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With the continuous increase in global energy consumption, enhancing energy efficiency
has become a crucial objective in the industrial sector. Mining equipment, as high-energy-
consuming facilities, presents particularly significant challenges regarding energy
consumption. Accurate energy consumption prediction for mining equipment is essential
for improving energy utilization efficiency and reducing environmental impact. Traditional
prediction methods often rely on empirical models or statistical regression analyses, which
tend to yield large prediction errors when dealing with the complex operational processes
and varying environmental factors associated with mining equipment. In recent years, deep
learning techniques have been widely applied to energy consumption prediction in mining
equipment, especially for multi-temporal scale forecasting. However, most methods fail to
adequately consider thermodynamic processes, resulting in predictions that lack physical
consistency. Existing studies predominantly focus on deep learning-based models, yet they
struggle to effectively capture the intricate nonlinear relationships inherent in multi-
temporal scale variations. Additionally, conventional models often neglect the significant
impact of thermodynamic states on energy consumption, limiting their predictive accuracy.
To address these challenges, this paper proposes a thermodynamically constrained artificial
intelligence model for multi-temporal scale energy consumption prediction of mining
equipment. Specifically, a bias-corrected spatiotemporal graph attention network is
developed to adaptively capture energy consumption patterns across different temporal
scales. Simultaneously, a thermodynamic constraint operator is incorporated to ensure the
model adheres to thermodynamic principles, preventing physically inconsistent
predictions. The proposed model offers a more accurate and scientifically grounded
approach to optimizing energy efficiency in mining equipment.

1. INTRODUCTION

With the continuous growth of global energy consumption,
improving energy efficiency has become a core task across
various industries, especially in the heavy industry sector [1-
4]. As energy-intensive facilities [5], mining equipment has
drawn increasing attention due to its energy consumption
during operation [6, 7]. To achieve efficient energy utilization
and reduce environmental impact, energy consumption
prediction and optimization of mining equipment have become
important research directions in mine management and energy
management [8-10]. Accurate prediction of mining equipment
energy consumption can help enterprises formulate reasonable
production plans [11], optimize equipment scheduling [12],
improve energy utilization efficiency [13], and reduce
unnecessary energy waste. Traditional energy consumption
prediction methods often rely on empirical models or
statistical regression analysis, but these methods usually suffer
from large prediction errors when facing complex equipment
operation processes and variable environmental factors.

The energy consumption of mining equipment is influenced

by multiple factors, including equipment operating conditions,
environmental conditions, and time scales [14]. Deep learning
methods for energy consumption prediction, especially for
multi-temporal scale energy consumption prediction [15], can
effectively capture complex nonlinear relationships and
dynamic changes during equipment operation. However,
existing deep learning models often overlook the impact of
thermodynamic processes on energy consumption [16-18].
The importance of thermodynamic processes in mining
equipment operation is self-evident, as the operational
efficiency of the equipment is closely related to its internal
thermodynamic  state.  Incorporating  thermodynamic
principles into deep learning models can significantly enhance
the prediction accuracy and physical consistency of the
models. Therefore, thermodynamically constrained artificial
intelligence models have important research significance for
multi-temporal scale energy consumption prediction of mining
equipment.

Although some studies on mining equipment energy
consumption prediction based on deep learning have been
conducted, most of them remain at the level of traditional
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neural networks or regression models [19]. These methods
perform poorly when handling multi-temporal scale problems,
especially in terms of considering thermodynamic factors, due
to the lack of effective constraint mechanisms. For example,
although the method in the study of Li and Guo [20] can handle
time series data, it fails to effectively capture energy
consumption patterns over long temporal scales when facing
complex variations across multiple time scales. Moreover,
models without thermodynamic constraints are prone to
generating prediction results that violate physical laws, which
may lead to unreasonable optimization schemes in practical
applications. Therefore, existing methods have considerable
room for improvement in terms of model accuracy, physical
consistency, and multi-temporal scale adaptability.

The main research content of this paper includes two parts.
First, a multi-temporal scale energy consumption prediction
model for mining equipment is constructed based on the bias-
corrected spatiotemporal graph attention network. This model
fully considers the energy consumption variations of mining
equipment across different time scales and adaptively learns
the energy consumption patterns through the spatiotemporal
graph attention mechanism. Second, this paper introduces
thermodynamic constraints and constructs a thermodynamic
constraint operator in the energy consumption prediction
model, ensuring that the model adheres to thermodynamic
principles during the prediction process and avoids producing
results that violate physical laws. This innovative approach not
only improves the accuracy of mining equipment energy
consumption prediction but also enhances the physical
consistency and practicality of the model. Through these two
aspects of research, the proposed model can provide a more

accurate and scientific basis for optimizing the energy
efficiency of mining equipment.

2. MULTI-SCALE ENERGY PREDICTION FOR
MINING EQUIPMENT

In the process of multi-temporal scale energy consumption
prediction for mining equipment, the energy consumption
demand of the equipment is usually influenced by multiple
factors, including equipment operating conditions,
environmental changes, and thermodynamic conditions.
However, due to the complexity and variability of the
equipment operation process, traditional energy consumption
prediction models are susceptible to inherent bias, leading to
prediction results deviating from the actual -energy
consumption demand and affecting energy efficiency
optimization. Therefore, to address the inherent bias in the
multi-temporal scale energy consumption prediction of mining
equipment, this paper introduces the Bias-Corrected
Spatiotemporal Graph Attention Network. By extracting
temporal dependency features along the temporal dimension
and integrating the state information of mining equipment
along the spatial dimension, the network can more accurately
capture the energy consumption variation patterns of the
equipment at different temporal scales. On this basis, a bias
tensor is constructed to model the inherent bias caused by the
dynamic changes in equipment energy consumption demand,
and bias correction is further performed by decoding the bias
tensor information. Figure 1 shows the model structure.

| .. . . |
Mining Equipment Encoding Module |
| Energy Consumption }
| Association : B |
| Information Input |
] - — - -
' L 4 ! 1|
| Giaph Graph iR
| Embedding Embedding o E Spatio- |
I Layer Layer | & temporal
| 5 I | & Fusion |
| s | m Features |
[CE |
I Temporal Graph = ]! + + |
| = |
| 1 | Tov ] | 1oy ] [
l [
I ® 1! + [
| | Bias
| l | Correction |« |
| | Module |
| ! v . . |
) . ]! Predicted Mining I
| quipment Interaction (] Equipment Energy
| Temporal Features o -—-_.,\‘ Consumption Output :
|
I .
| quipment Interaction l L Decoding Module |
| Spatial Features MM~ — = -
|
|
| v :
| GCN I
I —

Figure 1. Multi-temporal scale energy consumption prediction model structure for mining equipment

2.1 Spatiotemporal feature extraction encoding module

Figure 2 shows the schematic diagram of spatiotemporal
feature extraction for mining equipment. In the spatiotemporal
feature extraction encoding module of the network model, a
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graph embedding layer is introduced to effectively extract the
features of the equipment in both temporal and spatial
dimensions by constructing a spatiotemporal graph
representation of mining equipment information. In the
specific application scenario, the graph embedding layer first



maps the state information of mining equipment to the graph
structure, representing the positions and interaction
relationships of mining equipment in the spatial dimension as
a spatial graph H/={N*,R*}, while constructing a temporal
graph Hs={N,,R,} in the temporal dimension. The nodes in Hr
and Hs are represented by N={n'|v=1,2,..,F} and
N={n*,v=1,2,....Soss}, respectively, while the edges in Hrand
Hs are represented by RS and R,, respectively. Each node in the
spatial graph represents the information of a piece of mining
equipment, while the edges represent the interaction
relationships between the equipment. These edges lack prior
knowledge, so at the initial stage of the model, the weight
values of the edges are assigned as 1 or 0, indicating whether
there is an interaction between the mining equipment nodes.
The temporal graph is constructed based on time series data,
where each node represents the state information of the
equipment at a specific time point, and the edges represent the
interactions between equipment at different time points.

In this way, the graph embedding layer effectively encodes
mining equipment information into a graph structure in both
temporal and spatial dimensions, facilitating the subsequent
spatiotemporal graph attention mechanism to further learn
spatiotemporal dependencies and thus improve the accuracy of
energy consumption prediction. In the spatial graph, since
there are usually strong interaction relationships between
mining equipment information nodes, all interaction
relationships between mining equipment information are
assumed to be in a connected state during initialization, i.e.,
the elements in RS are assigned a value of 1. In the temporal
graph, since the energy consumption of the equipment is
influenced by its state before the current moment, the edges in
the temporal graph are initialized as an upper triangular
matrix, i.e., the elements in R, are only allowed to connect
forward to ensure that the model focuses only on past time
information during learning, avoiding the introduction of
future data influence. Specifically, initializing RS and R, by
assigning values of 1 or 0 is expressed as:
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Figure 2. Schematic diagram of spatiotemporal feature
extraction for mining equipment

The model further introduces a spatiotemporal feature
extraction encoding module to capture the interaction
characteristics of mining equipment in the temporal and spatial
dimensions and effectively extract the relationships between
mining equipment through the graph attention network. In this
task, the key task is to calculate the interaction degree between
mining equipment information points, i.e., the mutual
correlation coefficient between nodes. By using the graph
attention network, the model can calculate the interaction
degree between mining equipment information nodes through
the correlation between queries and keys, thereby effectively
capturing the dependencies between mining equipment. The
inner product result of queries and keys represents the
correlation between mining equipment nodes and can reflect
the mutual influence between equipment. For mining
equipment energy consumption prediction, energy
consumption demand is often influenced by equipment status
and interactions. Therefore, through this mechanism, the
network can automatically adjust the contribution of each node
to the prediction result based on the interaction relationships
between nodes.

Specifically, the first step of this module is to extract the
interaction features of mining equipment information in the
spatial dimension. In this step, traditional graph neural
network methods may ignore the location information of the
equipment. However, in the mining equipment energy
consumption prediction task, the geographical location of the
equipment has a significant impact on energy consumption
relationships. Therefore, this study specifically embeds the
location information into the mining equipment information
graph, incorporating the spatial location information of mining
equipment into the graph structure to ensure that the model
fully considers the impact of location on mining equipment
energy consumption. Assuming that the linear transformation
function is represented by Linear(-), the location embedding
information is represented by Or, and the weights of the linear
transformation are represented by 0°r, then we have:

0, = Linear(Qf ,HT) )

During the extraction of spatial dimension interaction
features, the location embedding information first undergoes a
linear transformation to generate queries and keys. This
operation is a crucial step in the graph attention network.
Through this linear transformation, the model can extract
effective features from the mining equipment information and
then use these features to capture the mutual influence between
equipment in the spatial dimension. W7 and Jr respectively
represent the queries and keys of each mining equipment in the
spatial dimension, and these vectors help the model calculate
the interaction weights between mining equipment in the
subsequent steps. By using this approach, the model can not
only identify the correlations between equipment in the spatial
dimension but also dynamically adjust its importance in
energy consumption prediction based on the location
information of each piece of equipment. Assuming that the
weights of the linear transformation are represented by O"r
and Q’r, the expressions for Wr and Jrare as follows:

W, = Linear(Qf , OT) 3)

J, = Linear(QT’ ,OT) (4)



Next, by performing an inner product calculation between
queries Wr and Jr, the correlation or mutual correlation
coefficient between mining equipment nodes can be obtained.
To ensure that the calculated relationship coefficients conform
to a standard probability distribution, they must be normalized
using the Softmax function. The goal of this step is to convert
the raw correlation coefficients obtained from calculations into
attention weights, thereby generating the spatial adjacency
matrix Xr as shown in the following equation. This matrix
reflects the interaction strength between equipment in the
spatial dimension, helping the model effectively weight
different equipment information in the subsequent processing.
Assuming that the scaling factor is represented by (f)2, we
have the expression:

W S
X, =softmax (—’J’

NG

In addition to the extraction of interaction features in the
spatial dimension, the core task of the spatiotemporal feature
extraction encoding module also includes extracting the
energy consumption dependency features of mining
equipment information in the temporal dimension. Similar to
the spatial dimension, the interaction features in the temporal
dimension need to be extracted using the graph attention
mechanism. The purpose of this process is to capture the
energy consumption dependency relationships of equipment at
different time points and convert them into a temporal
adjacency matrix. In mining equipment energy consumption
prediction, the energy consumption of the equipment is not
only influenced by the current moment but also by the energy
consumption of the equipment at the previous moment.
Therefore, the temporal adjacency matrix reflects the energy
consumption dependency of mining equipment in the time
series, helping the model understand how equipment
influences each other over consecutive time steps and
providing more comprehensive sequential information for
energy consumption prediction.

)

O, = Linear(QSO JH S) (6)
: W

/8 :Lmear(QS ,OS) @)
Js = Linear(QS’,OS) (8)

\ Wl
X'y =softmax| —= 9)

J7s
After extracting temporal dimension features, the

interaction between mining equipment information nodes is
influenced by energy consumption correlation information at
the current moment and previous moments. Therefore, to
ensure the model adheres to this causality, when processing
the temporal adjacency matrix, it is necessary to perform a
pointwise multiplication operation between the temporal
adjacency matrix and the adjacency matrix in the spatial graph,
as shown in the following equation. This operation ensures
that the model can only make predictions based on the past and
current equipment energy consumption states, thus avoiding
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interference from future information on the current prediction.

X, =X"'s®R, (10)
Finally, after processing through the graph attention
network, the spatiotemporal feature extraction module obtains
the spatial adjacency matrix X7 and the temporal adjacency
matrix Xs, both containing interaction weight information.
These two matrices represent the spatial interaction feature
graph Hy'={N°,X7} and the temporal energy consumption
dependency feature graph Hs'={N,,Xs} of mining equipment,
respectively. These two feature graphs integrate the interaction
information of mining equipment in both temporal and spatial
dimensions, providing sufficient spatiotemporal feature
support for subsequent energy consumption prediction.
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Figure 3. Processing procedure of the spatiotemporal feature
fusion module

In mining equipment energy consumption prediction, the
equipment’s state is not only affected by spatial location but
also by the sequential associations and energy consumption
patterns between equipment. To fuse the spatial interaction
feature graph and the temporal energy consumption
dependency feature graph extracted in the previous module,
thereby obtaining more comprehensive spatiotemporal
features, this study introduces a spatiotemporal feature fusion
module. Figure 3 shows the processing procedure of the
spatiotemporal feature fusion module. The key of the module
lies in effectively aggregating the spatial interaction feature
graph Hy and the temporal energy consumption dependency
feature graph Hs of mining equipment through a graph
convolutional network (GCN). Through this aggregation, the
model can combine information from spatial and temporal
dimensions, comprehensively reflecting the multi-level
features of mining equipment, thereby providing more
accurate input for subsequent energy consumption prediction.
Assuming the nonlinear activation function is represented by
o(+), with PReLU function adopted here, and Or1, QOs1, Or, and
Os» representing the weights of the GCN, the formula for
generating spatiotemporal fusion features is as follows:

Dy :5(XS5(XTNSQT1)QS1) (11)

Dy, :5(Xr5(XstQsz)Qrz) (12)



D = concat( Dy, Dy )

(13)
2.2 Bias correction decoding module

In the network model, the core task of the bias correction
decoding module is to simulate and eliminate potential false
associations in the training data through a bias tensor, thereby
improving the prediction accuracy of the model. In mining
equipment energy consumption prediction, real-world
scenarios often involve numerous factors that change over
time, such as vehicle stops or sudden increases in equipment
information. These changes may lead to deviations between
the training data and real-world scenarios. When there are
more vehicle stops in certain scenarios in the training set, the
model may mistakenly bind such bias information, which is
unrelated to energy consumption, with the energy
consumption association features of mining equipment,
thereby affecting the prediction accuracy during the testing
phase. To solve this problem, this study constructs a bias
tensor z, combining it with spatiotemporal fusion features to
simulate the bias information present in energy consumption
demand. The shape of the bias tensor is identical to that of the
spatiotemporal fusion features, and its function is to model
potential false associations during the training process so that
these biases can be eliminated in the subsequent correction
process.
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Figure 4. Structure diagram of the temporal convolutional
network (TCN) used

In the bias correction module, the bias tensor and the
spatiotemporal fusion features are input into the 7CN for
decoding. Figure 4 shows the structure diagram of the TCN
used. Since the purpose of the bias tensor is to simulate bias
information in energy consumption demand, the bias
correction module subtracts the bias information from the
decoded mining equipment energy consumption association
information based on causal analysis, resulting in an output
that more closely reflects actual energy consumption demand.
To further enhance the model's adaptability and accuracy, the
decoded bias information is processed through a learnable
adaptive network layer, ensuring that the final output of the
mining equipment energy consumption association prediction
information can more accurately reflect the energy
consumption variations of mining equipment across multiple
time scales. Assuming the input and output of the TCN are
represented by Ny and Nour, and the number of 7CN layers is
represented by ¥, the calculation of the CN used in this study
is as follows:
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Nour = dropout (0 ReLU (com2D(N,, )+ N,y )] (14)

In order to simulate and eliminate possible spurious
correlations in the training data through the bias tensor, this
study further sets up a bias correction decoding module to
improve the model’s prediction accuracy. In the energy
consumption prediction of mining equipment, real-world
scenarios often include various dynamically changing factors,
such as vehicle stops or sudden surges in device information.
These changes may lead to deviations between the training
data and the actual scenarios. When there are frequent vehicle
stops in certain scenes of the training set, the model may
mistakenly associate such bias information, which is unrelated
to energy consumption, with the energy consumption
correlation features of mining equipment, thereby affecting
prediction accuracy during the testing phase. To address this
issue, this study constructs a bias tensor, combining it with
spatiotemporal fusion features to simulate the bias information
present in energy consumption demands. In the bias correction
module, the bias tensor and spatiotemporal fusion features are
jointly input into the TCN for decoding. Since the role of the
bias tensor is to simulate bias information in energy
consumption demands, the bias correction module subtracts
the bias information from the decoded mining equipment
energy consumption correlation information based on causal
analysis, obtaining an output that more closely approximates
the true energy consumption demand. Figure 5 shows the
causal convolution process. Assuming that the learnable
adaptive network is represented by ©(-), the specific process
is as follows:

N, =TCN(D) (15)

N, =TCN(C) (16)

N=®(N1—N2) (17)
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Figure 5. Causal convolution process

3. THERMODYNAMIC CONSTRAINED NEURAL
NETWORK MODEL IMPLEMENTATION

In the scenario of multi-time-scale energy consumption
prediction for mining equipment, changes in energy
consumption are not only influenced by the operational status
and modes of the equipment but also constrained by
thermodynamic processes. When mining equipment is in
operation, energy conversion and flow follow certain
thermodynamic laws, such as the law of energy conservation
and the second law of thermodynamics. Therefore,
incorporating thermodynamic constraints into the mining
equipment energy consumption prediction model can help the
model more accurately capture the equipment's energy



consumption patterns, ensuring that the model’s predicted
energy consumption results comply with physical principles
and avoiding abnormal predictions that violate
thermodynamic laws. In this study, during the training process,
a thermodynamic constraint operator is constructed to enable
the model to continuously reference and learn physical
characteristics related to thermodynamic laws in both the
spatiotemporal feature fusion and prediction stages.

The introduced thermodynamic constraint operator aims to
map the thermal efficiency curves and heat loss curves of
mining equipment to multi-time-scale energy consumption
data. Through this mapping relationship, the model ensures
that the prediction process adheres to the thermodynamic laws
in physics. Specifically, the thermal efficiency curve describes
the energy conversion efficiency of the equipment under
different operating states, while the heat loss curve represents
the energy loss during the equipment's operation. By
constructing the thermodynamic constraint operator, these
physical characteristics can be mapped onto the specific
energy consumption data, ensuring that the model's energy
consumption prediction across multiple time scales reflects the
actual physical behavior of the equipment. The construction
principle of the thermodynamic constraint operator can be
summarized in the following two steps: (1) Collect and
analyze the thermal efficiency and heat loss data of mining
equipment under different operating states to obtain the
thermal efficiency curves and heat loss curves. These curves
reflect the energy conversion and loss characteristics of the
equipment under various operating conditions. (2) Associate
these thermodynamic curves with specific energy
consumption data to construct a mapping relationship, i.e., the
thermodynamic constraint operator.

Before  conducting the  multi-time-scale  energy
consumption prediction experiments for mining equipment,
this study first trains the thermodynamically constrained
energy consumption prediction model neural network using
pre-constructed thermodynamic data and minimizes the
objective function below to train the model. Assuming that the
thermal efficiency curve, heat loss curve, and temperature data
of mining equipment are represented by g, ¢r, and ¢,
respectively, the constraint operator is represented by Dg:, and
the number of samples is denoted by V. This training process
can be described by the following formulas:

Dy (4,4r)=t (18)

2
LOSS. (CDI):%i t,—Dy (4,-95 )| (19)
u=1 2

Assuming that the conventional thermal efficiency curve
and heat loss curve are represented by ¢, the prediction
operator is represented by Dg>, and the original loss is
represented by LOSS,(®2), the multi-time-scale energy
consumption prediction process and objective function of
mining equipment before introducing the thermodynamically
constrained neural network can be described as:

D, (t.9)=4, (20)

LOSS, (®,)=7

u=1

4, ~ Dy, (1.9). 1)

In the multi-time-scale energy consumption prediction
process of mining equipment, the predicted values output by
the prediction model are fed into the pre-trained
thermodynamically constrained neural network model, and the
constraint loss is obtained by calculating the error between the
synthetic mining equipment energy consumption record and
the actual mining equipment energy consumption record, as
shown in the following formula:

vV
LOSSZ(®1,®2)=%Z

u=1

t, =Dy, (Dy, (:9).9, )Hz 22)

Thus, the overall objective function of the prediction can be
described as:

ﬂ v
LOSSa(ml,ch):;Z

> |, =D, (r.q).
o 4
+;;

(23)

Z _D<b, (Dd)z (Zﬂq)5QF) i

2

Assuming that the influencing factors are represented by S
and a, the simplified form is as follows:

LOSS, (®,,®,)= BLOSS,(D,)+aLOSS. (®,,P,) (24)

4. FINDINGS AND DISCUSSION

Figure 6 shows the multi-time-scale energy consumption
prediction results of mining equipment using different
methods under thermodynamic constraints, and Figure 7
presents the locally magnified comparison. From the data in
the figures, it can be observed that the prediction results of the
proposed method under thermodynamic constraints show a
significant improvement in accuracy compared to other
methods. Between sampling points 66 and 74, the predicted
values of the proposed method are 9500, 9550, 9500, 10300,
and 11300, which are relatively close to the actual measured
values of 9500, 9400, 9750, 10750, and 11750. Particularly at
sampling points 72 and 74, the predicted values of the
proposed method exhibit smaller discrepancies from the actual
measured values, whereas other methods such as SS-GAT and
MM-GAT show larger prediction deviations at these points.
After sampling point 74, the prediction values of the proposed
method continue to maintain high accuracy, demonstrating
stability and reliability across multiple time scales.

From the data in Table 1, it can be seen that the proposed
method shows lower error values in the energy consumption
prediction results under thermodynamic constraints across
multiple equipment categories, significantly improving
prediction accuracy. For excavation equipment, transportation
equipment, drainage equipment, ventilation equipment,
loading equipment, and the integrated energy system, the
Mean Absolute Error (MAE) of the proposed method is 0.63,
0.28, 0.36, 0.26, 0.23, and 0.35, respectively, while the Root
Mean Square Error (RMSE) is 1.02, 0.44, 0.66, 0.47, 0.42, and
0.61, respectively. These results indicate that the proposed
method outperforms other methods in most equipment
categories, especially in transportation equipment and loading
equipment, where its MAE and RMSE are significantly lower
than those of other methods. For example, in transportation
equipment, the MAE and RMSE of the proposed method are



0.28 and 0.44, significantly lower than SS-GAT's 0.48/0.86
and MM-GAT's 0.25/0.51.

According to the data in Table 2, the number of TCN layers
significantly impacts the energy consumption prediction
results under thermodynamic constraints. When the number of
TCN layers is set to 2, the overall performance is optimal,
especially in the prediction of the integrated energy system,
where the MAE and RMSE are 0.35 and 0.61, respectively.
Furthermore, in the energy consumption predictions for
excavation equipment, transportation equipment, drainage
equipment, ventilation equipment, and loading equipment, the
MAE and RMSE with 2 TCN layers are also significantly
lower than those with other layer numbers. Specifically, the
MAE and RMSE for transportation equipment are 0.28 and
0.45, respectively, while those for loading equipment are 0.23
and 0.42. These results suggest that when the number of TCN
layers is set to 2, the model captures the energy consumption
patterns more accurately, thereby improving prediction
precision.

According to the data in Table 3, introducing different types
of bias tensors under thermodynamic constraints has a
significant impact on the performance of the energy
consumption prediction model. When using the zero tensor as
the bias tensor, the MAE and RMSE for the integrated energy
system are 0.35 and 0.61, respectively, representing the best
performance. In the predictions for excavation equipment and
loading equipment, the MAE and RMSE with the zero tensor
are 0.63/1.12 and 0.23/0.42, respectively, also demonstrating
superior performance. In contrast, the introduction of random
tensors and average tensors generally leads to higher errors.
For example, the RMSE for random tensors in excavation
equipment reaches 1.26, while the RMSE for average tensors

in drainage equipment is 0.71. The baseline model exhibits
relatively higher prediction errors in most equipment
categories, although its performance in excavation equipment
is comparatively better.

In this study, the experimental results shown in Figure 8
demonstrate that the proposed Adaptive Bias Correction
Spatio-Temporal Graph Attention Network model performs
excellently in predicting the energy consumption of mining
equipment. Specifically, the model accurately captures the
energy consumption variations of mining equipment across
different time scales, with the regression line of the predicted
results and actual measurements almost aligning with the
diagonal line, indicating a high degree of agreement between
predicted and actual values. Furthermore, from the distribution
of predicted and actual measured values, the two distributions
are relatively consistent, further validating the model's
superiority in handling multi-time scale energy consumption
prediction tasks. Further analysis reveals that although the
regression line shows a slight deviation from the diagonal, the
magnitude of this deviation is minimal and does not
significantly affect the prediction accuracy. In contrast,
traditional models under the same experimental conditions
exhibit a noticeable deviation between the regression line of
predicted results and measured values relative to the diagonal,
with larger differences in the distribution of predicted and
measured values. These results indicate that the proposed
method not only achieves higher consistency and accuracy in
predicting mining equipment energy consumption but also
ensures the physical rationality and practicality of the
prediction results by introducing thermodynamic constraints,
significantly enhancing the overall performance of the
prediction model.
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Figure 6. Multi-time-scale energy consumption prediction
results of mining equipment using different methods under
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Figure 7. Locally magnified comparison of multi-time-scale
energy consumption prediction results of mining equipment
under thermodynamic constraints

Table 1. Comparison of multi-time-scale energy consumption prediction results of mining equipment using different methods
under thermodynamic constraints

Experimental Results (MAE/RMSE)

Algorithm/Dataset Excavation Excavation Drainage Ventilation Loading Integrated
Equipment Equipment Equipment Equipment Equipment Energy System
S§S-GAT 0.63/0.12 0.48/0.86 0.43/0.78 0.33/0.52 0.31/0.47 0.43/0.74
MM-GAT 0.55/1.21 0.25/0.51 0.41/0.88 0.32/0.72 0.51/1.26 0.42/0.88
AGAT 0.62/1.12 0.31/0.54 0.36/0.71 0.28/0.52 0.24/0.44 0.36/0.64
The Proposed Method 0.63/1.02 0.28/0.44 0.36/0.66 0.26/0.47 0.23/0.42 0.35/0.61
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Table 2. Ablation experiment results for determining the number of TCN layers in thermodynamic constraints

Experimental Results (MAE/RMSE)

L;\Izll*lsl/b;;tzzet Excavation Excavation Drainage Ventilation Loading Integrated
Y Equipment Equipment Equipment Equipment Equipment Energy System
1 0.66/1.12 0.31/0.57 0.37/0.67 0.26/0.47 0.25/0.44 0.37/0.67
2 0.62/1.12 0.28/0.45 0.36/0.66 0.26/0.47 0.23/0.42 0.35/0.61
3 0.72/1.16 0.28/0.51 0.38/0.75 0.27/0.51 0.23/0.41 0.37/0.68
4 0.67/1.17 0.47/0.42 0.37/0.72 0.26/0.47 0.23/0.42 0.43/0.65
5 0.81/1.36 0.36/0.51 0.38/0.74 0.27/0.48 0.24/0.42 0.42/0.72
Table 3. Ablation experiment results for determining bias tensors under thermodynamic constraints
Bias Experimental Results (MAE/RMSE)
Tensor/Dataset Excavation Excavation Drainage Ventilation Loading Integrated
Equipment Equipment Equipment Equipment Equipment Energy System
Zero Tensor 0.63/1.12 0.28/0.45 0.38/0.66 0.26/0.47 0.23/0.42 0.35/0.61
Random Tensor 0.67/1.26 0.28/0.48 0.36/0.66 0.26/0.45 0.22/0.42 0.36/0.66
Average Tensor 0.72/1.37 0.27/0.48 0.37/0.71 0.27/0.47 0.22/0.41 0.37/0.71
Baseline Model 0.62/1.18 0.31/0.54 0.36/0.71 0.28/0.52 0.24/0.44 0.36/0.66
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Figure 8. Intersection and distribution of multi-time scale energy consumption prediction and measurement results for mining
equipment under thermodynamic constraints

5. CONCLUSION

This study consists of two main parts: first, a multi-time
scale energy consumption prediction model based on the
Adaptive Bias Correction Spatio-Temporal Graph Attention
Network was constructed. This model fully considered the
energy consumption variations of mining equipment across
different time scales and adaptively learnt the energy
consumption patterns under different time scales through the
spatio-temporal graph attention mechanism. Second,
thermodynamic constraints were introduced by constructing a
thermodynamic constraint operator within the energy
consumption prediction model, ensuring that the model
follows thermodynamic principles during the prediction
process, thereby avoiding physically unreasonable prediction
results.

Comprehensive experimental results show that the proposed
model performs excellently in predicting mining equipment
energy consumption, with prediction results highly consistent
with actual measurements and good distribution consistency.
Compared to traditional models, the proposed model not only
improves the accuracy of energy consumption predictions but
also enhances the physical rationality of the prediction results
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through thermodynamic constraints, demonstrating significant
practical value. The limitations of this study lie in the fact that,
although the model performs well on experimental data, more
external disturbance factors and complex working conditions
may need to be considered in practical applications. Future
research directions may focus on enhancing the generalization
capability and adaptability of the model while further
optimizing the thermodynamic constraint mechanism to
explore its effectiveness and practicality in broader application
scenarios.
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