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The suboptimal income of tidal rice farmers, who are increasingly affected by climate change, 

is a major challenge in improving their welfare. Climate Smart Agriculture (CSA) technology 

is expected to be a solution to increase farmer productivity and income. This study aims to 

analyze the level of adoption of CSA technology and examine the influence of socio-economic 

factors on its adoption, as well as its impact on farmer income and productivity. The research 

respondents were tidal rice farmers in Telang Makmur Village. To test the relationships 

between socio-economic variables, CSA adoption levels, and productivity, Structural Equation 

Modeling (SEM) with the Partial Least Squares (PLS) approach was applied using SmartPLS 

4.0 software. The results of the study indicate that socio-economic factors such as age, 

education level, family size, farming experience, cultivation area, and other income have a 

significant influence on the level of adoption of CSA technology. In addition, the use of CSA 

technology has been shown to significantly increase farmer income and productivity. 

Therefore, there should be increased socialization and training related to CSA technology for 

farmers, as well as the provision of subsidies and technological assistance to encourage wider 

adoption. 
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1. INTRODUCTION

Climate change had a significant impact on the agricultural 

sector, especially in areas with unique characteristics such as 

tidal lands [1, 2]. It has the potential to harm farming, 

particularly by increasing salinity and reducing water 

availability [3, 4]. Farmers in these regions often face 

challenges such as low productivity and income due to limited 

access to technologies that are adaptive to climate change [5, 

6]. Therefore, it is important to apply appropriate technologies 

that meet the timing and needs of the crops in order to increase 

rice productivity in tidal lands [7]. One approach that has 

proven effective in enhancing agricultural resilience and 

productivity is Climate Smart Agriculture (CSA) technology 

[8-10]. CSA offers innovative solutions by integrating 

increased productivity, adaptation to climate change, and 

reduced greenhouse gas emissions. While Climate-Smart 

Agriculture practices can boost agricultural production under 

adverse climate conditions and reduce greenhouse gas 

emissions, they require significant investment and 

coordination for their widespread impact [11]. 

In this context, CSA technology has emerged as an 

approach that offers solutions to increase agricultural 

resilience and productivity. CSA, as described by Balo and 

Mahata, which integrates productivity enhancement, climate 

change adaptation, and greenhouse gas emission reduction 

[12]. According to research by [13, 14], the implementation of 

CSA focuses on sustainability and resource efficiency, 

providing numerous benefits for smallholder farmers by 

increasing food security and enhancing their ability to adapt to 

the challenges posed by climate change [15]. The results of 

Kurgat et al. [16] demonstrated that policy and programmatic 

efforts influenced smallholder farmers' adoption of a specific 

CSA technology in Tanzania, as well as the adoption of 

additional technologies. Similarly, the study by Amadu et al. 

[17] reported a positive and significant effect of the typology's

potential for wider application on CSA adoption. However,

although the benefits of CSA technology are widely

recognized, its adoption remains very limited, particularly in

areas with complex environmental conditions such as tidal

flats [18]. This is due to various factors, including a lack of

farmer knowledge, limited infrastructure, and other socio-

economic barriers [19]. Therefore, more in-depth research is

needed to understand the factors influencing the adoption of

CSA technology in these regions.
This study analyzes the adoption rate of CSA technology in 

Telang Makmur Village, Muara Talang District, Banyuasin 
Regency, and examines the factors that influence its adoption. 
It also explores the potential of CSA technology to improve 
the welfare of farmers in tidal lands. In addition, this study 
evaluates the impact of CSA technology on farmers' income 
and productivity. The results of this study are expected to 
contribute to encouraging farmers to maximize the 
implementation of CSA, thereby increasing their productivity 
and income sustainably. 
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2. METHODOLOGY 

 

2.1 Location and time of the study 

 

This research was conducted in Telang Makmur Village, 

Muara Telang Subdistrict, Banyuasin Regency, Indonesia, as 

can be seen in Figure 1. The research location was determined 

using Simple Random Sampling, considering that Telang 

Makmur Village is a tidal swamp area where CSA technology 

has been adopted. This research was conducted from August 

to October 2024. 

 

 
 

Figure 1. Research location map: (a) Indonesia, (b) Banyuasin Regency, (c) Muara Telang Subdistrict, (d) Telang Makmur Village 

 

2.2 Data collecting methods 

 

This study employed a survey method, with data collected 

through direct observation, interviews, and questionnaires. 

Data collection involved on-site visits and face-to-face 

interviews with sample farmers representing the population of 

Telang Makmur Village, Muara Telang Subdistrict, Banyuasin 

Regency. The sampling technique utilized was Simple 

Random Sampling, in which each member of the population 

has an equal probability of selection. In Structural Equation 

Modeling (SEM), the minimum required sample size is 

typically determined using the 10-times rule method, which 

recommends a sample size at least ten times the number of 

indicators in the model. This study includes 18 valid indicators, 

requiring a total of 180 farmers to be selected as respondents. 

 

2.3 Data analysis methods 

 

The data obtained from the interviews were processed 

systematically in tabular form and explained descriptively. 

The first objective, which is to calculate the level of adoption 

of CSA technology by farmers, was analyzed using a Likert 

scale. This was done by calculating the total score obtained 

from the questionnaire responses. Each answer was assigned a 

different score weight: a score of 5 for "Strongly Agree," 4 for 

"Agree," 3 for "Doubtful," 2 for "Disagree," and 1 for 

"Strongly Disagree." Respondents' answers were then 

categorized into intervals. The formula used to determine the 

class interval is as follows: 
 

NR =NST–NSR 

PI =NR : JIK 

Details: 

NR =Range Value 

PI =Interval Length 

NST =Highest Score Value 

NSR =Lowest Score Value 

JIK =Number of Class Intervals 
 

Based on the processing results in Tables 1-3, the class 

interval values in the table are as follows: 
 

Table 1. The class intervals and criteria used for measuring 

technology adoption levels 

 
Class Interval 

Value 

(Statement) 

Class Interval 

Value 

(Indicator) 

Class Interval 

Value 

(Overall) 

Criteria 

1.00<x<2.33 5.0<x<11.67 40.0<x<93.33 Low 

2.33<x<3.66 11.67<x<18.34 93.34<x<146.67 Medium 

3.66<x<5.00 18.34<x<25.0 146.68<x<200 High 

 

Table 2. Class intervals for productivity levels 

 
Description Criteria 

Low Productivity 2,000-4,299 

Medium Productivity 4,300-6,599 

High Productivity 6,600-9,000 
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Table 3. Class intervals for income levels 

 
Income Group Category 

Very High Income >3,500,000 

High Income 2,500,000-3,500,000 

Medium Income 1,500,000-2,500,000 

Low Income <1,500,000 

 

The level of farmers' productivity and income was measured 

using the range score method. The range score was calculated 

by subtracting the minimum value from the maximum value 

within the dataset. The resulting range was then divided into 

interval classes to categorize productivity and income levels 

as high, medium, or low, as presented in Table 2. 

Income levels were measured using the standard 

classification established by BPS (Badan Pusat Statistik) in 

Table 3. According to BPS, the population is categorized into 

four income groups: (1) Very High Income Group, with an 

average income exceeding IDR 3,500,000 per month; (2) High 

Income Group, with an average income ranging from IDR 

2,500,000 to IDR 3,500,000 per month; (3) Medium Income 

Group, with an average income ranging from IDR 1,500,000 

to IDR 2,500,000 per month; and (4) Low Income Group, with 

an average income of less than IDR 1,500,000 per month. 

The data obtained were analyzed using a regression model 

to identify the relationships between socio-economic variables, 

CSA adoption rate, income, and productivity. Partial Least 

Squares (PLS) analysis was used to examine the influence of 

socio-economic factors on the adoption rate of CSA 

technology, as well as the impact of CSA adoption on farmer 

productivity and income. Descriptive analysis was applied to 

qualitative data, while quantitative data were processed using 

Microsoft Excel for data cleaning. SEM with the PLS 

approach was conducted using SmartPLS 4.0 software to test 

the relationship model between variables. 

Partial Least Squares - Structural Equation Modeling (PLS-

SEM) is employed to test predictive relationships between 

variables by examining the existence and strength of 

relationships [20, 21]. Parameter estimation in PLS-SEM is 

categorized into three components. First, weight estimation is 

used to calculate latent variable scores. Second, path 

estimation reflects the relationships between latent variables 

and between latent variables and their indicator blocks 

(loadings). Third, estimates related to means and parameter 

locations (regression constants) are applied to both indicators 

and latent variables [22-24]. PLS-SEM utilizes a three-stage 

iterative process to obtain these estimates: the first stage 

estimates weights, the second stage estimates parameters for 

the inner (structural) and outer (measurement) models, and the 

third stage estimates means and locations (constants) [25]. 

Model evaluation in PLS-SEM is conducted using non-

parametric prediction metrics. Accordingly, assessment 

typically involves evaluating both the outer model 

(measurement model) and the inner model (structural model) 

[26]. 

Indicators influencing the adoption of CSA technology 

include: 

1) Inner model: 

Social=>CSA Technology 

Economic=>CSA Technology  

CSA Technology=>Income 

CSA Technology=>Productivity 

2) Outer model: 

Social=>Social Indicators 

CSA Technology=>CSA Technology Indicator 

Economic=>Economy indicator 

Income=>Income indicator 

Productivity=>Income indicator 

3) Latent variables: 

CSA Technology 

Social 

Economic 

Income 

Productivity 

4) Manifest Variables: 

SAK =Number of Family Members 

SLS =Years of Schooling 

SPU =Farming Experience 

SS =Tribe/Ethnic 

STK =Number of Family Dependents 

SU =Age 

PBT =Total Cost 

PP =Revenue 

EL =Land Area 

PPR =Production 

EP =Income 

ETS =Side Income 

CTR =Tractor 

CBU =Superior Variety Seedlings 

CTB =Tabela System 

CPO =Organic Fertilization 

CBP =Pump and Biopores System 

CCH =Combine Harvester 

5) Exogenous variables: 

Social 

Economic 

6) Endogenous variables: 

CSA 

Income 

Productivity 

 

The structural relationships analyzed in the PLS-SEM 

model are illustrated below. These relationships represent the 

pathways evaluated in the model, based on the measurements 

and constructs used in this study: 

 

1) The influence of the socio-economic characteristics 

of farming households on the level of adoption of 

CSA technology. 

 

𝑌 = 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀 

 

Details: 

Y =Level of CSA Technology Adoption 

X1 =Social Factor 

X2 =Economic Factor 

1 =Path Coefficient of Economic Factor =>CSA 

Technology 

2 =Path Coefficient of Social Factor =>CSA Technology 

 =Residual error 

 

2) The impact of CSA technology adoption on farmers’ 

Income 

 

𝑌 = 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝛽6𝑋6 + 𝛽7𝑋7
+ 𝛽8𝑋8 + 𝜀 

 

Details: 

Y =Income 
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Xi =Type of Technology 

i  =Coefficient of the Effect of CSA Technology 

Adoption on Farmers’ Income 

 =Residual error 

 

3) The impact of CSA technology adoption on rice 

productivity 

 

𝑌 = 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝛽6𝑋6 + 𝛽7𝑋7
+ 𝛽8𝑋8 + 𝜀← 

 

Details: 

 

Y =Productivity 

Xi =Type of Technology 

i  =Coefficient of the Effect of CSA Technology 

Adoption on Farmers’ Income 

 =Residual error 

 

 

3. RESULT AND DISCUSSION 
 

3.1 Socio-Economic characteristics of farmers 
 

In this study, the socio-economic characteristics of farmers 

in Telang Jaya Village are identified based on several factors, 

including the age of the farmers, education level, family size 

(capital), farming experience, cultivation area, and additional 

income from non-agricultural sources seen in Table 4. The 

study involved a total of 180 farmers as respondents. 

The socio-economic profile of farmers in Telang Makmur 

Village reveals a diverse and experienced community. The 

average age is 50 years, with the majority (40%) falling within 

the 44-56 age range, indicating a mature and knowledgeable 

workforce. The average education level is 9 years, suggesting 

a moderate level of formal education, with a significant 

portion of individuals (37%) having between 1-6 years of 

schooling. Household sizes tend to be small, with an average 

of 3 members, and the family size ranges from 1 to 5 members. 

The average farming experience is 19 years, with the highest 

level reaching 40 years, indicating a strong background in 

agricultural practices. Regarding land cultivation, the majority 

of farmers (45%) cultivate between 0.95 to 1.75 hectares, with 

an average area of 1 hectare. Income diversification is evident, 

with a large portion (66%) earning between IDR 400,000 and 

IDR 2,199,999 per month, while the average additional 

income is IDR 2,307,895. These factors are essential for 

designing targeted programs that can further improve the 

livelihoods and agricultural productivity of the community. 

 

Table 4. The role of socio-economic factors of farming households in the adoption of CSA technology 
 

Socio-Economy Factors Household Percentage  

Age (years)    

18–30 8 4 Average: 50 

31–43 51 28 Max: 82 

44–56 72 40 Min: 18 

57–69 40 22 Srd: 12 

70–82 9 5  

Education Level (years)    

0 3 2 Average: 9 

1–6 66 37 Max: 16 

7–9 52 29 Min: 0 

10–12 50 28 Srd: 3 

16 9 5  

Family size (capital)    

1 23 13 Average: 3 

2 49 27 Mac: 5 

3 68 38 Min: 1 

4 34 19 Srd: 1 

5 6 3  

Experience (years)    

1–8 31 17 Average: 19 

9–16 38 21 Max: 40 

17–24 39 22 Min: 1 

25–32 38 21 Srd: 10 

33–40 34 19  

Cultivation Area (Ha)    

0,15–0,95 61 34 Average: 1 

0,95–1,75 81 45 Max:4 

1,75–2,55 31 17 Min: 0,15 

2,55–3,35 4 2 Srd: 1 

3,35–4 3 2  

Other Income (IDR/month)    

400.000–2.199.999 38 66 Average: 2.307.895 

2.200.000–3.999.999 13 22 Max: 9.000.000 

4.000.000–5.799.999 4 7 Min: 400.000 

5.800.000–7.599.999 2 3 Srd: 1.832.596 

7.600.000–9.399.999 1 2  
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3.2 Farmer technology adoption level 

 

There are eight types of rice farming technologies applied 

in tidal lands can be seen in Table 5. These technologies play 

a crucial role in helping farmers adapt to the impacts of climate 

change in Telang Makmur Village, which has three planting 

seasons. 

 

Table 5. Adoption of CSA technology 

 
Types of Technology Score Criteria 

Tractor 21.71 High 

Superior Variety Seeds 22.00 High 

Tabela System 22.49 High 

Organic Fertilization 20.90 High 

Pumping and Biopore System 18.80 High 

Drainage and Irrigation 20.46 High 

Combine Harvester 22.00 High 

Planting Calendar 19.49 High 

 

Based on the data presented in Table 5, the level of 

technology adoption is measured using a calculated indicator 

interval scale score for each type of technology, all of which 

low into the high adoption category. Tabela system recorded 

the highest adoption score, as it is utilized by all farmers in 

Telang Makmur Village. Farmers prefer the Tabela system 

because it saves time and eliminates the need for additional 

labor costs. In contrast, other planting methods, such as the 

jajar legowo system, require more labor, making them less 

attractive to farmers. On the other hand, the pump and biopore 

system has the lowest technology adoption score. Although 

this technology is widely known among farmers, not all 

choose to use it. Some respondents rely solely on traditional 

water sources, such as river water, without the assistance of 

pumps. Additionally, the high cost of acquiring this equipment 

presents a barrier for some farmers, limiting the widespread 

adoption of the pump and biopore system. 

 

3.3 Farmers’ income level 

 

The income level of farmers is classified as moderate due to 

relatively high production costs presented in Tables 6-7. The 

costs associated with purchasing fertilizers, quality seeds, 

pesticides, and land maintenance demand substantial financial 

resources. When harvest outcomes are suboptimal due to 

unfavorable weather conditions, pest infestations, or 

inefficient cultivation practices, the financial burden on 

farmers increases, often resulting in minimal profits that are 

disproportionate to the initial capital investment. Furthermore, 

the average education level of farmers, which is limited to 

approximately seven years, constrains their ability to adopt 

modern agricultural technologies and implement more 

effective marketing strategies. This limitation reduces their 

capacity to improve production efficiency and enhance 

competitiveness. Consequently, the uneven adoption of 

agricultural modernization has contributed to significant 

disparities in farmer productivity and income. These factors 

underscore the urgent need for comprehensive interventions, 

including financial support, educational programs, and 

improved market access, to promote the welfare and 

sustainability of rice farming communities. 

 

Table 6. Variable costs, fixed costs, and total costs 

 

No Description 
Planting Season 1 

(IDR/Ha) 

Planting Season 2 

(IDR/Ha) 

Planting Season 3 

(IDR/Ha) 

Average 

(IDR/Ha/year) 

1 Seed 2,287,805 2,285,488 111,220 1,561,504 

2 Pesticide 818,333 679,187 16,667 504,729 

3 Fertilizer 716,049 806,667 7,317 510.011 

4 Rental costs 9,415,366 5,374,902 106,098 4,965,455 

 Total Variable Cost 15,282,073 11,291,610 5,780,000 10,784,561 

1 Sprayer 198.256  198.256 

2 Hoe 29,841  29,841 

3 Machete 14,537  14,537 

4 Sickle 17,866  17,866 

5 Motor 1,283,171  1,283,171 

6 Cart 24,268  24,268 

7 TR2 245,528  245,528 

 Total Fixed Cost   1,813,467 

 Total Cost    12,598,028 

 

Table 7. Income level 

 
Total Income 

(IDR/Month) 
Category 

Percentage 

(%) 

Very High Income >3,500,000 76 

High Income 2,500,000-3,500,000 7 

Medium Income 1,500,000 - 2,500,000 12 

Low Income < 1,500,000 5 

Total 100 

 

3.4 Productivity levels in rice farming 

 

Productivity in this study is measured by calculating the 

total production divided by the land area. Productivity is 

strongly influenced by the amount of production; therefore, the 

higher the production yield, the greater the resulting 

productivity [27-29]. The productivity obtained by rice 

farmers in Telang Makmur Village, who implemented 3 

planting seasons to face the challenges of climate change, can 

be seen in Table 8. 

 

Table 8. Productivity in rice farming 

 

Description 
Planting Season 

Average (year) 
1 2 3 

Production (kg) 10,076 5,439 85 33,505 

Land Area (ha) 2 2 2 2 

Productivity (kg/ha) 5,038 2.7195 42.5 16,753 

 

Based on Table 8, it is stated that farmers produce three 

harvests per year, although not all farmers participate in the 

third planting season due to several factors, one of which is 
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climate conditions. In terms of productivity across the three 

planting seasons, the highest yield is achieved in the first 

planting season, with an average of 5,038 kg/ha. Meanwhile, 

the average annual productivity across the three planting 

seasons in Telang Makmur Village is 42.5kg/ha. 

 
Table 9. Productivity level 

 
Description Criteria (Kg/ha) Percentage (%) 

Low Productivity 2,000-4,299 27 

Medium Productivity 4,300-6,599 56 

High Productivity 6,600-9,000 17 

Total 100 

 
The productivity level of most farmers falls within the 

medium category presented in Table 9, with productivity 

ranging between 4,300 and 6,599kg/ha. This productivity is 

influenced by both total production and land area. When 

production yields are low, productivity decreases accordingly, 

and vice versa. In Telang Makmur Village, the lowest recorded 

productivity is 2,000kg/ha, while the highest reaches 

18,000kg/ha. 

 

3.5 Validation of the measurement model 

 

The analysis employed a quantitative approach utilizing 

SEM. The measurement scale was validated based on quality 

criteria, including reliability and construct validity, to assess 

internal consistency and convergent validity. Model 

evaluation was conducted using indicators such as Cronbach’s 

alpha, the composite reliability index (CRI), and the average 

variance extracted (AVE). 

 

 
 

Figure 2. Path analysis (outer model) 

 

This model specifically illustrates the causal relationships 

between latent variables, both endogenous and exogenous, as 

presented in Figure 2, along with the associated indicators or 

measurements for each variable. Outer model testing is 

conducted to assess the reliability and validity of the indicators 

employed. 

 

3.6 Results of confirmatory factor analysis (CFA) 

 

Based on the results of the outer loading analysis presented 

in Table 10, all indicators for each construct exhibit outer 

loading values above 0.70, indicating that the criteria for 

convergent validity have been met. This finding demonstrates 

that all indicators consistently and significantly represent their 

respective latent constructs. The CSA Technology construct 

comprises six indicators with outer loading values ranging 

from 0.859 to 0.978, suggesting a very strong contribution of 

the indicators in explaining the construct. Similarly, the 

Productivity construct, measured by Land Area (EL) and 

Production (PPR), shows high validity, with outer loading 

values of 0.953 and 0.963, respectively. The Economic 

construct is represented by the Income (EP) and Side Income 

(ETS) indicators, with outer loading values of 0.923 and 0.917, 

respectively. The Income construct is measured by Total Cost 

(PBT) and Revenue (PP), with outer loading values of 0.810 

and 0.940, respectively; although Total Cost (PBT) has the 

lowest value, it remains within the acceptable validity 

threshold. Meanwhile, the Social construct is represented by 

seven indicators with outer loading values ranging from 0.874 

to 0.984. Among these, the Number of Family Members 

(SAK) and Number of Family Dependents (STK) indicators, 

with outer loading values of 0.984 and 0.956, respectively, 

exhibit the highest measurement strength within the construct. 

The Cronbach's alpha values for all variables, presented in 

Table 10, exceed 0.7, which is the minimum threshold 

indicating good internal reliability. The highest Cronbach's 

alpha value is observed for the Social construct (0.975), while 

the lowest is found for the Income construct (0.719); both 

values remain within acceptable limits. Additionally, the 

Composite Reliability (CR) values, based on both the rho_a 

and rho_c estimates, consistently exceed 0.8 across all 

constructs, further confirming strong internal consistency of 

the indicators in measuring their respective latent variables. 

Moreover, the Average Variance Extracted (AVE) values for 

all constructs are above the minimum acceptable threshold of 

0.5, with the highest AVE observed for the Productivity 

construct (0.918) and the lowest for the Income construct (0.770). 

These results indicate that the majority of the variance in the 

indicators is successfully explained by their respective constructs, 

thus confirming that convergent validity has been achieved. 
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Table 10. Measurement model and scale reliability 

 

Variable Item Item Description 
Outer 

Loadings 

Cronbach’s 

Alpha 

Composite 

Reliability (rho_a) 

Composite 

Reliability (rho_c) 

Average Variance 

Extracted (AVE) 

CSA 

Technology 

CBP 
Pump and biopores 

system 
0.917 

0.962 0.965 0.970 0.843 

CBU 
Superior variety 

seedlings 
0.859 

CCH Combine harvester 0.929 

CPO 
Organic 

fertilization 
0.864 

CTB Tabela system 0.955 

CTR Tractor 0.978 

Social 

SAK 
Number of family 

members 
0.984 

0.975 0.977 0.980 0.891 

SL Year of schooling 0.963 

SPU Farming experience 0.874 

SS Tribe 0.949 

STK 
Number of 

dependents family 
0.956 

SU Age 0.933 

Economic 
EP Income 0.923 

0.819 0.820 0.917 0.846 
ETS Side income 0.917 

Income 
PBT Total cost 0.810 

0.719 0.868 0.869 0.770 
PP Receipt 0.940 

Productivity 
EL Land area 0.953 

0.911 0.919 0.957 0.918 
PPR Production 0.963 

 

3.7 Results of SEM 

 

The analysis results presented in Table 11 indicate that the 

relationship between the CSA Technology variable and 

income has a path coefficient of 0.927, with a t-statistic of 

190.377 and a p-value of 0.000. This result demonstrates that 

the relationship is highly statistically significant at the 0.05 

significance level. Similarly, the relationship between CSA 

Technology and productivity also shows a highly significant 

effect, with a path coefficient of 0.948, a t-statistic of 93.883, 

and a p-value of 0.000. These findings suggest that CSA 

Technology has a strong direct influence on both income and 

productivity. In contrast, the relationship between Economic 

factors and CSA Technology shows a path coefficient of 

0.324, a t-statistic of 1.606, and a p-value of 0.108. Since the 

p-value exceeds 0.05, this relationship is not statistically 

significant, indicating that economic factors do not directly 

affect the adoption of CSA Technology within this model. 

Conversely, the relationship between Social factors and CSA 

Technology is significant, with a path coefficient of 0.657, a t-

statistic of 3.284, and a p-value of 0.001, suggesting that social 

factors play a crucial role in promoting CSA Technology 

adoption. Overall, these results confirm that CSA Technology 

is a key variable strongly influencing outcomes such as income 

and productivity, with social factors also playing a significant 

supporting role. 

 

Table 11. Assessment results of SEM 

 
Path Path Coefficient Mean Standard Deviation t Statistics P Values 

CSA TECHNOLOGY->INCOME 0.927 0.929 0.005 190.377 0.000 

CSA TECHNOLOGY->PRODUCTIVITY 0.948 0.948 0.010 93.883 0.000 

ECONOMIC->CSA TECHNOLOGY 0.324 0.342 0.202 1.606 0.108 

SOCIAL->CSA TECHNOLOGY 0.657 0.639 0.200 3.284 0.001 

3.8 Socio-economic factors of CSA technology adoption 

 

This finding suggests that the social factors, which consist 

of four indicators—age, years of schooling [30, 31], farming 

experience [32, 33], and the number of family dependents 

[34], influence farmers' decisions to adopt CSA technology in 

response to climate challenges in Telang Makmur Village. For 

example, farmers with more years of formal education tend to 

have higher levels of knowledge and understanding, making it 

easier for them to comprehend new technologies and accept 

innovations that contribute to the sustainability of their 

agricultural practices. 

The economic factors examined in this study include 

cultivation area and side income. The results suggest that these 

economic variables do not significantly influence farmers’ 

decisions to adopt CSA technology on their farms in Telang 

Makmur Village. However, when analyzed individually, the 

land area indicator appears to have a potential influence on 

farmers’ decisions to adopt CSA technology. Farmers with 

larger land areas often require technological assistance to 

support and streamline their agricultural processes, which 

aligns with previous research [35]. Despite this, the overall 

influence of economic factors on CSA adoption was found to 

be statistically insignificant in this study [36, 37]. Farmers' 

reluctance to adopt new technologies, despite potential long-

term benefits, is often rooted in their focus on short-term 

economic security and the proven profitability of traditional 

practices. This hesitance is compounded by perceived risks 

and indirect profitability associated with new technologies. 

The research papers provided offer insights into the factors 
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influencing this reluctance and suggest strategies to encourage 

the adoption of innovative agricultural practices in line with 

[38, 39]. Even when economic factors allow, farmers with 

lower or more stable incomes tend to be more cautious in 

adopting new technologies due to fear of the risk of failure. 

They feel that changing their farming methods risks the 

sustainability of their farming business, so they prefer to stick 

with proven methods even though they have the economic 

capacity [40, 41]. 

 

3.9 The Impact of CSA technology on income 

 

The technology indicators utilized by farmers include 

tractors, superior variety seeds [42], tabela system, organic 

fertilization, pump and biopore systems [43], and combine 

harvesters. These technologies have been shown to contribute 

to increased farmer income in Telang Makmur Village, 

consistent with previous research [44-46]. By adopting these 

technologies, farmers can save time throughout various stages 

of the agricultural process, which enhances efficiency. In 

addition, they can increase production yields. For example, the 

use of superior variety seeds, which are of high quality, 

enables plants to grow optimally and withstand pests and 

weather disturbances. Combine harvesters are also employed 

during the harvesting process to minimize losses due to 

scattered grain, thereby reducing post-harvest losses. These 

findings align with previous studies [47, 48]. Overall, the 

implementation of these technologies positively impacts 

farmers’ income, as improved grain quality and higher 

production volumes lead to better selling prices and, 

consequently, increased income. 

 

3.10 The impact of CSA technology on productivity 

 

The CSA technologies adopted by farmers include tractors, 

superior variety seeds, tablea system, organic fertilization, 

pump and biopore systems, and combine harvesters. These 

technologies contribute to increasing the productivity of rice 

farmers in Telang Makmur Village. Several examples 

illustrate the effects of these technologies. The use of superior 

seeds increases yields, as the seeds are more resilient to 

external disturbances, which aligns with the findings of 

previous research [49]. To maintain soil fertility and ensure 

adequate water supply during the dry season, farmers can 

utilize pump technology to draw water from the river. For land 

preparation, tractors are employed to save both time and labor 

costs. Additionally, the use of combine harvesters during the 

harvesting process helps minimize losses due to scattered 

grain. 

 

 

4. CONCLUSION 

 

The adoption of CSA technologies in Telang Makmur 

Village has demonstrated a significant positive impact on 

farmers’ income and productivity. This finding aligns with the 

core objectives of CSA, which seek to sustainably increase 

agricultural productivity, enhance resilience to climate 

change, and reduce greenhouse gas emissions. Social factors, 

including the number of family members, years of schooling, 

farming experience, ethnicity, number of dependents, and age, 

were found to positively influence the level of CSA 

technology adoption. In contrast, economic factors such as 

income did not show a significant effect, suggesting that social 

motivations are more influential in driving adoption at the 

local level. Based on these results, the study recommends 

enhanced socialization, extension services, and technical 

training on CSA practices to strengthen farmers' adaptive 

capacity and raise community-level awareness of CSA 

benefits. Additionally, subsidies, incentives, and technological 

support are necessary to overcome barriers to adoption, 

particularly during the early stages of implementation. Further 

research is also needed to assess the long-term impacts of CSA 

adoption on food security, the sustainability of agricultural 

ecosystems, and the overall well-being of farmers. 

Due to the limitation of this research, the future research 

could be directed toward several areas, including comparative 

studies across different farm typologies and longitudinal 

tracking of the impacts of CSA adoption. 
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