secrecy is the goal of cryptography [8]. The word "cryptos" 
comes from the Greek word "Kryptos," which means "secret 
or hidden." Cryptography makes data confidentiality (it's a 
secret), authentication and access control (truly believes that 
this is you), non-repudiation (the sender cannot deny that they 
sent the message), and data integrity (tamper-proof, the 
information we receive is the same as it was sent) possible.  

According to study [9], symmetric encryption encrypts and 
decrypts plaintext using a single key, i.e., the same key is used 
for both processes. The symmetric algorithm is sometimes 
called the shared-key algorithm since the same key is utilized 
for encryption and decryption. 

Asymmetric encryption encrypts and decrypts plaintext 
using distinct keys [9]. The second key decrypts the ciphertext, 
while the first encrypts the plaintext. The first and second keys 
have a mathematical relationship. 

1.1 Confusion and diffusion 

In paper [10], Shannon described the properties of 
confusion and diffusion. Encryption is based on these two 
characteristics. 

Confusion means that the ciphertext (the encrypted message) 
looks very different from the plaintext. The process should be 
non-linear, with no easily recognizable pattern. Confusion 
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complicates the relationship between the key and ciphertext. 
A cipher with confusion should work, such as each bit in the 
ciphertext, depending on the many bits in the key. 

Diffusion means that many characters change in the 
ciphertext if we change a character in the plaintext. The 
ciphertexts will differ significantly even if there is a change in 
only one character in the plaintext. Diffusion spreads out the 
statistical structure of the plaintext. A cipher with diffusion 
should work such that changing any bit of the plaintext results 
in a change of about 50% of the ciphertext. 

A good cipher should have both confusion and diffusion. 
“In block ciphers, the common techniques to achieve 
confusion and diffusion are substitution boxes, permutations, 
and key expansion” [11]. 

1.2 Advanced Encryption Standard (AES) 

Numerous symmetric and asymmetric encryption 
techniques exist. When it was discovered to be weak, the 
widely used symmetric algorithm DES/3DES was replaced 
[12]. AES is a strong symmetric block cipher [9, 13] with 
alternative block sizes for key lengths of 128 (16 Bytes), 192 
(24 Bytes), or 256 bits (32 Bytes). Many cryptographic 
services, particularly those that guarantee data confidentiality, 
are built on block ciphers. 

For instance, when using a block cipher with a 128-bit block 
size, the plaintext and the key must be equally divided into 16-
byte blocks for encryption. To finish the last block, the 
remaining bytes less than 16 will be expanded to 16 bytes 
using padding, with the selected pattern. Every block goes 
through independent encryption and decryption [11]. 

Table 1 summarizes the key lengths of three AES algorithm 
variations. 

Table 1. Three key lengths of AES algorithm 

AES Algorithm Key Length (BITs) # of Round 
AES-128 128 10 
AES-192 192 12 
AES-256 256 14 

In today's environment, when numerous IoT devices need 
to connect wirelessly, LWC is an important and rapidly 
expanding field. IoT devices need simple methods for 
communication security because they have limited resources. 
LWC is a set of encryption technology solutions that include 
low-complexity computing devices.  

It seeks to increase the use of cryptography on low-resource 
devices while maintaining high security [11]. 

AES is regarded as one of the strongest and most effective 
algorithms in terms of implementation difficulty and security 
[13]. According to studies [13-15], and others, modifying the 
current AES algorithm for lightweight applications is possible. 
This includes hardware implementations like voice message 
encryption in FPGA [16], compact AES-like S-box 
implementation in FPGA [17], and compact 8-bit S-box 
implementation for generic hardware [18]. 

The top three research topics in experimentation are the IoT 
as the platform, OT—On-Premises as the environment, and 
laboratory as experiment deployment. For the AES key length 
selection, the research trend focused on 128 bits. Out of 23 
articles, research trends on AES algorithm component 
modification include modifying the MixColumns (47.83%) 
[16, 19-28], SubBytes (30.43%) [21, 24, 26-29], ShiftRows 
(21.74%) [23, 24, 26, 28, 30], reducing the number of rounds 

(17.39%) [19, 25, 28, 31], and Key expansion (13.04%) [24, 
26, 29].  

The top three effects of modifying the AES algorithm to its 
performance as lightweight AES are speed/time, hardware 
design efficiency, and the avalanche effect.  

An increase in the avalanche effect translates to an increase 
in security for the AES algorithm [32]. However, this area of 
research has been underexplored. 

The state-of-the-art [32, 33] stated that the average 
avalanche effect was 53.0469%, 4.2969% better for plaintext 
bitflip than AES. The author provided the dataset in 10 sets of 
16-byte plaintext pairs, in which the second plaintext has a
bitflip of the first plaintext. The dataset includes a single 16-
byte key.

This study has three research questions (RQ). RQ 1: “What 
are the AES-128 components to modify for a lightweight and 
better AES in terms of increased security? RQ2: “What are the 
metrics to measure such an algorithm?” RQ3: “Can the 
modified algorithm be better than the state of the art?” 

This paper's main theoretical contribution is the Modified 
Lightweight AES-128 algorithm, or MLAES, aimed at low-
power, lightweight computing platforms. MLAES is more 
secure than the state-of-the-art, outperforming it by 0.6250%. 
The practical contribution is the possible implementation of 
MLAES for low-power, lightweight embedded computing 
systems, such as PLC or the IoT. 

The structure of the paper is shown in Figure 1. The 
introduction comes first, then the method and main results, and 
finally, the discussion and conclusion parts. There are three 
steps in the method: reverse engineering of AES-128, 
restructuring the AES-128 by modifying selected components 
(S-box table, MixColumns, and round) for increased security 
and lightweight, and measuring the increase in security with 
hamming distance and the avalanche effect. 

Figure 1. Paper organization 

2. METHOD

Figure 2 illustrates that the experiment involves three stages.
First, we seek to understand how the AES algorithm works and 
the potential modifications of its components to achieve better 
security and lightweight applications. Second, we modify the 
selected components.  
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Figure 2. Experiment method 
 
Finally, using MLAES, we calculate the hamming distance 

and avalanche effect using the dataset [32, 33]. The average 
avalanche effect difference over a data series is compared to 
the state-of-the-art. 

The AES-128 source code [34] with the C programming 
language, a Notepad++ editor, and the GCC compiler on the 
Windows 11 OS are supporting tools for modifying the AES-
128 to MLAES. 
 
2.1 Dataset 
 

The same single 16-byte key, 11111111111111111110 (in 
hexadecimal), and ten sets of 16-byte plaintexts, 16-byte 
plaintexts with bitflip, and ciphertexts from the reference 
paper are used throughout the experiment.  
 
2.2 Stage 1 - Select AES-128 components to modify 
 

The overall structure of AES-128 (encryption, from 
plaintext to ciphertext; and decryption, from ciphertext to 
plaintext) is shown in Figure 3 [11].  

The AddRoundKey function performs the XOR operation 
of the plaintext with the corresponding AES key generated 
from the Key expansion function. 

During encryption, the SubBytes function substitutes the 
current value of each byte taken from the S-box ta, and the 16 
by 16 table contains one hexadecimal byte to provide 
confusion. Decryption uses the InvS-box table [11]. 

Row 0 of the input state is kept unchanged in the ShiftRows 
transformation, while the other three rows, r = 1, 2, and 3, are 
all rotated to the left by r byte(s). This guarantees that one 
column's four bits are distributed across four distinct columns 
[11]. 

Strong diffusion is provided by the MixColumns function, 
which uses a linear function to work on the state column-by-
column during encryption. In the input state, every byte in a 
column is substituted by twice that byte, three times the 
subsequent byte, the subsequent byte, and the subsequent byte 

in the column. Each column circularly uses bytes. During 
decryption, the InvMixColumns function reverses the 
MixColumns transformation [11]. 

 
2.3 Stage 2 - MLAES, modification of the AES-128 
algorithm 
 

The modifications to the AES-128 algorithm are only for 
selected components: the S-Box table within the SubBytes 
function, the MixColumns function, and the number of rounds.  

The KeyExpansion and Shiftrows functions are kept 
unchanged in their original form. 
 
2.3.1 Modification to S-box table 

The changes are made only to the S-box table. The 
SubBytes function, which generates confusion using the S-box 
table, is kept unchanged.  

S-box transformation function:  
 

𝑌𝑌 = (𝑋𝑋2 + √(𝑋𝑋3.14)) 𝑚𝑚𝑚𝑚𝑚𝑚 16 (1) 
 

Eq. (1) defines the S-box transformation function. By 
swapping the rows and columns at the center coordinates, the 
16-row by 16-column AES S-box table, consisting of 1 byte 
each (unsigned), is transformed into the MLAES S-box table. 
 

Table 2. The center coordinates (X, Y) 
 

X Y 

 

X Y 

 

X Y 
0 0 5 5 10 9 
1 2 6 4 11 4 
2 6 7 6 12 1 
3 14 8 10 13 1 
4 8 9 0 14 3 

  15 7 
 

Table 3. The center coordinates in the S-box table 
 

 0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76 
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0 
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15 
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75 
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84 
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF 
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8 
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2 
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73 
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB 
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79 
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08 
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A 
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E 
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF 
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16 

 
Table 2 lists all calculated center coordinates. X represents 

rows containing unsigned bytes running from 0 to 15 
sequentially. Y represents the columns 𝑋𝑋,𝑌𝑌 ∈ {0. .15}. For X 
= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15, the 
formula calculated Y = 0, 2, 6, 14, 8, 5, 4, 6, 10, 0, 9, 4, 1, 1, 
3, 7, in sequence, respectively. 

Please refer to Table 3, which illustrates all the calculated 
center coordinates (highlighted). 

Each value in the MLAES S-box table (Table 4) contains an 
unsigned byte consisting of two nibbles (the first 4 bits and the 
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second 4 bits). This is the index to perform byte substitution in 
the MLAES SubBytes function. 

Algorithm 1 illustrates how the S-box transformation 
function works. 

For example, let’s see the illustration of the first byte 
entering the SubBytes function (in AES and MLAES, the input 
to the SubBytes function is 128-bit, and the output is also 128-
bit). 

If the first byte is 0x4F (4F in hexadecimal, 01001111 in 
binary), then the first nibble is 0x4, and the second nibble is 
0xF. The SubBytes function will look at the S-box table to find 
the value in row 0x4 and column 0xF. 

For the AES-128 (as in Table 3), the value for the selected 
row and column is 0x84. Therefore, the first-byte 0x4F input 
is transformed to 0x84 first-byte output until the 16th byte (128 
bits is 16 bytes). 

Likewise, applying the same transformation using the 
MLAES S-box table (Table 4), the SubBytes function 
transforms 0x4F to 0x41 (row 0x4 and column 0xF in the 
MLAES S-box table contain 0x41). 
 
2.3.2 Modification to number of rounds 

MLAES reduces the number of rounds from 10 (in AES-
128) to 8 to make it lightweight. 
 
2.3.3 Modification to MixColumns constant 

Following the modification of the S-box table and number 
of rounds, the MixColumns constant, used by the MixColumns 
function, is changed from{2, 3, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 3, 1, 
1, 2} as in the AES-128 to {1, 2, 1, 3, 3, 1, 2, 1, 1, 3, 1, 2,  2, 
1, 3, 1}. 

 
Algorithm 1: Swapping rows & columns at center 
coordinates  
 
Input 
  AES S-box table as uint8 sboxArray [16]; 
 
Process 
First, define center coordinates (X, Y) for swapping rows & 
columns of S-box table according to S-box transformation 
function (Equation 1), Y = f(X), where X are rows and Y are 
columns. The S-box table is 16 by 16 array. X, Y are in decimal. 
 
  For (int i=0; i<16; i++) do 

 Y[i] = f(X); 
 

  End 
centerRow=X; centerCol=Y;  

 

 
Then, for every row in the S-box table, from the first row on the 
top to the last row at the bottom, switch at the centerRow and 
centerColumn. 
 
  For (int i=0; i<16; i++) do 
 uint8 temp = sboxArray[centerRow][i]; 
 sboxArray[centerRow][i] = sboxArray[i][centerCol]; 
 sboxArray[i][centerCol] = temp; 
  End 
 
Output 
  MLAES S-box table as uint8 sboxArray [16]; 
 
 

 

 
 

Figure 3. AES-128 algorithm 
 

 
 
 
 

 
 

Table 4. MLAES S-box table 
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0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 01 5E 7C 12 14 6B C5 DB F2 A7 30 E7 BA 70 7B 8C 
1 81 BD 93 27 C8 D1 A3 9E 83 32 0C 37 25 B5 C7 89 
2 D4 A4 F7 72 AF 59 F0 C0 FA A2 AD 4E B4 F6 7D 42 
3 DC 66 8E 11 6D ED 8F DF 1A 0A EC AE 8B 1D 28 BB 
4 F9 7A 44 E2 7F 20 85 08 C4 02 36 6C E8 61 9B 41 
5 CB 4C B1 96 39 FC 5B CF 97 BE 6E D5 A6 03 D9 E6 
6 B6 FF 5A 9A 21 6A CC D2 5F DA A0 8D 1C 48 69 BF 
7 88 0E 33 94 A9 4D F5 68 34 5C 17 F1 71 D8 31 15 
8 3B E3 24 18 B3 06 49 84 7E D6 AC F4 74 57 87 2D 
9 EE 95 D0 80 62 53 09 79 E0 D3 67 2B FE D7 AB 76 
A 60 5D 90 07 3D 2A 22 73 B8 1B 63 56 DD 35 1E 99 
B 6F B9 47 E9 EA 3F 82 0F C2 CD 46 43 50 3C 26 A8 
C CA 86 AA CE 13 00 2C B0 3A B7 4F EF C9 3E F8 A1 
D DE C1 9C 55 65 4A 10 54 29 91 64 1F 4B 78 EB 8A 
E 04 23 05 C3 19 58 2F 75 E4 E1 0B FB 98 2E B2 0D 
F 51 40 38 F3 BC 9D 92 16 E5 77 A5 45 FD C6 9F 52 

Table 5 illustrates the 4×4 matrix for these two 
MixColumns constants. On the left is the MixColumns 
constant used by AES 128-bit, and on the right is the 
MixColumns constant used by MLAES 128-bit. 

Table 5. MixColumns constants for AES and MLAES 

AES 128-bits MLAES 128-bits 
2 3 1 1 1 2 1 3 
1 2 3 1 3 1 2 1 
1 1 2 3 1 3 1 2 
3 1 1 2 2 1 3 1 

2.4 Stage 3 - Measure hamming distance, avalanche effect 

2.4.1 Hamming Distance (HD) 
Eq. (2) illustrates the formula for HD: the number of bits 

changed in the ciphertext from the corresponding bit in the 
plaintext. 

Calculating hamming distance: 

𝐻𝐻𝐻𝐻 =  ∑ (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 𝑋𝑋𝑋𝑋𝑋𝑋 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛)𝑁𝑁𝑁𝑁−1
𝑛𝑛=0  (2) 

NB is the total number of bits in either ciphertext1 or 
ciphertext2, counted as 1 if the corresponding bit in the 
ciphertext1 and ciphertext2 are different; otherwise, it is 0. For 
AES-128, NB is 128, so the counter n runs from 0 to 127. 
plaintext1 and plaintext2 are the inputs to the cipher (AES or 
MLAES) before being converted to ciphertext1 and 
ciphertext2.  

Ciphertext1 and ciphertext2 are the encrypted formats of 
plaintext1 and plaintext2. Because AES is a block cipher, NB 
(plaintext) = NB (ciphertext). 

2.4.2 Avalanche Effect (AE) 
The avalanche effect is a desirable cipher effect typically 

found in block ciphers and cryptographic hash functions. In 
this way, if the input is changed slightly, the output changes 
significantly. “Changing a few bits in the plaintext results in a 
lot of changes in the ciphertext, which is known as avalanche 
effect, i.e., a small change in either the key or the plaintext 
should cause a drastic change in the ciphertext” [11]. 

For example, the output changes significantly if we change 
one bit in the input. Every single bit of the output depends on 
every bit of the input. 

The formalization of the avalanche effect, the “strict 
avalanche criterion,” states that a change in a single bit of the 
input results in changes in each output bit with a probability of 
50%. 

Calculating the avalanche effect: 

𝐴𝐴𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁
𝑇𝑇𝑇𝑇𝑇𝑇

 ∗ 100% (3) 

The AES shows a strong avalanche effect [35]. A significant 
modification to the algorithm has even been explored, 
although it deviated significantly from the original AES 
algorithm [36]. 

Eq. (3) illustrates the formula to calculate the avalanche 
effect [33], AE. 

NBC is the number of bits changed between two ciphertexts 
based on the original plaintext and the plaintext after the bitflip. 
For AES-128, NBC <= NB. NB is 128 for AES-128. NB is the 
total number of bits in the plaintext. TNB is the total number 
of bits in the ciphertext. Since AES is a block cipher, the 
number of bits of plaintext equals to the number of bits of the 
ciphertext. 

3. RESULTS AND DISCUSSION

The hamming distance and average avalanche effect for the
AES-128 are illustrated in Table 6. The average avalanche 
effect of 50.3906% fulfills Shannon’s confusion and diffusion 
properties, in which changing any bit of the plaintext results in 
a change of about 50% of the ciphertext. 

MLAES extends the average avalanche effect to more than 
what is provided by the AES-128. 

3.1 AES component modifications in MLAES 

Following the modifications of selected components of the 
AES-128 (modified the S-box table within the SubBytes 
function, the MixColumns function with selected 
MixColumns constant, and the number of rounds), the results 
for hamming distance and average avalanche effect over a 
series of datasets for MLAES are listed in Table 7. 

The average avalanche effect with the MLAES S-box table, 
round reduction to 8, and the selected matrix constant is 
53.6719%.  

Reducing the round to less than eight does not improve the 
average avalanche effect. 

Keeping the same MLAES S-box table and round = 8 and 
further experimenting with different combinations of 
MixColumns constants does not improve the average 
avalanche effect to more than 53.6719%.  

There are other MixColumns constants when applied with 
MLAES, however, resulting in an average avalanche effect 
precisely the same as the reference paper [33] of 53.0469%, 
although using a different approach to modify the AES-128 
components. 

The reference paper chose a different method to modify 
AES-128. Only one component, the MixColumns function, 
was modified by replacing it with a permutation function that 
mapped 128-bit input to 128-bit output. The remaining 
components, including the number of rounds, were kept 
unchanged: key expansion, SubBytes, and ShiftRows. 

Table 6. Hamming distance and avalanche effect for AES 
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Test Plaintext (hex) Ciphertext (hex) HD AE (%) 

1 123456789abcdef0123456789abcdef0   171434671d73293b813735a3f0729fbf      

 123456789abcdef0123456789abcdef1   136ed3e12aae2b10c0816c286ba91095    65   50.7813 

2 112233445566778899aabbccddeeff00   d0eaf9d89e42dd3997b755aae1fb9ac0     

 112233445566778899aabbccddeeff01   d337dd2f8ed0e59ae5e61e07f886704e    62   48.4375 

3 1ee823570972bb0f30d05938c132d612   8a1c6abfb04f7c4f67ec9bbfbabf568c      

 1ee823570972bb0f30d05938c132d613   e4c3e8a6b336533e190a9846d1bc344c    64   50.0000 

4 e1172357097244f030d059373ecd2944   ef1c0496e756a5e74a995cdad5063f15     

 e1172357097244f030d059373ecd2945   0471e37a2c75b2eca64c35d58d089054    69   53.9063 

5 00112233445566778899aabbccddeeff   a69cc9f963aaf0e581f1bd07c7b6d1ca      

 00112233445566778899aabbccddeefe   edfa2d406e2e423df2dc75a5cc11abc6    60   46.8750 

6 5452555354204e4f204f4e4521585858   dd1a152f9c15d48b0f4bf090434e39db     

 5452555354204e4f204f4e4521585859   bd3af1e3898c23a914655ac09b25bd85    57   44.5313 

7 4a454e53454e53454154484f41434c41   6ffa9b92f6b843729d7ccb28e626f7cb      

 4a454e53454e53454154484f41434c40   6556e5e782aaa58754e5c9db978c07a9    64   50.0000 

8 41636c612c4a616b6520526f756b6500   eed141cd534ac474ab5a030f23de5d64     

 41636c612c4a616b6520526f756b6501   1e38bd4e53000191c888a84ecde77eb1    63   49.2188 

9 41434c414a494e44524f414c57594e4e   f79274633d7d5337b043801f752d224f      

 41434c414a494e44524f414c57594e4d   d780b39ae376ad4a5da6692072895520    76   59.3750 

10 4d59204d45535341474520495320494e   e5fc7b53f83cdbf3560ce4afb2c6ef87      

 4d59204d45535341474520495320494d   8b7b3a8181ab16ea79eba07583c16931    65   50.7813 

    Average Avalanche Effect:   50.3906 
 

Table 7. Hamming distance and avalanche effect for MLAES 
 

Test Plaintext (hex) Ciphertext (hex) HD AE (%) 

1 123456789abcdef0123456789abcdef0   b7009d3694c0979b4e6f33e519de8e3f     

 123456789abcdef0123456789abcdef1   f1ca6c63f27888f12855477285a49508   68   53.1250 

2 112233445566778899aabbccddeeff00   c3edfb0c710eda7a67a4fef4ade0797b     

 112233445566778899aabbccddeeff01   26ea0ce0352c591b6ac2adee0635fd96   62   48.4375 

3 1ee823570972bb0f30d05938c132d612   1a8d2bba3a26cb54e366e9bb4713319d     

 1ee823570972bb0f30d05938c132d613   57ff371acc4f1cf62abc5328eff62176   65   50.7813 

4 e1172357097244f030d059373ecd2944   5c059dfa55fc5c325e363a25ca924589     

 e1172357097244f030d059373ecd2945   87544927888cd008abcbb9ea2038ac7b   76   59.3750 

5 00112233445566778899aabbccddeeff   c983e69895638b2655dc0b3058ef33d0     

 00112233445566778899aabbccddeefe   abef8127c23ddf43d8b63ce8bb20d7c1   70   54.6875 

6 5452555354204e4f204f4e4521585858   17931e3d9359d2744fbb53a413d072a1     

 5452555354204e4f204f4e4521585859   e92cc179380ca28820f5ee5cad6fed58   87   67.9688 

7 4a454e53454e53454154484f41434c41   2e15be6de661170077301dc292755e71     

 4a454e53454e53454154484f41434c40   2258c98f487375d4e4a2e2bdd8d20784   70   54.6875 

8 41636c612c4a616b6520526f756b6500   9b07ad9a41f460cd628b5a7a48cad89e     

 41636c612c4a616b6520526f756b6501   1db1d4a8c22758de58f01ecbc27d8bff   62   48.4375 

9 41434c414a494e44524f414c57594e4e   231a78b67cd26d76d0b26625b02a29c5     

 41434c414a494e44524f414c57594e4d   9eab4d1df3ba616958c8170cad321183   60   46.8750 

10 4d59204d45535341474520495320494e   d02a02cd32c6a259961ba9ade407b1fb     

 4d59204d45535341474520495320494d   e2ed29cf8c01f5e07e579c10a459eab4   67   52.3438 

    Average Avalanche Effect:   53.6719 

The comparison summary on the experiment, using the 
dataset from the reference paper (the same set of plaintexts and 

key), is provided in Table 8. The table compares average 
hamming distances (AvgHD) and average avalanche effects 
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(AvgAE) across plaintexts in the dataset. The table presents 
the results from three categories: the results of the reference 
paper [33] (for AES, LAES algorithms), results of this paper 
(for AES, MLAES algorithms), and the additional results by 
the independent cryptographic tool (for the AES algorithm). 
The results computed with cryptool2 [37] serve as a reference, 
as some of the calculated ciphertexts between the reference 
paper and this paper, for the AES algorithm, have different 
results. Cryptool2 confirms that the result for the AES 
algorithm computed in this paper is the same as calculated 
with Cryptool2, for the given dataset. 

Table 8. Average hamming distance and average avalanche 
effect on plaintext bitflip 

Reference Paper AvgHD1) AvgAE2) 
AES 62.4000 48.7500 

LAES 67.9000 53.0469 
This Paper 

AES 64.5000 50.3906 
MLAES 68.7000 53.6719 

Cryptool2 
AES 64.5000 50.3906 

Figure 4. MLAES Inverse S-box table 

Figure 5. A comparison of hamming distances, AES, and 
modified AES 

The findings summarize that the average avalanche effect in 
MLAES is 4.9219% and 0.6250% better than calculated AES 
and LAES in the reference paper, respectively. 

MLAES's average avalanche effect is 3.2813% better than 
the calculated AES in this paper and concurs with the 

calculated AES in cryptool2, respectively. 
Across the dataset, Figure 4 compares hamming distances 

for AES and LAES in the reference paper with AES and 
MLAES in this paper, including AES from cryptool2. Figure 
5 illustrates the comparison for the avalanche effect, with 
highlighted values showing for MLAES. 

3.2 Decryption in MLAES 

Hamming distance and avalanche effect are all derived from 
the encryption process. We have the key with the first plaintext 
and, through encryption, produce the first ciphertext. Likewise, 
we have the key with the second plaintext producing the 
second ciphertext. Then, we calculate the bit differences 
between the first ciphertext and the second ciphertext by 
observing the number of changed bits from the first ciphertext 
to the second ciphertext. 

As AES is a symmetric algorithm, we use the same key to 
reverse this process to decrypt the ciphertexts and get the 
plaintexts. This means getting the first plaintext from the first 
ciphertext and the second plaintext from the second ciphertext. 

The sequence of executed functions is also reversed. In 
encryption, the flow is SubBytes, Shiftrows, and finally, 
MixColumns run for several rounds. As in AES, MLAES does 
not use MixColumns in the last round.  

In decryption, the sequence is reversed. The process starts 
from the last round, where no MixColumns function, and 
proceeds to the next rounds with MixColumns, Shiftrows, and 
SubBytes in sequence.  

Note that, in MLAES, there is no modification to the 
Shiftrows function. 

3.3 Modification to inverse S-box table 

Figure 6. A comparison of avalanche effects, AES, and 
modified AES 

As the encryption process transformed the AES S-box table 
to the MLAES S-box table, the decryption process for MLAES 
must use the inverse MLAES S-box table. Figure 6 illustrates 
the MLAES inverse S-box table. 
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The inverse S-box table is created from the S-box table. 
The 16 by 16 byte of S-box table is arranged in rows and 
columns. The content of each row and column becomes the 
index of the inverse S-box table. The one-byte content of each 
cell in the inverse S-box table is the row and column in the S-
box table in which the first nibble is the row; the second nibble 
is the column, hence becoming a byte. 
 
3.4 Modification of the inverse MixColumns constant 
 

The inversed MixColumns Constant for MLAES is derived 
from the MLAES MixColum Constant. This calculation is not 
straightforward as we need to find an inverse matrix in the 
Galois field within the finite set of elements, in this case 28, 
equal to 256 elements. Table 9 illustrates the AES and MLAES 
inverse MixColumns Constants. AES inverse MixColumns 
constant has been provided in standard AES, while MLAES 
MixColums constants are calculated using the Galois library 
[38] in Python. 
3.5 Modification to the number of rounds 
 

The number of rounds is eight, as applied in the encryption 
process. 

 
Table 9. Inverse MixColumns constants for AES and 

MLAES 
 

AES 128-bits  MLAES 128-bits 
E B D 9  1 3 1 2 
9 E B D  2 1 3 1 
D 9 E B  1 2 1 3 
B D 9 E  3 1 2 1 

 
Table 10 illustrates the dataset with encryption and 

decryption results. The encryption process encrypts the 
plaintexts and keys, resulting in ciphertexts. Using the same 
keys as in the encryption process, the decryption process 
decrypts the ciphertexts to restore the original plaintexts. 

The restored plaintexts are then compared to the original 
plaintexts, byte-by-byte, to ensure all bytes are matched. 

 

 
Table 10. MLAES, validating encryption and decryption results 

 
Plaintext (P, hex) Ciphertext (C, hex) Decrypted Ciphertext (DC, hex) P=DC? 

123456789ABCDEF0123456789ABCDEF0 B7009D3694C0979B4E6F33E519DE8E3F 123456789ABCDEF0123456789ABCDEF0 Match 
123456789ABCDEF0123456789ABCDEF1 F1CA6C63F27888F12855477285A49508 123456789ABCDEF0123456789ABCDEF1 Match 

112233445566778899AABBCCDDEEFF00 C3EDFB0C710EDA7A67A4FEF4ADE0797
B 112233445566778899AABBCCDDEEFF00 Match 

112233445566778899AABBCCDDEEFF01 26EA0CE0352C591B6AC2ADEE0635FD96 112233445566778899AABBCCDDEEFF01 Match 
1EE823570972BB0F30D05938C132D612 1A8D2BBA3A26CB54E366E9BB4713319D 1EE823570972BB0F30D05938C132D612 Match 
1EE823570972BB0F30D05938C132D613 57FF371ACC4F1CF62ABC5328EFF62176 1EE823570972BB0F30D05938C132D613 Match 
E1172357097244F030D059373ECD2944 5C059DFA55FC5C325E363A25CA924589 E1172357097244F030D059373ECD2944 Match 
E1172357097244F030D059373ECD2945 87544927888CD008ABCBB9EA2038AC7B E1172357097244F030D059373ECD2945 Match 

00112233445566778899AABBCCDDEEFF C983E69895638B2655DC0B3058EF33D0 00112233445566778899AABBCCDDEEFF Match 
00112233445566778899AABBCCDDEEF

E ABEF8127C23DDF43D8B63CE8BB20D7C1 00112233445566778899AABBCCDDEEF
E Match 

5452555354204E4F204F4E4521585858 17931E3D9359D2744FBB53A413D072A1 5452555354204E4F204F4E4521585858 Match 
5452555354204E4F204F4E4521585859 E92CC179380CA28820F5EE5CAD6FED58 5452555354204E4F204F4E4521585859 Match 
4A454E53454E53454154484F41434C41 2E15BE6DE661170077301DC292755E71 4A454E53454E53454154484F41434C41 Match 
4A454E53454E53454154484F41434C40 2258C98F487375D4E4A2E2BDD8D20784 4A454E53454E53454154484F41434C40 Match 
41636C612C4A616B6520526F756B6500 9B07AD9A41F460CD628B5A7A48CAD89E 41636C612C4A616B6520526F756B6500 Match 
41636C612C4A616B6520526F756B6501 1DB1D4A8C22758DE58F01ECBC27D8BFF 41636C612C4A616B6520526F756B6501 Match 
41434C414A494E44524F414C57594E4E 231A78B67CD26D76D0B26625B02A29C5 41434C414A494E44524F414C57594E4E Match 
41434C414A494E44524F414C57594E4D 9EAB4D1DF3BA616958C8170CAD321183 41434C414A494E44524F414C57594E4D Match 
4D59204D45535341474520495320494E D02A02CD32C6A259961BA9ADE407B1FB 4D59204D45535341474520495320494E Match 
4D59204D45535341474520495320494D E2ED29CF8C01F5E07E579C10A459EAB4 4D59204D45535341474520495320494D Match 

 
 

4. CONCLUSION AND FUTURE WORK 
 
4.1 Conclusion 
 

This research paper proposes a lightweight, modified 
Advanced Encryption algorithm, MLAES, based on the AES 
algorithm. 

The increase in security is measured with the Hamming 
distance and the avalanche effect. The findings conclude that 
the average avalanche effect in MLAES (53.6719%), tested 
with the same dataset, is compared to the state-of-the-art result 
(53.0469%), showing MLAES is 0.6250% better. 

This has answered RQ1: Some possible components of 
AES-128 to modify are the S-box table within SubBytes and 
MixColumns, including reducing the number of rounds. RQ2: 
The metrics to measure for better security are Hamming 
distance and Avalanche effect. RQ3: Evaluated on the same 
dataset, MLAES shows a 0.6250% improvement in the 

measured average avalanche effect (53.6719%), meaning 
better security than state-of-the-art (53.0469%). 

The AES algorithm is the foundation for the MLAES 
algorithm (128 bits). Its primary design goal is quick, safe, and 
effective for a lightweight device. Except for Key expansion 
and ShiftRows, the changes are restricted to the S-box table in 
SubBytes, MixColumns, and round components. 

One practical implication of this research is using MLAES 
for low-power embedded systems, such as edge computing 
and Internet of Things devices.   

 
4.2 Limitations 
 

The modification of the AES algorithm is based on AES 
with a 128-bit key, AES-128. As the standard, AES supports 
different key variations, AES-192 and AES-256. The 
algorithm modifications of AES with a 192-bit key and AES 
with a 256-bit key are not within the scope of this study. 
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4.3 Future work 

Future theoretical research on algorithm enhancements may 
include exploring transformations in an S-box table within 
SubBytes with different S-box transformation functions. 
Modifying the ShiftRows and MixColumns algorithms is 
another possible area. All algorithm modifications shall 
consider lightweight computing power and limited resources 
in embedded systems. 

Future practical implementation research may include 
implementing the MLAES algorithm on edge computing or 
IoT devices. MLAES can strengthen the security of data 
transfers between SCADA and MES or SCADA and PLC 
systems in Industry 4.0, for example, and it can also include 
connectivity to other external systems such as IoT devices or 
even the Cloud. 
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NOMENCLATURE 

3DES Triple DES 
AES Advanced Encryption Standard 
CIA Confidentiality, Integrity, and Availability 
CPU Central Processing Unit 
DES Data Encryption Standard 
FPGA Field Programmable Gate Array 
GCC Gnu Compiler Collection 
HD Hamming Distance 
ICS Industrial Control Systems 
I/O Input/Output 
IoT Internet of Things 
IIoT Industrial IoT 
IEC International Electrotechnical Commission 
ISA Industrial Automation and Control Systems 

Security 
ISA99 International Society of Automation 
ISO International Standard Organization 
LWC Lightweight Cryptography 
IT Information Technology 
LAES Lightweight AES 
MES Manufacturing Execution System 
MLAES Modified LAES 
NBC Number of bits changed 
NIST National Institute of Standards and 

Technology 
OT Operational Technology 
OS Operating System 
PLC Programmable Logic Controller 
RQ Research Question 
SCADA Supervisory Control and Data Acquisition 
SoC System on Chip 
TNB Total number of bits 
XOR eXclusive OR 
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