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One of the common neuromuscular disorders in diabetic patients is diabetic peripheral 

neuropathy (DPN), which leads to a range of complications, from tingling sensations to 

limb loss. Quantitative assessment through muscle ultrasound has become a valuable 

tool for diagnosing DPNs. This study creates a hybrid model that employs deep transfer 

learning via pre-trained convolutional neural networks (CNN) to extract features and 

machine learning algorithms to classify ultrasound images. The collection consists of 

6200 ultrasound images of the tibialis anterior (TA) muscle obtained from 53 

individuals. The effectiveness of VGG19, Shuffle Net, and ResNet101 is assessed by 

visualizing the features extracted through gradient-weighted class activation mapping 

(Grad-CAM). Moreover, t-distributed stochastic neighbor embedding (t-SNE) is 

employed to investigate the clustering of labeled features and formulate hypotheses 

regarding their interconnections. The support vector machine (SVM) and logistic 

regression classifier are assessed using metrics consisting of confusion matrix, 

accuracy, the area under the receiver operating characteristic curve (AUC), sensitivity, 

specificity, and F1-score. The ResNet101 combined with the SVM model achieves 

99.5% accuracy for training and validation and 75.8% for testing. Integrating deep 

transfer learning with machine learning in a hybrid classification framework greatly 

enhances the precision and dependability of diagnostic systems. This innovative 

approach provides comprehensive performance analysis, distinguishing healthy and 

DPN. 
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1. INTRODUCTION

Diabetic peripheral neuropathy (DPN) is a neuromuscular 

condition that affects people who have diabetes mellitus. In the 

United States, it's estimated that around 28% of adults with 

diabetes experience this issue [1]. The primary risk factors 

include neuropathic pain, diminished sensation, ulcers in the 

lower limbs, and amputations, all of which negatively affect 

quality of life and restrict daily activities [2]. Early 

identification of DPN helps prevent severe consequences and 

significantly improves prognosis [3]. The diagnosis of DPN 

relies on quantitative evaluations as well as clinical findings. 

Nerve conduction tests assess the performance of peripheral 

nerves and determine the onset of DPN, but they mainly 

concentrate on large nerve fibers and require specialized 

expertise [4]. One of the important tools for diagnosing 

neuromuscular disorders is muscle ultrasound, due to its 

capability to identify muscle atrophy, intramuscular fibrosis, 

and fatty infiltration [5]. Improvements in ultrasound 

technology have enhanced muscle tissue images, making 

neuromuscular ultrasonography valuable for assessing nerve 

and muscular disorders [6]. Muscle ultrasound complements 

clinical and electrophysiological tests by providing 

information about abnormalities in neuromuscular diseases [7, 

8]. Grayscale analysis indicates that diseased muscles appear 

more echogenic on ultrasounds than healthy ones [9]. 

Additionally, quantitative analysis of muscle echo intensity 

(EI) offers a promising new method for evaluating muscle 

quality and improving diagnostic accuracy [10, 11]. 

Advancements in computer vision and artificial intelligence 

(AI) have significantly impacted computer-aided diagnosis 

(CAD) systems, particularly in the field of medical imaging 

research [12]. Scientists are employing AI-driven techniques 

to examine intricate patterns and interpret imaging data for 

possible diagnostic applications. In particular, CNNs have 

shown significant advancements in recognizing and analyzing 

images [13]. Methods utilizing AI in muscle ultrasound can 

address challenges associated with evaluations that depend on 

physicians, including inconsistencies in capturing images and 

diagnosing muscle disorders. Current research in AI-based 

muscle ultrasonography focuses on potentially applying 

machine learning techniques to enhance everyday clinical 

practice performance [14, 15]. Deep learning, especially 

transfer learning with CNNs, is increasingly used for muscle 

classification and analysis in ultrasound imaging [16, 17]. It 

offers practical approaches for handling limited data while 
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conserving time and resources. Transfer learning techniques 

involve utilizing a pre-trained network as a feature extractor or 

adjusting a pre-trained network specifically for medical data 

[18, 19]. High-dimensional features greatly influence the 

performance of machine learning classification, and deep 

learning models continue to be viewed as opaque systems. 

Multiple metrics for evaluating the performance of deep 

learning models can be utilized together to provide a thorough 

evaluation. This method entails placing a blank window over 

an image before using the model to assess how each area 

affects the model's prediction [20, 21]. 

Muscular ultrasound has not been extensively studied, 

particularly regarding the quantitative aspects that could 

enhance physicians' diagnostic capabilities for DPN. The 

quantitative evaluation of muscle ultrasound is considered 

more dependable and sensitive than visual assessment, which 

frequently requires the input of a skilled physician. Further 

research is required to explore the potential for automating this 

quantification process. This study aims to establish a muscle 

ultrasound-based diagnostic system that employs hybrid deep 

transfer learning and machine learning methodologies as a 

novel and precise diagnostic approach. 

In this regard, the research study contributes explicitly to 

the following ways: 

1) State-of-the-art techniques for assessing muscle 

ultrasound are considered an additional diagnostic 

resource for DPN and are built upon the CAD system. 

2) Introduces an innovative hybrid model combining the 

deep transfer learning technique and machine learning 

algorithms to construct a robust prediction model. 

3) This study comprehensively evaluates the muscle 

ultrasound classification system. It employs gradient-

weighted class activation mapping and t-distributed 

stochastic neighbor embedding to visualize the 

extracted features, enhancing physicians' 

understanding of CAD prediction. 

 

 

2. RELATED WORK 

 

This part examines contemporary studies on using muscle 

ultrasound to identify DPN and neuromuscular disorders. It 

emphasizes the use of deep neural networks and machine 

learning, underscoring techniques such as feature extraction, 

and the use of pre-trained models, along with approaches for 

assessing performance in image classification. Scientists have 

employed various methods for feature extraction; König et al. 

[22] extracted first-order statistics, wavelet-based, and 

Haralick's features from ultrasound images. They utilized 

feature selection and reduction techniques to determine a 

consistent set of features and investigated two linear classifiers: 

Fisher's classifier, support vector machine (SVM), and 

nonlinear k-nearest neighbour for myositis detection. This 

system utilized principal component analysis for feature 

reduction and linear SVM for discriminating between healthy 

and pathological muscle tissue, achieving a classification 

accuracy of 87%. Nodera et al. [23] examining lower leg 

ultrasound images by extracting texture features using 

histogram analysis, grey-level co-occurrence matrix, 

neighborhood grey-level difference matrix, grey-level run 

length matrix, and grey-level zone length matrix. 

Classification was performed with logistic regression, SVM, 

and random forest, achieving an accuracy of 78.4% with 

random forest. 

Conversely, numerous researchers have employed deep-

learning techniques to categorize muscle ultrasound images, 

like Ahmed et al. [24], a revised lightweight YOLOv5 

architecture was suggested, incorporating a convolutional 

block attention module, spatial pyramid pooling-fast plus, and 

an exponential linear unit activation function to enable 

automatic detection and classification of inflammatory 

myopathies. This model achieves an accuracy of 98% for 

binary and multiclass classification. Additionally, Uçar [25], 

Liao et al. [26] and Zhou et al. [27] developed a CAD system 

using deep learning methods combining VGG16, VGG19, 

multi-scale fusion and attention mechanisms to segment and 

diagnose musculoskeletal ultrasound images automatically. 

Burlina et al. [28] compared the classification accuracy of an 

automated deep learning method with a semi-automated 

machine learning for diagnosing neuromuscular ultrasound. 

The deep learning method achieved an accuracy of 86.6%, 

compared to the machine learning method achieved 84.3%. 

From previous studies, no hybrid methodology combining 

deep transfer learning and machine learning was proposed and 

utilized to classify muscle ultrasound in diagnosing DPN. 

Moreover, this study highlights the application of performance 

analysis through innovative techniques such as gradient-

weighted class activation mapping (Grad-CAM) and t-

distributed stochastic neighbor embedding (t-SNE). These 

methods facilitate a comparative examination of various pre-

trained models and their effects on classification accuracy and 

diagnostic efficacy, thereby addressing gaps identified in prior 

research. 

 

 

3. MATERIALS AND METHODS 

 

This research seeks to develop and evaluate a combined 

deep transfer feature extraction and machine learning model 

for the detection of DPN in muscle ultrasound images. The 

suggested method, illustrated in Figure 1, leverages transfer 

and machine learning techniques to improve the accuracy and 

dependability of the DPN diagnostic system. This section 

outlines our sequential process for creating and assessing the 

hybrid model. 

 

3.1 Dataset 

 

This study was conducted with the neurophysiology clinical 

center at Ghazi Al Hariri Surgical Hospital in Baghdad, Iraq. 

A case-control, retrospective investigation included 26 DPN 

patients diagnosed with type 2 diabetes mellitus and 27 healthy 

controls (CTR) from August 2022 to May 2023. The 

demographic information of the 53 participants is presented in 

Table 1. The research adhered to the ethical principles outlined 

in the Declaration of Helsinki and received approval from the 

local health ethics committee. The electrodiagnostic 

evaluation confirmed DPN, and an HbA1c test was part of the 

exclusion criteria, ruling out other neuromuscular disorders, 

kidney failure, and cancer in both groups. An ultrasonographic 

assessment used a Philips iU22 ultrasound with a 5-12MHz 

linear probe, following musculoskeletal presets. Participants 

were positioned supine and relaxed while a qualified physician 

performed the ultrasound using specific imaging presets. A 

skilled physician performed the ultrasound imaging of the 

muscle, considering its anatomical positioning and citing a 

previously published article that serves as a resource for 

researchers conducting ultrasound assessments of the TA [29]. 
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The presets set up on the ultrasound machine were utilized for 

recording, with the musculoskeletal general preset configured 

to a gain of 50%, a compression level of 62, medium pressure 

applied, and a depth of 3 cm. 

Ultrasound images were obtained from the muscle belly, 

and the best image showcasing muscle fibers in a transverse 

view, with the bone indicated in the background, was saved. 

The images were kept in DICOM format on the ultrasound 

machine and labeled with the patient code number and muscle 

designation for future reference and analysis. The appearance 

of muscle tissue on ultrasound varies according to the muscle 

type, examination view, and age. Healthy muscle appears to 

have low echogenicity, with black visualization, and is easily 

distinguished from surrounding tissue, whereas diseased 

muscles may exhibit increased echogenicity. Ultrasound is a 

user-dependent imaging modality with variations in screening 

direction based on the probe orientation and anatomical 

positioning. Therefore, multiple images are acquired per 

subject to overcome this limitation and solve the model's bias 

issue. Deep learning and machine learning models also require 

substantial quantities of data for both training and validation. 

To guarantee accurate outcomes, thousands of images from the 

subjects have been gathered to enhance the model's 

performance. 

 

 
 

Figure 1. The proposed hybrid DPN diagnosis model architecture 
 

Table 1. Demographic of the study group dataset 

 
Variable DPN (26) Control (27) 

Age (years) 51.5±9.3 42.5±9.6 

Gender Male/Female Ratio 20/6 20/7 

 

3.2 Image preprocessing 

 

Image preprocessing plays a vital role in our DPN diagnosis 

system, as it sets the stage for deeper analysis of input images. 

This involves various techniques applied to raw images to 

improve quality and highlight essential information. A 

thorough approach to image preprocessing can significantly 

enhance the precision and effectiveness of later stages of 

analysis. The first step involves converting images exported 

from the ultrasound machine in DICOM format to a JPG file 

format image. This format preserves image resolution and 

details, making it easy to analyze for diagnosis purposes based 

on the quantification of EI. The ultrasound images contain 

information about the ultrasound machine, examination, 

patient details, annotations, and remarks. This research is 

primarily centered on ultrasound images of muscles, and we 

have trimmed the images to display solely the muscle region, 

leaving out any extraneous details. To maintain uniform 

dimensions of input images and decrease computational load, 

the images were adjusted to a standard size of 224×224 pixels. 

This procedure is vital when using pre-trained deep learning 

models, which typically have defined size standards. 

Adjusting the images to correspond with the model's input size 

enables us to leverage the model's learned features effectively. 

The image dataset contained object labels, including subject 

type, number, and image sequence. To simplify the analysis, 

the object labels were modified to include only the subject type 

and sequence of all images in the group dataset. This change 

makes data management for further analysis more 

straightforward and systematic. 

 

3.3 Transfer learning feature extractor 

 

Deep feature extraction involves using CNNs to extract 

informative features from raw data. This process is known as 

transfer learning and has been successfully applied using a 

dataset of millions of photos with 1000 types of nature 

imagery. These features capture high-level representations and 

are extracted unsupervised, meaning no external guidance 

influences the information obtained from the image's pixels 

[30, 31]. VGG19, Shuffle, and ResNet101 architectures were 

conducted as deep feature extraction models for our DPN 

diagnostic system. These three models were selected due to 

their excellent performance with medical image datasets [32]. 

The VGG19 model, uses multiple sequential 3×3 

convolutional kernels instead of larger ones. The convolution 

stride is fixed to 1 pixel; the padding is 1 pixel for 3×3 

convolution layers. Spatial pooling is carried out by five max-

pooling layers. Max-pooling is performed over a 2×2-pixel 

window, with stride 2. The configuration of the fully 

connected layers is the same in all networks. All hidden layers 

are equipped with the rectification non-linearity function [33]. 
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Shuffle Net includes 172 layers of depth-wise convolution, 

channel shuffle, and pointwise group convolution. The design 

begins with a bottleneck residual block that uses a 3×3 depth-

wise convolution for efficiency. The initial 1×1 layer is 

replaced with pointwise group convolution, and a channel 

shuffle is included. A second pointwise group convolution 

restores the channel dimension to match the shortcut paths, 

and skipping an additional shuffle has minimal effect. Instead 

of rectified linear units after depth-wise convolution, batch 

normalization and nonlinearity are applied [34]. ResNet101 

utilizes residual connections between layers to mitigate the 

vanishing gradient problem while effectively reducing the 

additional parameters within a structure comprising 101 layers. 

The network performs down-sampling directly through 

convolutional layers incorporating a stride of 2 and employing 

3×3 filters. Conclusively, it features a global average pooling 

layer, resulting in 34 weighted layers. The integration of 

shortcut connections transforms the network into its 

corresponding residual version [35]. 

 

3.4 Machine learning classification algorithms 

 

The DPN diagnosis investigation utilized hybrid classical 

machine learning techniques and deep feature extraction. This 

approach minimized the number of dimensions, tackled the 

issue of class imbalance, enhanced the detection of out-of-

distribution samples, performed exploratory data analysis, and 

utilized model compression methods, along with various other 

benefits. The study employed two machine learning 

algorithms to accomplish its goals. The SVM algorithm found 

the best plane to separate classes in a sample space. It aims to 

create the widest margin between classes efficiently, using 

derivatives to calculate the widest margin among potential 

solutions [36]. Conversely, logistic regression is a binary 

classification method that estimates the probability of an event 

happening, with values ranging from 0 to 1, utilizing the 

logistic or sigmoid function. Its goal is to determine the best 

weights that reduce the error by maximizing the likelihood 

function [37]. To train and assess the model, 6,200 ultrasound 

images of the TA muscle from 53 individuals were used. The 

dataset is split into two parts: one for training/validation and 

the other for testing. Table 2 presents the specifics of the 

dataset concerning subjects and images. Our proposed model 

is evaluated using a completely independent test set. During 

its training and validation, five-fold cross-validation was 

implemented. 

 

Table 2. Data set division for training and evaluation 

 
Class Train/Valid Test 

DPN 20 Subjects / 2400 Images 7 Subjects / 700 Images 

CTR 20 Subjects / 2400 Images 6 Subjects / 700 Images 

 

The MATLAB platform offered essential deep learning and 

machine learning capabilities for our research. Its framework 

facilitated the design, implementation, validation, and testing 

of algorithms, enabling efficient trials and effective analysis of 

our proposed method for diagnosing (DPN). Our model was 

trained using different feature extraction and classification 

parameters in this project. To extract deep features from the 

pre-trained networks, the images were input to each pre-

trained network and directly extracted the feature vectors at 

the fully connected layer without retraining the network [38]. 

Each model can be used as a feature extractor by excluding the 

fully connected layers at the network's end. Then, the deep 

features are fed into machine learning algorithms; SVM and 

logistic regression, separately in the hybrid model. 

SVM classifiers were utilized with a Gaussian Kernel 

function and a Kernel scale parameter set to 32. Additionally, 

for the logistic regression trained model object, binary 

Gaussian kernel classification was employed using random 

feature expansion with an automatic number of dimensions in 

the expanded space and a Kernel scale parameter. 

 

3.5 Performance evaluation 

 

We utilized various strategies to evaluate the performance 

of our proposed method and confirm its effectiveness. These 

benchmarks aim to assess different facets of the method's 

efficiency, and they are detailed as follows: 

Grad-CAM is a technique used in CNN to visualize 

significant features of an input image. It generates heat maps 

to indicate the relevance of particular pixels or areas related to 

the extracted features, which assists in recognizing and 

classifying objects. By leveraging gradient information from 

the last convolutional layer, Grad-CAM assigns importance 

scores to each neuron, which helps to emphasize class-specific 

characteristics for making decisions. Guided Grad-CAM 

enhances the precision of category visualization and aids in 

identifying distinguishing attributes [39]. 

The t-SNE method illustrates high-dimensional data on a 

two-dimensional map while preserving its intrinsic 

organization. It is beneficial for visualizing data with 

numerous dimensions, such as feature vectors obtained from a 

deep transfer learning model [40]. 

A confusion matrix is an organized table used to assess an 

algorithm's performance. It includes false positives (FP), false 

negatives (FN), true positives (TP), and true negatives (TN), 

where P and N denote positive and negative samples from the 

original dataset. Accuracy is an important measure for 

evaluating a classification model. It shows how many 

predictions the model got right compared to the total number 

of examples. In simple terms, it indicates how well the model 

correctly classifies data into the right categories. 

Sensitivity, often called the true positive rate, assesses the 

model's effectiveness in recognizing positive cases. It is 

determined by dividing the number of accurately identified 

positive results (TP) by the total number of genuine positive 

instances, including true positives and false negatives. The 

emphasis of sensitivity is on the model's capability to detect 

the existence of a condition. Specificity assesses how 

effectively the model can recognize negative cases. It 

evaluates the model's capacity to accurately identify negative 

instances, or true negatives, out of all cases lacking the 

condition. This category encompasses both true negatives and 

false positives. A high level of specificity indicates that the 

model effectively minimizes false positives. 

The F1-score combines sensitivity and specificity into a 

single metric. It balances precision (which refers to correct 

positive predictions) and recall (sensitivity) by considering 

both false positives and false negatives. The receiver operating 

characteristic curve (ROC) is a valuable method for 

illustrating a classifier's performance across various thresholds. 

The area beneath the ROC curve (AUC) indicates the model's 

ability to differentiate between classes. A greater AUC value 

signifies improved accuracy in the model's predictions, 

whereas a lower AUC implies that the model might struggle to 

produce dependable predictions [41]. 
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4. RESULT ANALYSIS 

 

This part outlines the performance analysis results for our 

suggested hybrid model, which utilizes three deep transfer 

learning feature extractors and two machine learning 

algorithms to diagnose DPN. This results analysis addresses 

the performance evaluation in two parts, discussing the results 

obtained and comparing them based on different approaches. 

 

 
 

Figure 2. Health ultrasound images of three subjects are in 

columns with Grad-Cam heat map visualization among 

VGG19, shuffle, and ResNet101 in rows 

 

 
 

Figure 3. DPN ultrasound images of three subjects are in 

columns with Grad-Cam heat map visualization among 

VGG19, shuffle, and ResNet101 in rows 

 

4.1 Visualization evaluation 

 

An investigation and explanation of the deep transfer 

learning feature extractor using the Grad-CAM mapping for 

three CNNs is shown in Figure 2 for healthy and Figure 3 for 

DPN ultrasound images. To better understand the regions of 

the extracted features, heat maps with variable intensity 

highlighted specific areas in the input image, providing a clear 

visualization of the deep learning model's operation. The 

ResNet101 and shuffle CNNs exhibit high intensity on the 

muscle belly, while VGG19 focuses on the muscle borders. 

The lines on Grad-CAM images delineate the areas with 

features significantly impacting the classification outcomes. In 

CAD systems, this representation could enhance physicians' 

trust in AI conclusions and lower the incidence of incorrect 

diagnoses in qualitative evaluations of muscle ultrasound. 

Additionally, Figures 4 and 5 depict the t-SNE visualization 

of high-dimensional feature datasets extracted from ultrasound 

images of training/validation and testing sets. This 

visualization assigns each sample a location on a 2D map, 

providing a discriminative visualization for the class of 

interest and aiding in the intuitive explanation of predictions. 

It is evident that the train/validation and test feature datasets 

are non-linearly separated, resulting in overlapping data 

clusters that guide the selection of classification algorithms. 

Through qualitative analysis of the feature dataset, the 

performance evaluation revealed that t-SNE enhanced 

classification accuracy for both the training/validation and 

testing datasets. 

 

4.2 Classification performance 

 

The classification assessment outcomes are based on the 

performance metrics presented in Table 3 for the feature 

datasets utilized in both training and validation. These datasets 

implemented 5-fold cross-validation to assess the model's 

effectiveness on an independent dataset and accurately 

identify issues such as overfitting or selection bias for 

meaningful insights. This evaluation employed SVM 

alongside logistic regression using the extracted deep features. 

The findings demonstrate that the hybrid ResNet101 

combined with SVM attained the peak classification accuracy 

of 99.5% for training and validation, whereas the sensitivity, 

specificity, F1-score, and AUC were recorded at 99.4%, 

99.5%, 99.4%, and 99.9%, respectively. 

The other hybrid model shows optimal accuracy and other 

metric performance, ResNet101 with logistic regression 

archive accuracy of 96.2%, and VGG19 shows accuracies of 

97.9% with SVM and 95% with logistic regression. Shuffle 

Net indicates a classification accuracy of 99.3% with SVM 

and 95.8% with logistic regression. Meanwhile, the sensitivity, 

specificity, F1-score, and AUC are variable with a reasonable 

range among different models based on variation of different 

classification algorithms. 

Additionally, Table 4 indicates the results of the testing 

feature datasets. The performance metrics analysis of various 

algorithms for the DPN diagnosis system provides a detailed 

overview of the best result obtained from Resnet, with the 

SVM model achieving an accuracy of 75.8%. Moreover, the 

sensitivity, specificity, F1-score, and AUC were 81.1%, 

71.9%, 73.5%, and 83.7% respectively. The VGG19 shows a 

classification accuracy of 75.1% with SVM and 73.4% with 

logistic regression. 

On the other hand, Shuffle Net achieved classification 

accuracy of 73.2% with SVM and 70.4% with logistic 

regression. The rest of the proposed model results show that 

Resnet with logistic regression indicates the lowest 

classification accuracy of 70.1% and undesired performance 

evaluation results. Also, there are variations in the sensitivity, 
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specificity, F1-score, and AUC between the hybrid models, 

indicating the efficiency of the classification algorithms in 

identifying the healthy and DPN ultrasound images from 

different subjects based on the EI quantification. 

Figure 6 displays the confusion matrix for the binary 

classifier, which utilizes a hybrid model combining the 

ResNet101 deep feature extractor with the SVM machine 

learning algorithm. The values in the matrix indicate the 

quantity of images corresponding to each class. Our model 

demonstrated higher accuracy during testing in predicting 

DPN images than healthy/control images. 

 
 

Figure 4. Train/validate feature datasets from three transfer learning networks t-SNE visualization 

 

 
 

Figure 5. Test feature datasets from three transfer learning networks t-SNE visualization 

 

Table 3. Metric analysis for train/valid dataset 

 
Hybrid Model Accuracy Sensitivity Specificity F1-Score AUC 

ResNet101+SVM 99.5% 99.4% 99.5% 99.4% 99.9% 

VGG19+SVM 97.9% 97.3% 98.5% 97.9% 99.0% 

Shuffle+SVM 99.3% 99.3% 99.3% 99.3% 99.9% 

ResNet101+Logistic Regression 96.2% 94.8% 97.7% 96.2% 99.3% 

VGG19+Logistic Regression 95.0% 93.8% 96.1% 95.0% 99.0% 

Shuffle+Logistic Regression 95.8% 95.0% 96.7% 95.9% 99.3% 
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Table 4. Metric analysis for train/valid dataset 

 

Hybrid Model Accuracy Sensitivity Specificity F1-Score AUC 

ResNet101+SVM 75.8% 81.1% 71.9% 73.5% 83.7% 

VGG19+SVM 75.1% 87.3% 69.0% 70.3% 84.6% 

Shuffle+SVM 73.2% 82.0% 68.2% 68.9% 82.5% 

ResNet101+Logistic Regression 70.1% 69.6% 71.7% 71.3% 79.1% 

VGG19+Logistic Regression 73.4% 87.8% 67.0% 67.0% 83.2% 

Shuffle+Logistic Regression 70.4% 83.1% 64.7% 63.4% 81.0% 

 

 
 

Figure 6. Confusion matrix for ResNet101+SVM hybrid 

model for train/valid and test features dataset 

 

 

5. DISCUSSION 

 

Table 5 presents a performance evaluation of various deep 

learning, transfer learning, and machine learning algorithms as 

described in the scientific literature for diagnosing 

neuromuscular disorders using muscle ultrasound. The 

comparison considers parameters such as model type, number 

of images utilized, and accuracy performance metrics. 

Our research tackles the limitations found in earlier attempts, 

significantly enhancing the DPN diagnostic technique. Our 

hybrid model offers a reliable and accurate approach to 

identifying DPN by combining machine learning and transfer 

learning strategies. Transfer learning enables the model to 

identify and derive valuable features from complex image 

datasets, while machine learning techniques contribute to both 

interpretability and generalization. Transfer learning addresses 

three main issues with classical machine learning: distribution 

mismatch, computational power limitations, and scarce 

labeled data. This technique makes deep learning models more 

efficient by reducing training time, utilizing existing data more 

effectively, improving the model's ability to generalize, 

managing the complexity of deep models, and reducing 

overfitting. Because of these benefits, transfer learning is a 

highly effective strategy for utilizing current knowledge and 

producing better results even with constrained resources. The 

quantitative evaluation of muscle ultrasound utilizing a 

transfer learning approach addresses challenges associated 

with texture features and effectively delineates the underlying 

muscular tissue. This method enhances the capacity of 

machine learning algorithms to classify images with increased 

accuracy. The performance metrics for the testing data set 

underscore the robust capabilities of the proposed hybrid 

model, particularly in classifying independent unlabeled 

images from different subjects that were not included during 

the training and validation phases. This advancement in the 

CAD system facilitates the integration of these techniques into 

ultrasound machines, thereby assisting physicians in making 

enhanced diagnostic decisions and streamlining their daily 

workflows.

 

Table 5. Comparison of cutting-edge studies in muscle ultrasound classification 

 

Study Algorithm Model 
No. of Subjects / 

Images 

Performance 

Evaluation 
Accuracy 

König et al. [22] Machine learning 2D-DWT+PCA+SVM 18 / 60 Metric 87% 

Nodera et al. [23] Machine learning 
Texture features+(simple logistic, 

SVM and random forest) 
51 / 51 Metric 78.4% 

Ahmed et al. [24] Deep learning YOLO-CSE+SPPF+ELU 80 / 3214 Metric 98% 

Uçar [25] Deep learning VGG16+VGG19 80 / 3214 Metric 96.1% 

Liao et al. [26] 
Deep learning & 

Transfer learning 

LeNet, AlexNet, VGG-16, VGG-

16TL, VGG-19, and VGG-19TL 
85 / 1700 Grad-CAM+Metric 94.2% 

Zhou et al. [27] Deep learning MMA-Net NA / 1827 Segmentation+Metric 95.6% 

Burlina et al. [28] 
Deep learning & 

Machine learning 
DL-DCNNs & ML-RF 80 / 3214 Metric 86.6% & 84.3% 

Our approach 

Hybrid, Transfer 

& machine 

learning 

ResNet101, VGG19, Shuffle 

Net+SVM, logistic regression 
53 / 6200 

Grad-CAM, t-

SNE+Metric 

For ResNet101 

+SVM, 99.5% 

training, 75.8 

testing 

In summary, our hybrid models, ResNet101 with SVM 

algorithm, have excellent results in terms of accuracy, 99.5% 

for Training/validation and 75.8% for testing, demonstrating 

their strong ability to distinguish between positive and 

negative cases. This suggests a higher likelihood of assigning 

elevated predicted probabilities to positive instances. A 

dependability assessment was conducted to evaluate the 

models' trustworthiness and consistency, examining 
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performance stability across various iterations and datasets. 

This analysis provided insights into the models' ability to 

generalize, highlighting potential constraints or biases. The 

assessment allowed for informed decisions regarding the 

models' effectiveness in real-world scenarios. 

This study addresses the limitations of quantitative muscle 

ultrasound assessments, which depend on specific imaging 

protocols and focus on a single muscle type. Future research 

should include a wider variety of muscles, particularly distal 

ones in the upper and lower limbs, since diabetic peripheral 

neuropathy primarily affects these early on. Additionally, 

employing advanced ultrasound technologies could lead to a 

generalized quantification tool for diverse machine types, 

aiding in the development of a computer-aided diagnosis 

system for muscle ultrasound. 

6. CONCLUSIONS

In this study, a hybrid model has been developed and 

evaluated, integrating deep transfer learning with machine 

learning algorithms for diagnosing diabetic peripheral 

neuropathy utilizing muscle ultrasound imaging. This model 

employs three convolutional neural networks: VGG19, 

Shuffle Net, and ResNet101, to extract deep features from 

ultrasound images. Subsequently, the resulting feature dataset 

is utilized in conjunction with binary classifiers, specifically 

SVM and logistic regression, to classify muscle ultrasound 

images. The quantitative analysis of muscle ultrasound within 

this diagnostic system demonstrates a valuable and promising 

approach rooted in our hybrid model. Grad-CAM is 

considered one of the most effective methods for creating 

visual heat maps. These maps highlight areas of the input 

image with greater intensity values, which are associated with 

critical features and information utilized by the CNN network 

to make its predictions. It allows the physicians to correctly 

identify the visualized category, helping understand the model 

working based on specific regions and measuring whether the 

proposed classification algorithm can distinguish between 

classes. According to the evaluation metrics, the ResNet101 

hybrid model with the SVM algorithm is the preferred option 

for the DPN diagnosis system, providing superior accuracy of 

99.5%, sensitivity of 99.4%, specificity of 99.5%, F1 score of 

99.4%, and AUC score of 99.9% for the training/validation 

data set. The findings indicate that the development of a 

computer-aided diagnosis system utilizing muscle ultrasound, 

in conjunction with a hybrid model, will significantly enhance 

the functionality of ultrasound machines and improve 

diagnostic tools, thereby facilitating more informed decision-

making in clinical practice. 
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