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 With the continuous increase in global energy consumption, enhancing energy efficiency 

has become a crucial objective in the industrial sector. Mining equipment, as high-energy-

consuming facilities, presents particularly significant challenges regarding energy 

consumption. Accurate energy consumption prediction for mining equipment is essential 

for improving energy utilization efficiency and reducing environmental impact. Traditional 

prediction methods often rely on empirical models or statistical regression analyses, which 

tend to yield large prediction errors when dealing with the complex operational processes 

and varying environmental factors associated with mining equipment. In recent years, deep 

learning techniques have been widely applied to energy consumption prediction in mining 

equipment, especially for multi-temporal scale forecasting. However, most methods fail to 

adequately consider thermodynamic processes, resulting in predictions that lack physical 

consistency. Existing studies predominantly focus on deep learning-based models, yet they 

struggle to effectively capture the intricate nonlinear relationships inherent in multi-

temporal scale variations. Additionally, conventional models often neglect the significant 

impact of thermodynamic states on energy consumption, limiting their predictive accuracy. 

To address these challenges, this paper proposes a thermodynamically constrained artificial 

intelligence model for multi-temporal scale energy consumption prediction of mining 

equipment. Specifically, a bias-corrected spatiotemporal graph attention network is 

developed to adaptively capture energy consumption patterns across different temporal 

scales. Simultaneously, a thermodynamic constraint operator is incorporated to ensure the 

model adheres to thermodynamic principles, preventing physically inconsistent 

predictions. The proposed model offers a more accurate and scientifically grounded 

approach to optimizing energy efficiency in mining equipment. 
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1. INTRODUCTION 

 

With the continuous growth of global energy consumption, 

improving energy efficiency has become a core task across 

various industries, especially in the heavy industry sector [1-

4]. As energy-intensive facilities [5], mining equipment has 

drawn increasing attention due to its energy consumption 

during operation [6, 7]. To achieve efficient energy utilization 

and reduce environmental impact, energy consumption 

prediction and optimization of mining equipment have become 

important research directions in mine management and energy 

management [8-10]. Accurate prediction of mining equipment 

energy consumption can help enterprises formulate reasonable 

production plans [11], optimize equipment scheduling [12], 

improve energy utilization efficiency [13], and reduce 

unnecessary energy waste. Traditional energy consumption 

prediction methods often rely on empirical models or 

statistical regression analysis, but these methods usually suffer 

from large prediction errors when facing complex equipment 

operation processes and variable environmental factors. 

The energy consumption of mining equipment is influenced 

by multiple factors, including equipment operating conditions, 

environmental conditions, and time scales [14]. Deep learning 

methods for energy consumption prediction, especially for 

multi-temporal scale energy consumption prediction [15], can 

effectively capture complex nonlinear relationships and 

dynamic changes during equipment operation. However, 

existing deep learning models often overlook the impact of 

thermodynamic processes on energy consumption [16-18]. 

The importance of thermodynamic processes in mining 

equipment operation is self-evident, as the operational 

efficiency of the equipment is closely related to its internal 

thermodynamic state. Incorporating thermodynamic 

principles into deep learning models can significantly enhance 

the prediction accuracy and physical consistency of the 

models. Therefore, thermodynamically constrained artificial 

intelligence models have important research significance for 

multi-temporal scale energy consumption prediction of mining 

equipment. 

Although some studies on mining equipment energy 

consumption prediction based on deep learning have been 

conducted, most of them remain at the level of traditional 
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neural networks or regression models [19]. These methods 

perform poorly when handling multi-temporal scale problems, 

especially in terms of considering thermodynamic factors, due 

to the lack of effective constraint mechanisms. For example, 

although the method in the study of Li and Guo [20] can handle 

time series data, it fails to effectively capture energy 

consumption patterns over long temporal scales when facing 

complex variations across multiple time scales. Moreover, 

models without thermodynamic constraints are prone to 

generating prediction results that violate physical laws, which 

may lead to unreasonable optimization schemes in practical 

applications. Therefore, existing methods have considerable 

room for improvement in terms of model accuracy, physical 

consistency, and multi-temporal scale adaptability. 

The main research content of this paper includes two parts. 

First, a multi-temporal scale energy consumption prediction 

model for mining equipment is constructed based on the bias-

corrected spatiotemporal graph attention network. This model 

fully considers the energy consumption variations of mining 

equipment across different time scales and adaptively learns 

the energy consumption patterns through the spatiotemporal 

graph attention mechanism. Second, this paper introduces 

thermodynamic constraints and constructs a thermodynamic 

constraint operator in the energy consumption prediction 

model, ensuring that the model adheres to thermodynamic 

principles during the prediction process and avoids producing 

results that violate physical laws. This innovative approach not 

only improves the accuracy of mining equipment energy 

consumption prediction but also enhances the physical 

consistency and practicality of the model. Through these two 

aspects of research, the proposed model can provide a more 

accurate and scientific basis for optimizing the energy 

efficiency of mining equipment. 

 

 

2. MULTI-SCALE ENERGY PREDICTION FOR 

MINING EQUIPMENT 

 

In the process of multi-temporal scale energy consumption 

prediction for mining equipment, the energy consumption 

demand of the equipment is usually influenced by multiple 

factors, including equipment operating conditions, 

environmental changes, and thermodynamic conditions. 

However, due to the complexity and variability of the 

equipment operation process, traditional energy consumption 

prediction models are susceptible to inherent bias, leading to 

prediction results deviating from the actual energy 

consumption demand and affecting energy efficiency 

optimization. Therefore, to address the inherent bias in the 

multi-temporal scale energy consumption prediction of mining 

equipment, this paper introduces the Bias-Corrected 

Spatiotemporal Graph Attention Network. By extracting 

temporal dependency features along the temporal dimension 

and integrating the state information of mining equipment 

along the spatial dimension, the network can more accurately 

capture the energy consumption variation patterns of the 

equipment at different temporal scales. On this basis, a bias 

tensor is constructed to model the inherent bias caused by the 

dynamic changes in equipment energy consumption demand, 

and bias correction is further performed by decoding the bias 

tensor information. Figure 1 shows the model structure. 

 

 
 

Figure 1. Multi-temporal scale energy consumption prediction model structure for mining equipment 

 

2.1 Spatiotemporal feature extraction encoding module 

 

Figure 2 shows the schematic diagram of spatiotemporal 

feature extraction for mining equipment. In the spatiotemporal 

feature extraction encoding module of the network model, a 

graph embedding layer is introduced to effectively extract the 

features of the equipment in both temporal and spatial 

dimensions by constructing a spatiotemporal graph 

representation of mining equipment information. In the 

specific application scenario, the graph embedding layer first 
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maps the state information of mining equipment to the graph 

structure, representing the positions and interaction 

relationships of mining equipment in the spatial dimension as 

a spatial graph HT={Ns,Rs}, while constructing a temporal 

graph HS={Nv,Rv} in the temporal dimension. The nodes in HT 

and HS are represented by Ns={ns
v|v=1,2,...,V} and 

Nv={ns
v|v=1,2,...,SOBS}, respectively, while the edges in HT and 

HS are represented by RS and Rv, respectively. Each node in the 

spatial graph represents the information of a piece of mining 

equipment, while the edges represent the interaction 

relationships between the equipment. These edges lack prior 

knowledge, so at the initial stage of the model, the weight 

values of the edges are assigned as 1 or 0, indicating whether 

there is an interaction between the mining equipment nodes. 

The temporal graph is constructed based on time series data, 

where each node represents the state information of the 

equipment at a specific time point, and the edges represent the 

interactions between equipment at different time points. 

In this way, the graph embedding layer effectively encodes 

mining equipment information into a graph structure in both 

temporal and spatial dimensions, facilitating the subsequent 

spatiotemporal graph attention mechanism to further learn 

spatiotemporal dependencies and thus improve the accuracy of 

energy consumption prediction. In the spatial graph, since 

there are usually strong interaction relationships between 

mining equipment information nodes, all interaction 

relationships between mining equipment information are 

assumed to be in a connected state during initialization, i.e., 

the elements in RS are assigned a value of 1. In the temporal 

graph, since the energy consumption of the equipment is 

influenced by its state before the current moment, the edges in 

the temporal graph are initialized as an upper triangular 

matrix, i.e., the elements in Rv are only allowed to connect 

forward to ensure that the model focuses only on past time 

information during learning, avoiding the introduction of 

future data influence. Specifically, initializing RS and Rv by 

assigning values of 1 or 0 is expressed as: 

 

1 1 1 1 1 1

1 1 1 0 1 1
,

1 1 1 0 0 1

s

vR R

   
   
   = =
   
   
   

 (1) 

 

 
 

Figure 2. Schematic diagram of spatiotemporal feature 

extraction for mining equipment 

 

The model further introduces a spatiotemporal feature 

extraction encoding module to capture the interaction 

characteristics of mining equipment in the temporal and spatial 

dimensions and effectively extract the relationships between 

mining equipment through the graph attention network. In this 

task, the key task is to calculate the interaction degree between 

mining equipment information points, i.e., the mutual 

correlation coefficient between nodes. By using the graph 

attention network, the model can calculate the interaction 

degree between mining equipment information nodes through 

the correlation between queries and keys, thereby effectively 

capturing the dependencies between mining equipment. The 

inner product result of queries and keys represents the 

correlation between mining equipment nodes and can reflect 

the mutual influence between equipment. For mining 

equipment energy consumption prediction, energy 

consumption demand is often influenced by equipment status 

and interactions. Therefore, through this mechanism, the 

network can automatically adjust the contribution of each node 

to the prediction result based on the interaction relationships 

between nodes. 

Specifically, the first step of this module is to extract the 

interaction features of mining equipment information in the 

spatial dimension. In this step, traditional graph neural 

network methods may ignore the location information of the 

equipment. However, in the mining equipment energy 

consumption prediction task, the geographical location of the 

equipment has a significant impact on energy consumption 

relationships. Therefore, this study specifically embeds the 

location information into the mining equipment information 

graph, incorporating the spatial location information of mining 

equipment into the graph structure to ensure that the model 

fully considers the impact of location on mining equipment 

energy consumption. Assuming that the linear transformation 

function is represented by Linear(·), the location embedding 

information is represented by OT, and the weights of the linear 

transformation are represented by QO
T, then we have: 

 

( )Linear ,O

T T TO Q H=  (2) 

 

During the extraction of spatial dimension interaction 

features, the location embedding information first undergoes a 

linear transformation to generate queries and keys. This 

operation is a crucial step in the graph attention network. 

Through this linear transformation, the model can extract 

effective features from the mining equipment information and 

then use these features to capture the mutual influence between 

equipment in the spatial dimension. WT and JT respectively 

represent the queries and keys of each mining equipment in the 

spatial dimension, and these vectors help the model calculate 

the interaction weights between mining equipment in the 

subsequent steps. By using this approach, the model can not 

only identify the correlations between equipment in the spatial 

dimension but also dynamically adjust its importance in 

energy consumption prediction based on the location 

information of each piece of equipment. Assuming that the 

weights of the linear transformation are represented by QW
T 

and QJ
T, the expressions for WT and JT are as follows: 

 

( )Linear ,O

T T TW Q O=  (3) 

 

( )Linear ,J

T T TJ Q O=  (4) 
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Next, by performing an inner product calculation between 

queries WT and JT, the correlation or mutual correlation 

coefficient between mining equipment nodes can be obtained. 

To ensure that the calculated relationship coefficients conform 

to a standard probability distribution, they must be normalized 

using the Softmax function. The goal of this step is to convert 

the raw correlation coefficients obtained from calculations into 

attention weights, thereby generating the spatial adjacency 

matrix XT as shown in the following equation. This matrix 

reflects the interaction strength between equipment in the 

spatial dimension, helping the model effectively weight 

different equipment information in the subsequent processing. 

Assuming that the scaling factor is represented by (ft)1/2, we 

have the expression: 

 

softmax
S

t t
T

t

W J
X

f

 
=  

 
 

 (5) 

 

In addition to the extraction of interaction features in the 

spatial dimension, the core task of the spatiotemporal feature 

extraction encoding module also includes extracting the 

energy consumption dependency features of mining 

equipment information in the temporal dimension. Similar to 

the spatial dimension, the interaction features in the temporal 

dimension need to be extracted using the graph attention 

mechanism. The purpose of this process is to capture the 

energy consumption dependency relationships of equipment at 

different time points and convert them into a temporal 

adjacency matrix. In mining equipment energy consumption 

prediction, the energy consumption of the equipment is not 

only influenced by the current moment but also by the energy 

consumption of the equipment at the previous moment. 

Therefore, the temporal adjacency matrix reflects the energy 

consumption dependency of mining equipment in the time 

series, helping the model understand how equipment 

influences each other over consecutive time steps and 

providing more comprehensive sequential information for 

energy consumption prediction. 

 

( )Linear ,O

S S SO Q H=  (6) 

 

( )Linear ,W

S S SW Q O=  (7) 

 

( )Linear ,J

S S SJ Q O=  (8) 

 

' softmax
S

S S
S

S

W J
X

f

 
=  

 
 

 (9) 

 

After extracting temporal dimension features, the 

interaction between mining equipment information nodes is 

influenced by energy consumption correlation information at 

the current moment and previous moments. Therefore, to 

ensure the model adheres to this causality, when processing 

the temporal adjacency matrix, it is necessary to perform a 

pointwise multiplication operation between the temporal 

adjacency matrix and the adjacency matrix in the spatial graph, 

as shown in the following equation. This operation ensures 

that the model can only make predictions based on the past and 

current equipment energy consumption states, thus avoiding 

interference from future information on the current prediction. 

 

'S S vX X R=   (10) 

 

Finally, after processing through the graph attention 

network, the spatiotemporal feature extraction module obtains 

the spatial adjacency matrix XT and the temporal adjacency 

matrix XS, both containing interaction weight information. 

These two matrices represent the spatial interaction feature 

graph HT
^={Ns,XT} and the temporal energy consumption 

dependency feature graph HS
^={Nv,XS} of mining equipment, 

respectively. These two feature graphs integrate the interaction 

information of mining equipment in both temporal and spatial 

dimensions, providing sufficient spatiotemporal feature 

support for subsequent energy consumption prediction. 

 

 
 

Figure 3. Processing procedure of the spatiotemporal feature 

fusion module 

 

In mining equipment energy consumption prediction, the 

equipment’s state is not only affected by spatial location but 

also by the sequential associations and energy consumption 

patterns between equipment. To fuse the spatial interaction 

feature graph and the temporal energy consumption 

dependency feature graph extracted in the previous module, 

thereby obtaining more comprehensive spatiotemporal 

features, this study introduces a spatiotemporal feature fusion 

module. Figure 3 shows the processing procedure of the 

spatiotemporal feature fusion module. The key of the module 

lies in effectively aggregating the spatial interaction feature 

graph HT
^ and the temporal energy consumption dependency 

feature graph HS
^ of mining equipment through a graph 

convolutional network (GCN). Through this aggregation, the 

model can combine information from spatial and temporal 

dimensions, comprehensively reflecting the multi-level 

features of mining equipment, thereby providing more 

accurate input for subsequent energy consumption prediction. 

Assuming the nonlinear activation function is represented by 

δ(·), with PReLU function adopted here, and QT1, QS1, QT2, and 

QS2 representing the weights of the GCN, the formula for 

generating spatiotemporal fusion features is as follows: 

 

( )( )1 1

s

TS S T T SD X X N Q Q =  (11) 

 

( )( )2 2ST T S v S TD X X N Q Q =  (12) 

 

532



 

( )concat ,TS STD D D=  (13) 

 

2.2 Bias correction decoding module 

 

In the network model, the core task of the bias correction 

decoding module is to simulate and eliminate potential false 

associations in the training data through a bias tensor, thereby 

improving the prediction accuracy of the model. In mining 

equipment energy consumption prediction, real-world 

scenarios often involve numerous factors that change over 

time, such as vehicle stops or sudden increases in equipment 

information. These changes may lead to deviations between 

the training data and real-world scenarios. When there are 

more vehicle stops in certain scenarios in the training set, the 

model may mistakenly bind such bias information, which is 

unrelated to energy consumption, with the energy 

consumption association features of mining equipment, 

thereby affecting the prediction accuracy during the testing 

phase. To solve this problem, this study constructs a bias 

tensor z, combining it with spatiotemporal fusion features to 

simulate the bias information present in energy consumption 

demand. The shape of the bias tensor is identical to that of the 

spatiotemporal fusion features, and its function is to model 

potential false associations during the training process so that 

these biases can be eliminated in the subsequent correction 

process. 

 

 
 

Figure 4. Structure diagram of the temporal convolutional 

network (TCN) used 

 

In the bias correction module, the bias tensor and the 

spatiotemporal fusion features are input into the TCN for 

decoding. Figure 4 shows the structure diagram of the TCN 

used. Since the purpose of the bias tensor is to simulate bias 

information in energy consumption demand, the bias 

correction module subtracts the bias information from the 

decoded mining equipment energy consumption association 

information based on causal analysis, resulting in an output 

that more closely reflects actual energy consumption demand. 

To further enhance the model's adaptability and accuracy, the 

decoded bias information is processed through a learnable 

adaptive network layer, ensuring that the final output of the 

mining equipment energy consumption association prediction 

information can more accurately reflect the energy 

consumption variations of mining equipment across multiple 

time scales. Assuming the input and output of the TCN are 

represented by NIN and NOUT, and the number of TCN layers is 

represented by V, the calculation of the CN used in this study 

is as follows: 

 

( )( )( )dropout ReLU 2OUT IN IN
V

N O conv D N N = +
 

 (14) 

 

In order to simulate and eliminate possible spurious 

correlations in the training data through the bias tensor, this 

study further sets up a bias correction decoding module to 

improve the model’s prediction accuracy. In the energy 

consumption prediction of mining equipment, real-world 

scenarios often include various dynamically changing factors, 

such as vehicle stops or sudden surges in device information. 

These changes may lead to deviations between the training 

data and the actual scenarios. When there are frequent vehicle 

stops in certain scenes of the training set, the model may 

mistakenly associate such bias information, which is unrelated 

to energy consumption, with the energy consumption 

correlation features of mining equipment, thereby affecting 

prediction accuracy during the testing phase. To address this 

issue, this study constructs a bias tensor, combining it with 

spatiotemporal fusion features to simulate the bias information 

present in energy consumption demands. In the bias correction 

module, the bias tensor and spatiotemporal fusion features are 

jointly input into the TCN for decoding. Since the role of the 

bias tensor is to simulate bias information in energy 

consumption demands, the bias correction module subtracts 

the bias information from the decoded mining equipment 

energy consumption correlation information based on causal 

analysis, obtaining an output that more closely approximates 

the true energy consumption demand. Figure 5 shows the 

causal convolution process. Assuming that the learnable 

adaptive network is represented by Θ(·), the specific process 

is as follows: 

 

( )1N TCN D=  (15) 

 

( )2N TCN C=  (16) 

 

( )1 2N N N=  −  (17) 

 

 
 

Figure 5. Causal convolution process 

 

 

3. THERMODYNAMIC CONSTRAINED NEURAL 

NETWORK MODEL IMPLEMENTATION 

 

In the scenario of multi-time-scale energy consumption 

prediction for mining equipment, changes in energy 

consumption are not only influenced by the operational status 

and modes of the equipment but also constrained by 

thermodynamic processes. When mining equipment is in 

operation, energy conversion and flow follow certain 

thermodynamic laws, such as the law of energy conservation 

and the second law of thermodynamics. Therefore, 

incorporating thermodynamic constraints into the mining 

equipment energy consumption prediction model can help the 

model more accurately capture the equipment's energy 
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consumption patterns, ensuring that the model’s predicted 

energy consumption results comply with physical principles 

and avoiding abnormal predictions that violate 

thermodynamic laws. In this study, during the training process, 

a thermodynamic constraint operator is constructed to enable 

the model to continuously reference and learn physical 

characteristics related to thermodynamic laws in both the 

spatiotemporal feature fusion and prediction stages. 

The introduced thermodynamic constraint operator aims to 

map the thermal efficiency curves and heat loss curves of 

mining equipment to multi-time-scale energy consumption 

data. Through this mapping relationship, the model ensures 

that the prediction process adheres to the thermodynamic laws 

in physics. Specifically, the thermal efficiency curve describes 

the energy conversion efficiency of the equipment under 

different operating states, while the heat loss curve represents 

the energy loss during the equipment's operation. By 

constructing the thermodynamic constraint operator, these 

physical characteristics can be mapped onto the specific 

energy consumption data, ensuring that the model's energy 

consumption prediction across multiple time scales reflects the 

actual physical behavior of the equipment. The construction 

principle of the thermodynamic constraint operator can be 

summarized in the following two steps: (1) Collect and 

analyze the thermal efficiency and heat loss data of mining 

equipment under different operating states to obtain the 

thermal efficiency curves and heat loss curves. These curves 

reflect the energy conversion and loss characteristics of the 

equipment under various operating conditions. (2) Associate 

these thermodynamic curves with specific energy 

consumption data to construct a mapping relationship, i.e., the 

thermodynamic constraint operator. 

Before conducting the multi-time-scale energy 

consumption prediction experiments for mining equipment, 

this study first trains the thermodynamically constrained 

energy consumption prediction model neural network using 

pre-constructed thermodynamic data and minimizes the 

objective function below to train the model. Assuming that the 

thermal efficiency curve, heat loss curve, and temperature data 

of mining equipment are represented by qo, qF, and t, 

respectively, the constraint operator is represented by DΦ1, and 

the number of samples is denoted by V. This training process 

can be described by the following formulas: 

 

( )
1

,o FD q q t =  (18) 

 

( ) ( )
1

2

1

1 2

1
,

V

z u o F

u

LOSS t D q q
V



=

 = −  (19) 

 

Assuming that the conventional thermal efficiency curve 

and heat loss curve are represented by q, the prediction 

operator is represented by DΦ2, and the original loss is 

represented by LOSSo(Φ2), the multi-time-scale energy 

consumption prediction process and objective function of 

mining equipment before introducing the thermodynamically 

constrained neural network can be described as: 

 

( )
2

, oD t q q =  (20) 

 

( ) ( )
2

2

2
2

1

1
,

i

V

o o

u

LOSS q D t q
V



=

 = −  (21) 

 

In the multi-time-scale energy consumption prediction 

process of mining equipment, the predicted values output by 

the prediction model are fed into the pre-trained 

thermodynamically constrained neural network model, and the 

constraint loss is obtained by calculating the error between the 

synthetic mining equipment energy consumption record and 

the actual mining equipment energy consumption record, as 

shown in the following formula: 

 

( ) ( )( )
1 2

2

1 2
2

1

1
, , ,

V

z u F

u

LOSS t D D t q q
V

 

=

  = −  (22) 

 

Thus, the overall objective function of the prediction can be 

described as: 

 

( ) ( )

( )( )

2

1 2

2

1 2
2

1

2

2
1

, ,

, ,

i

V

o o

u

V

u F

u

LOSS q D t q
V

t D D t q q
V







=

 

=

  = −

+ −




 (23) 

 

Assuming that the influencing factors are represented by β 

and α, the simplified form is as follows: 

 

( ) ( ) ( )1 2 2 1 2, ,o o zLOSS LOSS LOSS   =  +    (24) 

 

 

4. FINDINGS AND DISCUSSION 

 

Figure 6 shows the multi-time-scale energy consumption 

prediction results of mining equipment using different 

methods under thermodynamic constraints, and Figure 7 

presents the locally magnified comparison. From the data in 

the figures, it can be observed that the prediction results of the 

proposed method under thermodynamic constraints show a 

significant improvement in accuracy compared to other 

methods. Between sampling points 66 and 74, the predicted 

values of the proposed method are 9500, 9550, 9500, 10300, 

and 11300, which are relatively close to the actual measured 

values of 9500, 9400, 9750, 10750, and 11750. Particularly at 

sampling points 72 and 74, the predicted values of the 

proposed method exhibit smaller discrepancies from the actual 

measured values, whereas other methods such as SS-GAT and 

MM-GAT show larger prediction deviations at these points. 

After sampling point 74, the prediction values of the proposed 

method continue to maintain high accuracy, demonstrating 

stability and reliability across multiple time scales. 

From the data in Table 1, it can be seen that the proposed 

method shows lower error values in the energy consumption 

prediction results under thermodynamic constraints across 

multiple equipment categories, significantly improving 

prediction accuracy. For excavation equipment, transportation 

equipment, drainage equipment, ventilation equipment, 

loading equipment, and the integrated energy system, the 

Mean Absolute Error (MAE) of the proposed method is 0.63, 

0.28, 0.36, 0.26, 0.23, and 0.35, respectively, while the Root 

Mean Square Error (RMSE) is 1.02, 0.44, 0.66, 0.47, 0.42, and 

0.61, respectively. These results indicate that the proposed 

method outperforms other methods in most equipment 

categories, especially in transportation equipment and loading 

equipment, where its MAE and RMSE are significantly lower 

than those of other methods. For example, in transportation 

equipment, the MAE and RMSE of the proposed method are 
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0.28 and 0.44, significantly lower than SS-GAT's 0.48/0.86 

and MM-GAT's 0.25/0.51. 

According to the data in Table 2, the number of TCN layers 

significantly impacts the energy consumption prediction 

results under thermodynamic constraints. When the number of 

TCN layers is set to 2, the overall performance is optimal, 

especially in the prediction of the integrated energy system, 

where the MAE and RMSE are 0.35 and 0.61, respectively. 

Furthermore, in the energy consumption predictions for 

excavation equipment, transportation equipment, drainage 

equipment, ventilation equipment, and loading equipment, the 

MAE and RMSE with 2 TCN layers are also significantly 

lower than those with other layer numbers. Specifically, the 

MAE and RMSE for transportation equipment are 0.28 and 

0.45, respectively, while those for loading equipment are 0.23 

and 0.42. These results suggest that when the number of TCN 

layers is set to 2, the model captures the energy consumption 

patterns more accurately, thereby improving prediction 

precision. 

According to the data in Table 3, introducing different types 

of bias tensors under thermodynamic constraints has a 

significant impact on the performance of the energy 

consumption prediction model. When using the zero tensor as 

the bias tensor, the MAE and RMSE for the integrated energy 

system are 0.35 and 0.61, respectively, representing the best 

performance. In the predictions for excavation equipment and 

loading equipment, the MAE and RMSE with the zero tensor 

are 0.63/1.12 and 0.23/0.42, respectively, also demonstrating 

superior performance. In contrast, the introduction of random 

tensors and average tensors generally leads to higher errors. 

For example, the RMSE for random tensors in excavation 

equipment reaches 1.26, while the RMSE for average tensors 

in drainage equipment is 0.71. The baseline model exhibits 

relatively higher prediction errors in most equipment 

categories, although its performance in excavation equipment 

is comparatively better. 

In this study, the experimental results shown in Figure 8 

demonstrate that the proposed Adaptive Bias Correction 

Spatio-Temporal Graph Attention Network model performs 

excellently in predicting the energy consumption of mining 

equipment. Specifically, the model accurately captures the 

energy consumption variations of mining equipment across 

different time scales, with the regression line of the predicted 

results and actual measurements almost aligning with the 

diagonal line, indicating a high degree of agreement between 

predicted and actual values. Furthermore, from the distribution 

of predicted and actual measured values, the two distributions 

are relatively consistent, further validating the model's 

superiority in handling multi-time scale energy consumption 

prediction tasks. Further analysis reveals that although the 

regression line shows a slight deviation from the diagonal, the 

magnitude of this deviation is minimal and does not 

significantly affect the prediction accuracy. In contrast, 

traditional models under the same experimental conditions 

exhibit a noticeable deviation between the regression line of 

predicted results and measured values relative to the diagonal, 

with larger differences in the distribution of predicted and 

measured values. These results indicate that the proposed 

method not only achieves higher consistency and accuracy in 

predicting mining equipment energy consumption but also 

ensures the physical rationality and practicality of the 

prediction results by introducing thermodynamic constraints, 

significantly enhancing the overall performance of the 

prediction model. 

 

  
  

Figure 6. Multi-time-scale energy consumption prediction 

results of mining equipment using different methods under 

thermodynamic constraints 

Figure 7. Locally magnified comparison of multi-time-scale 

energy consumption prediction results of mining equipment 

under thermodynamic constraints 

 

Table 1. Comparison of multi-time-scale energy consumption prediction results of mining equipment using different methods 

under thermodynamic constraints 

 

Algorithm/Dataset 

Experimental Results (MAE/RMSE) 

Excavation 

Equipment 

Excavation 

Equipment 

Drainage 

Equipment 

Ventilation 

Equipment 

Loading 

Equipment 

Integrated 

Energy System 

SS-GAT 0.63/0.12 0.48/0.86 0.43/0.78 0.33/0.52 0.31/0.47 0.43/0.74 

MM-GAT 0.55/1.21 0.25/0.51 0.41/0.88 0.32/0.72 0.51/1.26 0.42/0.88 

AGAT 0.62/1.12 0.31/0.54 0.36/0.71 0.28/0.52 0.24/0.44 0.36/0.64 

The Proposed Method 0.63/1.02 0.28/0.44 0.36/0.66 0.26/0.47 0.23/0.42 0.35/0.61 
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Table 2. Ablation experiment results for determining the number of TCN layers in thermodynamic constraints 

 

Number of 

Layers/Dataset 

Experimental Results (MAE/RMSE) 

Excavation 

Equipment 

Excavation 

Equipment 

Drainage 

Equipment 

Ventilation 

Equipment 

Loading 

Equipment 

Integrated 

Energy System 

1 0.66/1.12 0.31/0.57 0.37/0.67 0.26/0.47 0.25/0.44 0.37/0.67 

2 0.62/1.12 0.28/0.45 0.36/0.66 0.26/0.47 0.23/0.42 0.35/0.61 

3 0.72/1.16 0.28/0.51 0.38/0.75 0.27/0.51 0.23/0.41 0.37/0.68 

4 0.67/1.17 0.47/0.42 0.37/0.72 0.26/0.47 0.23/0.42 0.43/0.65 

5 0.81/1.36 0.36/0.51 0.38/0.74 0.27/0.48 0.24/0.42 0.42/0.72 

 

Table 3. Ablation experiment results for determining bias tensors under thermodynamic constraints 

 

Bias 

Tensor/Dataset 

Experimental Results (MAE/RMSE) 

Excavation 

Equipment 

Excavation 

Equipment 

Drainage 

Equipment 

Ventilation 

Equipment 

Loading 

Equipment 

Integrated 

Energy System 

Zero Tensor 0.63/1.12 0.28/0.45 0.38/0.66 0.26/0.47 0.23/0.42 0.35/0.61 

Random Tensor 0.67/1.26 0.28/0.48 0.36/0.66 0.26/0.45 0.22/0.42 0.36/0.66 

Average Tensor 0.72/1.37 0.27/0.48 0.37/0.71 0.27/0.47 0.22/0.41 0.37/0.71 

Baseline Model 0.62/1.18 0.31/0.54 0.36/0.71 0.28/0.52 0.24/0.44 0.36/0.66 
 

 
 

Figure 8. Intersection and distribution of multi-time scale energy consumption prediction and measurement results for mining 

equipment under thermodynamic constraints 

 

 

5. CONCLUSION 

 

This study consists of two main parts: first, a multi-time 

scale energy consumption prediction model based on the 

Adaptive Bias Correction Spatio-Temporal Graph Attention 

Network was constructed. This model fully considered the 

energy consumption variations of mining equipment across 

different time scales and adaptively learnt the energy 

consumption patterns under different time scales through the 

spatio-temporal graph attention mechanism. Second, 

thermodynamic constraints were introduced by constructing a 

thermodynamic constraint operator within the energy 

consumption prediction model, ensuring that the model 

follows thermodynamic principles during the prediction 

process, thereby avoiding physically unreasonable prediction 

results. 

Comprehensive experimental results show that the proposed 

model performs excellently in predicting mining equipment 

energy consumption, with prediction results highly consistent 

with actual measurements and good distribution consistency. 

Compared to traditional models, the proposed model not only 

improves the accuracy of energy consumption predictions but 

also enhances the physical rationality of the prediction results 

through thermodynamic constraints, demonstrating significant 

practical value. The limitations of this study lie in the fact that, 

although the model performs well on experimental data, more 

external disturbance factors and complex working conditions 

may need to be considered in practical applications. Future 

research directions may focus on enhancing the generalization 

capability and adaptability of the model while further 

optimizing the thermodynamic constraint mechanism to 

explore its effectiveness and practicality in broader application 

scenarios. 
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