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This research investigates the utilization of Bayesian Geographically Weighted 

Regression (BGWR) combined with Kriging to improve spatial predictions of the 

Human Development Index (HDI) throughout Sumatra Island. The results underscore 

considerable geographical variations in human development indicators, such as life 

expectancy, education, and economic measures. While the standard Geographically 

Weighted Regression (GWR) model produces reliable results, incorporating Bayesian 

frameworks—particularly with Jeffreys' uninformative prior—delivers superior 

predictive performance and effectively addresses spatial heterogeneity. The Bayesian 

Jeffreys model achieves the highest accuracy across multiple metrics, including the 

lowest mean absolute bias (MAB) and root mean squared error (RMSE), explaining 

99.99% of HDI variance. Moreover, the Jeffreys model specifically reduces spatial 

autocorrelation in residuals, lowering the demand for further methods, including 

Kriging. By proving the superiority of Jeffreys' previous over conjugate priors in 

handling spatial heterogeneity and enhancing prediction accuracy, this work adds to the 

body of knowledge. It provides a strong basis for precision-driven spatial analyses in 

regional development planning and resource allocation. The results also highlight the 

urgent need for focused policy interventions to solve ongoing disparities in 

underdeveloped areas using metropolitan centers as scalable development models.  

Keywords: 

BGWR, Kriging, HDI, spatial prediction, 

Jeffreys’ prior, conjugate prior, spatial 

heterogeneity, spatial autocorrelation 

1. INTRODUCTION

The Human Development Index (HDI) is a comprehensive 

socio-economic development measure encompassing health, 

education, and income indicators. Understanding the spatial 

distribution of HDI is crucial for addressing regional 

disparities and designing targeted policies that foster 

sustainable development. On Sumatra Island, variations in 

HDI across districts and cities reflect disparities in life 

expectancy, educational attainment, and per capita income. 

Analyzing these spatial variations offers valuable insights into 

the factors driving development and identifies areas requiring 

targeted interventions. 

Traditional regression models often struggle to account for 

the local spatial variations inherent in development indicators 

like HDI. Geographically Weighted Regression (GWR), 

introduced by the study [1], overcomes this limitation by 

allowing regression coefficients to vary spatially. However, 

GWR has limitations, including restrictive assumptions that 

compromise predictive accuracy and parameter stability. To 

address these shortcomings, Bayesian Geographically 

Weighted Regression (BGWR) extends GWR by 

incorporating hierarchical Bayesian inference. This approach 

stabilizes parameter estimation and reduces uncertainty by 

integrating prior knowledge. Nonetheless, residual spatial 

autocorrelation often persists, indicating the presence of 

unmodeled spatial dependencies. 

Despite BGWR's advancements, two critical challenges 

remain underexplored in the existing literature: (1) the 

influence of prior choices (e.g., conjugate priors versus 

Jeffreys' uninformative priors) on prediction accuracy and 

parameter stability, and (2) the persistent issue of residual 

spatial dependencies. Addressing these gaps is essential for 

improving the robustness and reliability of spatial modeling in 

HDI analysis. 

This study introduces a hybrid approach integrating BGWR 

with Kriging to address these challenges. Kriging, a 

geostatistical interpolation method designed explicitly for 

spatially autocorrelated data, enhances spatial predictions by 

capturing residual spatial dependencies, especially in regions 

with sparse data or complex spatial structures. The proposed 

BGWR-Kriging framework combines BGWR's capacity to 

model local variation with Kriging's strength in addressing 

unmodeled spatial dependencies, enhancing predictive 

accuracy. Recent studies [2-7] have demonstrated the utility of 

hybrid methods like GWR-Kriging in spatial modeling; 

however, their application to HDI analysis remains 

unexplored. 

Mathematical Modelling of Engineering Problems 
Vol. 12, No. 5, May, 2025, pp. 1603-1614 

Journal homepage: http://iieta.org/journals/mmep 

1603

https://orcid.org/0000-0003-3638-4301
https://orcid.org/0009-0007-6172-0086
https://orcid.org/0000-0002-2776-2350
https://orcid.org/0000-0003-1363-1672
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120515&domain=pdf


 

This study also makes a novel contribution by comparing 

the performance of conjugate priors, known for their 

mathematical convenience [8], with Jeffreys' uninformative 

priors, which are invariant under parameter transformations 

[9-11]. Such a comparison is vital, as the prior choice directly 

impacts prediction accuracy and parameter stability in spatial 

modeling. 

This study addresses existing research gaps by applying the 

hybrid BGWR-Kriging approach to HDI data from Sumatra 

Island. It offers a robust framework for the spatial analysis of 

socio-economic indicators. The findings are expected to 

inform policies to reduce regional disparities and promote 

equitable development, with practical implications for urban 

planning, education, and healthcare resource allocation. 

Furthermore, this study deliberately compares conjugate 

and Jeffreys' priors to represent two contrasting Bayesian 

approaches in spatial modeling. Conjugate priors are selected 

for their computational convenience, enabling efficient 

estimation in large spatial datasets. In contrast, Jeffreys' prior, 

which is uninformative and invariant under parameter 

transformations, is particularly valuable in contexts with 

limited prior information regarding spatial processes, such as 

HDI modeling across diverse geographic regions. By 

comparing these priors within the BGWR framework, this 

study aims to assess the trade-off between computational 

tractability and estimation flexibility, offering practical 

insights into prior selection for spatial modeling. 

 

 

2. METHODOLOGY 

 

2.1 Bayesian inference 

 

Bayesian inference combines observed data with prior 

knowledge to derive posterior distributions, allowing for 

robust parameter estimation, particularly in spatial data where 

variability and uncertainty are prevalent. This approach relies 

on three key components: prior distributions, which 

incorporate pre-existing assumptions about model parameters 

based on prior studies or reasonable expectations; the 

likelihood function, which quantifies the probability of 

observed data given the model parameters; and posterior 

distributions, which update prior beliefs with observed data to 

produce refined parameter estimates. Bayes’ theorem was 

applied as: 

 

𝑓(𝜃|𝑦) ∝ 𝑓(𝑦|𝜃)𝑓(𝜃) (1) 

 

where, 𝑓(𝜃|𝑦)  is the posterior distribution, (𝑦|𝜃)  is the 

likelihood, and 𝑓(𝜃) is the prior [12]. 

This research employed two types of priors for comparative 

purposes: conjugate priors and Jeffreys' prior. The conjugate 

prior was utilized due to its analytical tractability, facilitating 

closed-form solutions and enhancing computational 

efficiency. It is essential in processing extensive spatial 

datasets such as the HDI across Sumatra Island. Meanwhile, 

Jeffreys' prior was adopted for its uninformative nature and 

invariance under parameter reparameterization, providing 

neutrality and robustness, especially when prior information 

regarding spatial dependencies is limited or unknown. 

Through this dual-prior approach, the study aims to evaluate 

how prior choice affects parameter stability, spatial 

heterogeneity capture, and predictive accuracy within the 

BGWR framework. 

2.2 GWR model structure 

 

The core function of GWR is to model spatial heterogeneity 

by allowing regression coefficients to vary across locations. It 

builds upon the ordinary least squares (OLS) regression but 

introduces spatial weighting to capture local variations. The 

formula is structured as follows: 

 

𝑦𝑖 = 𝛽0(𝑢𝑖 , 𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘 + 𝜖𝑖

𝑝

𝑘=1

 (2) 

 

In this study, let 𝑦𝑖  denote the response variable at location 

i, where the geographic coordinates of location i are 

represented by (𝑢𝑖, 𝑣𝑖). The model incorporates 𝑥𝑖𝑘  as the k 

predictor variables, each associated with a location-specific 

regression coefficient 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘 , allowing for spatially 

varying relationships. The term 𝜖𝑖  represents the error 

component, capturing the unexplained variability in the 

response variable. 

GWR uses spatially varying coefficients to reflect the 

influence of local contexts on the relationship between 

predictors and the response. These coefficients are estimated 

through weighted least squares, where weights are determined 

based on the distance between observed points. GWR is 

beneficial for data with strong local dependencies, as in 

environmental, socioeconomic, or epidemiological studies 

[13, 14]. 

The choice of bandwidth, which defines the spatial scale of 

the analysis, is essential in GWR. Bandwidth determines the 

neighborhood size over which local coefficients are 

calculated, affecting how much the surrounding data 

influences each local model. There are two approaches to the 

bandwidth selection process: fixed and adaptive. Fixed 

bandwidth is a constant bandwidth across the entire study area 

and is, therefore, appropriate for data with uniformly dispersed 

observations. On the other hand, adaptive bandwidth is a 

variable bandwidth that depends on the level of observation 

density, so it is more flexible in modeling spatially 

heterogeneous data by tuning the bandwidth according to the 

local data distribution. 

Bandwidth selection is often optimized by minimizing a 

criterion, such as the Akaike Information Criterion (AIC) or 

cross-validation score. Once selected, the spatial weight 

matrix 𝑊𝑖  is constructed, where each element 𝑤𝑖𝑗  represents 

the weight between locations i and j. A common approach for 

determining weights is the Gaussian function: 

 

𝑤𝑖𝑗 = exp (−
𝑑𝑖𝑗

2

2𝑏2
) (3) 

 

where, 𝑑𝑖𝑗  is the distance between locations i and j, and b is 

the bandwidth parameter. This weighted matrix plays a critical 

role in producing locally varying parameter estimates, 

balancing the trade-off between model flexibility and stability 

[15, 16]. 

This study adopted a fixed bandwidth approach using a 

Gaussian kernel to ensure consistent local regression scales 

across Sumatra Island. This approach was considered 

appropriate given the moderate spatial heterogeneity of the 

HDI data, which did not exhibit extreme clustering or sparsity 

that would require an adaptive approach. The optimal 

bandwidth was selected to minimize the model predictions' 

mean squared error (MSE), which emphasizes reducing 
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prediction errors across locations. The use of MSE as the 

optimization criterion aligns with the predictive objective of 

this study and is recognized as a valid method for bandwidth 

selection in GWR applications. Furthermore, adopting a fixed 

bandwidth facilitates the interpretability and comparability of 

local parameter estimates across regions. 

 

2.3 BGWR 

 

The BGWR model combines the strengths of Bayesian 

inference with the flexibility of GWR. This approach 

incorporates uncertainty in spatially varying coefficients while 

addressing the heterogeneity of socioeconomic data. The 

likelihood for the BGWR model is given by [17]: 

 

𝐘|𝜷(𝐬), 𝐗, 𝐖(𝐬), 𝜎2(𝑠) ~ 𝑀𝑉𝑁 (𝐗𝛃(𝐬), 𝜎2(𝑠)𝐖−𝟏(𝐬))  (4) 

 

Here, Y represents the vector of observed responses, while 

𝜷(𝐬) denotes the spatially varying regression coefficients that 

capture local relationships between predictors and the 

response variable. The predictor variables are organized in the 

matrix 𝐗, with spatial dependencies incorporated through the 

spatial weight matrix 𝐖(𝐬), which adjusts the influence of 

nearby observations. Finally, 𝜎2(𝑠)  represents the spatially 

varying variance, allowing the model to account for 

heteroscedasticity and location-specific uncertainties. 

Posterior distributions were derived for coefficients and 

variance using Conjugate [17] and Jeffreys’ priors [18]. The 

following are the marginal posterior distributions for 

Conjugate prior for 𝜷(𝐬) and 𝜎2(𝑠): 

 

𝜷(𝐬)|𝐘, 𝜎2(𝑠) ~ 𝑀𝑉𝑁(𝜇, Λ) (5) 

 

Here, 𝜇 = Λ−1𝑋𝑇𝑊(𝑠)𝑌  represents the posterior mean, 

which provides an estimate of the spatially varying regression 

coefficients based on the observed data. The term Λ =
1

𝜎2(𝑠)
(𝑋𝑇𝑊(𝑠)𝑋 + Σ𝛽

−1) defines the precision matrix, which 

controls the variability of the posterior distribution. Within this 

expression, Σ𝛽
−1  represents the prior covariance matrix for 

𝜷(𝐬), incorporating prior information to regularize the 

estimation of spatially varying coefficients.  

The marginal posterior for 𝜎2(𝑠) follows an inverse gamma 

distribution: 

 

𝜎2(𝑠)|𝐘 ~ 𝐼𝐺(𝛼′, 𝛼1
′ ), (6) 

 

𝛼′ = 𝛼0 +
𝑛

2
, 𝛼1

′ = 𝛼1 +
1

2
(𝑌𝑇𝑊(𝑠)𝑌 − 𝜇𝑇Λ𝜇)   (7) 

 

The following are the marginal posterior distributions for 

Jeffreys’ prior for 𝜷(𝐬) and 𝜎2(𝑠): 

 

𝜷(𝒔)|𝐘, 𝜎2(𝑠) ~𝑀𝑉𝑁(𝛽0, 𝜎2(𝑠)(𝑋𝑇𝑊(𝑠)𝑋)−1) (8) 

 

Here, the posterior mean of the regression coefficients is 

given by 𝛽0 = (𝑋𝑇𝑊(𝑠)𝑋)−1𝑋𝑇𝑊(𝑠)𝑌, which represents the 

weighted least squares estimate incorporating spatial 

weighting. The covariance matrix of the posterior distribution 

is expressed as 𝜎2(𝑠)(𝑋𝑇𝑊(𝑠)𝑋)−1, capturing the uncertainty 

in the estimated coefficients while accounting for spatial 

variability. 

The marginal posterior 𝜎2(𝑠) for Jeffreys’ prior follows an 

inverse gamma distribution: 

𝜎2(𝑠)|𝐘 ~ 

𝐼𝐺 (
𝑛+1

2
,

𝑌𝑇𝑊(𝑠)𝑌−𝑌𝑇𝑋(𝑋𝑇𝑊(𝑠)𝑋)
−1

𝑋𝑇𝑊(𝑠)𝑌

2
)  

(9) 

 

where, n is the number of observations. 

A leave-one-out cross-validation (LOOCV) strategy was 

implemented to assess the model's out-of-sample predictive 

performance. The Bayesian GWR model was re-estimated for 

each observation using the remaining data, excluding the 

target point. Predictions for the excluded locations were 

generated using the local regression coefficients derived from 

the training subset. Due to the lack of a direct Bayesian 

implementation for LOOCV with Jeffreys' prior, the procedure 

employed GWR as a frequentist analog, which retains the 

same spatial prediction structure. This approach provides a 

reliable estimation of generalization performance while 

maintaining methodological consistency with the original 

model [19-21]. 

 

2.4 Kriging of residuals 

 

After estimating the BGWR model, the residuals 𝜖𝑖  are 

calculated as: 

 

ϵ𝑖 = 𝑌𝑖 − 𝑌𝑖̂, (10) 

 

where, 𝑌𝑖̂ is the predicted value from the BGWR model. These 

residuals are then kriged to account for spatial autocorrelation 

that remains unaddressed in the GWR model. The Kriging 

estimator is: 

 

𝑍̂(𝑠) = ∑ λ𝑖ϵ𝑖
𝑛
𝑖=1   (11) 

 

Here, 𝑍̂(𝑠)  represents the estimated residual at an 

unsampled location s, obtained through Kriging interpolation. 

The term λ𝑖  denotes the weights assigned to each sampled 

location, which are determined based on the spatial correlation 

structure of the residuals. Finally, n refers to the number of 

sampled locations, influencing the Kriging estimation process 

and the accuracy of spatial predictions [22]. 

The semivariogram used for Kriging is defined as: 

 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝜖(𝑠𝑖) − 𝜖(𝑠𝑖 + ℎ)]2𝑁(ℎ)

𝑖=1   (12) 

 

𝛾(ℎ) represents the semivariance at a given lag distance h, 

quantifying the spatial dependence between observations. 

𝑁(ℎ) denotes the number of observation pairs separated by 

distance h, influencing the reliability of the semivariance 

estimate. Lastly, 𝜖(𝑠𝑖)  corresponds to the residual value at 

location 𝑠𝑖, capturing the unexplained variation in the spatial 

model [23, 24]. 

Three theoretical semivariogram models—Spherical, 

Exponential, and Gaussian—were fitted to the empirical 

semivariogram. The LOOCV method was adopted to ensure 

rigorous model selection. LOOCV is widely accepted in 

geostatistics for evaluating spatial interpolation models, as it 

provides an unbiased estimate of predictive performance by 

systematically leaving out each data point during model 

training and assessing the accuracy of the prediction for that 

point. Recent literature has emphasized this method as a 

reliable approach to evaluate model generalizability and 

mitigate overfitting in spatial modeling frameworks [25, 26]. 

The semivariogram model with the lowest mean squared 
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prediction error (MSPE) from the LOOCV procedure was 

selected for further Kriging implementation. For each model, 

the parameters (nugget, sill, and range) were estimated using 

an iterative weighted least squares (WLS) fitting procedure 

based on the empirical semivariogram. 

 

2.5 Combining BGWR and Kriging 

 

The final prediction from BGWRK is obtained by 

combining the predictions from the GWR model with the 

kriged residuals: 

 

𝑌̂𝐵𝐺𝑊𝑅𝐾(𝑠) = 𝑌̂(𝑠) + 𝑍̂(𝑠) (13) 

 

Here, 𝑌̂𝐵𝐺𝑊𝑅𝐾(𝑠) represents the final prediction at location 

sss, obtained by integrating BGWRK. The term 𝑌̂(𝑠) denotes 

the prediction from the BGWR model, capturing spatially 

varying relationships between predictors and the response 

variable. Lastly, 𝑍̂(𝑠)  corresponds to the kriged residual at 

location 𝑠, which accounts for spatially structured errors and 

enhances prediction accuracy [27]. 

 

2.6 Study area and data sources 

 

This study investigates spatial disparities in human 

development by analyzing the HDI across 154 districts and 

cities on the island of Sumatra, Indonesia. Sumatra was 

selected due to its diverse socioeconomic characteristics, 

which provide a robust foundation for evaluating spatial 

variability in development outcomes. 

The secondary data for the HDI in 2021 were obtained from 

the Central Bureau of Statistics (BPS) [28]. Data validation 

was performed by cross-referencing independent regional 

reports to ensure consistency and reliability. The dataset 

comprises variables aligned with the HDI dimensions. The 

response variable (𝑌) is the HDI, representing the HDI values 

for districts and cities in Sumatra for the year 2021. The 

predictor variables (𝑋) include Life Expectancy at Birth (𝑋1), 

which measures the average number of years a newborn is 

expected to live under prevailing mortality rates, representing 

the health dimension; Expected Years of Schooling ( 𝑋2 ), 

indicating the number of years a child entering school is 

expected to spend in formal education, reflecting future 

educational attainment; Mean Years of Schooling ( 𝑋3 ), 

capturing the average years of schooling completed by 

individuals aged 25 and older, representing historical 

education levels; and Adjusted Per Capita Expenditure (𝑋4), 

which reflects the standard of living by accounting for average 

per capita spending adjusted for regional cost-of-living 

differences. 

 

2.7 Research steps 

 

This study uses advanced spatial modeling techniques to 

analyze the spatial variability of the HDI across Sumatra 

Island, Indonesia. By integrating GWR, Bayesian inference, 

and Kriging, the methodology aims to capture local variations 

and address spatial autocorrelation in the data. Below, the 

research steps are outlined, from data collection to model 

evaluation and interpretation. 

1) Data Collection: This study focuses on Sumatra Island, 

analyzing HDI data from 154 districts and cities in 2021, 

which were sourced from BPS and validated with 

independent reports. 

2) Exploratory Data Analysis: Descriptive statistics and 

spatial visualizations were used to assess the data. 

Moran’s I test confirmed spatial clustering, justifying the 

need for geographically adaptive modeling. 

3) Model Building and Selection: GWR was initially applied 

to capture local variations in HDI predictors. To enhance 

accuracy, BGWR was used, incorporating Conjugate 

Priors for efficiency and Jeffreys’ Uninformative Priors 

for robustness. MCMC methods were employed for 

parameter estimation. 

4) Residual Analysis and Kriging: Residual spatial 

autocorrelation was identified through the Moran’s I test, 

prompting using Kriging for spatial interpolation. Several 

theoretical semivariogram models were evaluated, and the 

optimal model was selected based on leave-one-out cross-

validation (LOOCV) to improve the prediction accuracy. 

5) Model Evaluation and Comparison: Performance was 

assessed using MAB, MSD, RMSE, and R², identifying 

the Bayesian Jeffreys model as the most accurate in 

capturing spatial variability. 

6) Visualization and Interpretation: Spatial maps illustrated 

HDI disparities across Sumatra, highlighting well-

developed urban centers like Pekanbaru and Medan, while 

rural areas such as Nias and Simeulue showed lower HDI. 

These insights provide valuable input for policy and 

resource allocation. 

 

 

3. RESULTS AND DISCUSSION 

 

The analysis provides a detailed overview of key human 

development indicators for 154 districts and cities across 

Sumatra Island. These metrics include the HDI, life 

expectancy at birth, education-related measures, and economic 

indicators, summarized in Table 1. 

 

Table 1. Descriptive statistics of human development 

indicators across Sumatra 

 

Metric HDI 

Life 

Expectancy 

at Birth 

Expected 

Years of 

Schooling 

Mean 

Years of 

Schooling 

Adjusted 

Per Capita 

Expenditure 

Count 154 154 154 154 154 

Mean 71.03 69.19 13.28 8.87 10,576.22 

Median 70.11 69.26 13.06 8.63 10,384.50 

Standard 

Deviation 
4.54 2.40 1.06 1.34 2,041.49 

Minimum 61.99 62.39 11.38 5.64 5,924.00 

Maximum 85.71 74.50 17.80 12.83 18,034.00 

 

The HDI averages 71.03 (±4.54 SD) across the regions, 

ranging from 61.99 in Nias Selatan to 85.71 in Pekanbaru. 

Such areas as Pekanbaru and Medan exhibit high HDI values, 

signifying advanced development levels, while districts such 

as Nias Selatan, Simeulue, and Aceh Singkil show lower HDI 

scores, highlighting disparities in regional development. 

Life Expectancy at Birth averages 69.19 years (±2.40 SD), 

ranging from 62.39 years in Nias to 74.50 years in Tapanuli 

Selatan. Cities such as Banda Aceh and Padang Panjang report 

higher life expectancy values, reflecting better healthcare and 

living conditions. In contrast, rural districts like Nias and 

Mandailing Natal have significantly lower life expectancy. 

Expected Years of Schooling across Sumatra regions show 

a mean of 13.28 years (±1.06 SD). Urban centers such as 

Medan, Palembang, and Banda Aceh report expected years of 
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schooling exceeding 14 years, while rural districts, including 

Nias and Padang Lawas Utara, lag with averages below 12 

years. The Mean Years of Schooling reflects a similar trend, 

with an average of 8.87 years (±1.34 SD). Medan and Banda 

Aceh report over 10 years of mean schooling, while regions 

like Nias Selatan and Aceh Tenggara fall below 7 years. 

Economic indicators, represented by Adjusted Per Capita 

Expenditure, average IDR 10,576.22 thousand (±IDR 

2,041.49 thousand SD), ranging from IDR 5,924.00 thousand 

in Nias Barat to IDR 18,034.00 thousand in Batam. Urbanized 

and industrialized regions such as Batam, Pekanbaru, and 

Medan show significantly higher per capita expenditures. In 

contrast, rural districts in Aceh and Nias regions exhibit lower 

averages, pointing to economic inequalities. 

The results highlight significant variability in human 

development across Sumatra Island. Urban centers such as 

Pekanbaru, Batam, and Medan consistently perform better 

across multiple indicators, reflecting concentrated 

infrastructure, healthcare access, and economic opportunities. 

Conversely, districts in Nias and rural Aceh face systemic 

challenges, with lower HDI, limited educational attainment, 

and reduced economic output. 

These findings emphasize the critical need for targeted 

interventions to address disparities in underperforming regions 

such as Nias Selatan, Simeulue, and Aceh Singkil, particularly 

in education and economic development. Conversely, 

leveraging the strengths of high-performing urban centers may 

provide scalable models for regional development across 

Sumatra. 

Before employing GWR, it is crucial to establish the 

presence of spatial heterogeneity in the data. Spatial 

heterogeneity refers to inconsistent relationships between 

independent and dependent variables across the entire 

geographic area. Moran's I [29] or the Local Indicator of 

Spatial Association (LISA) frequently detects spatial patterns 

within the data. Without spatial heterogeneity, using a global 

regression model may be more appropriate [30]. 

The Moran's I test was applied to analyze the spatial 

clustering of residuals from the regression model, aiming to 

detect whether spatial patterns exist in the dataset. The results 

of Moran's I test for the global regression residuals reveal the 

following in Table 2.  

Table 2. Results of the Moran's I test 

Statistic Value 

Moran's I Statistic 0.501 

Expectation −0.0065

Variance 0.0018

Z-Score (Standard Deviate) 12.023

p-value < 2.2 × 10⁻¹⁶ 

These results indicate a statistically significant positive 

spatial autocorrelation of the residuals at a very high 

confidence level (p-value < 0.001). The Moran's I value of 

0.501 suggests a moderate to strong clustering of similar 

residual values across the geographic units of analysis 

(Sumatra). The expectation value close to zero indicates that 

the null hypothesis assumes no spatial autocorrelation, while 

the very high Z-score confirms that the observed clustering is 

not random. The Moran's I test results show significant 

positive spatial autocorrelation in the residuals of the global 

regression model. This implies that the relationships between 

the dependent variable HDI and the independent variables 

(Life Expectancy at Birth, Expected Years of Schooling, Mean 

Years of Schooling, and Adjusted Per Capita Expenditure) are 

not fully captured by the global regression model. The 

clustering of residuals suggests that spatially varying 

relationships are present in the data. 

This study seeks to understand the relationships between the 

dependent variable and the predictors through global and local 

perspectives. A global regression approach provides a single 

set of parameter estimates applicable across the study area. In 

contrast, GWR allows for spatially varying coefficients, 

offering more profound insights into localized patterns of 

association. Before conducting Bayesian model estimation, we 

summarize the findings of the global regression model and the 

local parameter estimates derived from GWR in Tables 3 and 

4, respectively. These results establish a foundation for 

understanding the variability in the data and provide 

benchmarks for comparison with the subsequent Bayesian 

model. 

Table 3. Global parameter estimation 

Parameter Coefficients Std. Error p-value

Intercept 4.6650 1.1730 0.000109 

𝑋1 0.4889 0.01721 < 2 × 10⁻¹⁶ 

𝑋2 0.8579 0.05211 < 2 × 10⁻¹⁶ 

𝑋3 1.2990 0.04981 < 2 × 10⁻¹⁶ 

𝑋4 0.0009105 0.00002259 < 2 × 10⁻¹⁶ 

Table 4. Summary of local parameter estimation for GWR 

Parameter Min Max Mean Stdev 

𝛽0 4.544712968 4.751145608 4.634841874 0.056078583 

𝛽1 0.488548980 0.489289201 0.488875315 0.000156652 

𝛽2 0.848324734 0.871484688 0.860929239 0.006232544 

𝛽3 1.293265767 1.301612298 1.297090946 0.002287895 

𝛽4 0.000906908 0.000914278 0.000911312 1.57839×10⁻⁶ 

Table 3 summarizes the global parameter estimation results 

derived from the regression analysis. The intercept is 

estimated at 4.665 with a standard error of 1.173, and its 

associated p-value of 0.000109 indicates strong statistical 

significance. Among the independent variables, 𝑋1 , 𝑋2 , 𝑋3 ,

and 𝑋4  demonstrate highly significant effects on the

dependent variable, with p-values less than 2 × 10−16 .

Specifically, the coefficient for 𝑋1  is 0.4889 (Std. Error:

0.01721), for 𝑋2  is 0.8579 (Std. Error: 0.05211), for 𝑋3  is

1.299 (Std. Error: 0.04981), and for 𝑋4  is 0.0009105 (Std.

Error: 0.00002259). These findings suggest that all predictors 

significantly contribute to explaining variations in the 

response variable, with 𝑋3  showing the most significant

magnitude of effect among the predictors. 

Table 4 presents the summary statistics of the GWR local 

parameter estimates. The intercept (𝛽0) exhibits a mean value

of 4.6348 with a standard deviation (Stdev) of 0.0561, ranging 

from 4.5447 to 4.7511 across the spatial units. The local 

estimates for 𝛽1 demonstrate minimal variability, with a mean

of 0.4889, a standard deviation 0.0002, and a narrow range 

between 0.4885 and 0.4893. For 𝛽2, the mean value is 0.8609

with a standard deviation of 0.0062, which varies between 

0.8483 and 0.8715. Similarly, 𝛽3 displays a mean of 1.2971, a

standard deviation of 0.0023, and a range from 1.2933 to 

1.3016. Finally, 𝛽4 demonstrates the least variability, with a

mean of 0.0009113, a standard deviation of 0.0000016, and a 

range of 0.0009069 to 0.0009143.  

These results indicate substantial spatial variation in the 

local parameter estimates, particularly for 𝛽2  and 𝛽3 ,
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highlighting potential regional differences in the predictors' 

influence. The relatively low variability observed in 𝛽1 and 𝛽4 

suggests more stable effects across spatial units for these 

predictors. 

The BGWR models provide refined local parameter 

estimates by incorporating prior distributions and handling 

spatial variability with improved precision. Tables 5 and 6 

summarize the results for two Bayesian approaches: BGWR 

with Conjugate priors and BGWR with Jeffreys priors. 
 

Table 5. Summary of local parameter estimation for BGWR 

conjugate 

 

Parameter Min Max Mean Stdev 

𝛽0 4.457291557 4.747247685 4.599655682 0.067339150 

𝛽1 0.487342367 0.490685656 0.489367466 0.000583441 

𝛽2 0.846696019 0.873842229 0.861467432 0.006438580 

𝛽3 1.287770574 1.304336193 1.296503164 0.002948388 

𝛽4 0.000906340 0.000915342 0.000911234 1.79499e-060 

 

Table 6. Summary of local parameter estimation for BGWR 

Jeffreys 

 

Parameter Min Max Mean Stdev 

𝛽0 -11.79996113 12.08458804 3.640892470 4.492092415 

𝛽1 0.000371132 0.760260612 0.504215482 0.082833884 

𝛽2 -0.046174378 1.525002725 0.876539058 0.250142386 

𝛽3 0.000294090 1.596119069 1.131851056 0.205753682 

𝛽4 0.000512397 0.004966842 0.001024841 0.000466024 

 

Table 5 presents the local parameter estimates obtained 

using BGWR with Conjugate priors. The intercept (𝛽0) has a 

mean value of 4.5997, a standard deviation (Stdev) of 0.0673, 

and ranges from 4.4573 to 4.7472 across spatial units, 

indicating moderate variability in the spatial distribution. The 

coefficient for 𝛽1  exhibits a mean of 0.4894, with minimal 

variability (Stdev: 0.0006), ranging narrowly between 0.4873 

and 0.4907, suggesting a stable effect across locations. 

Similarly, 𝛽2 has a mean of 0.8615, a standard deviation of 

0.0064, and a range of 0.8467 to 0.8738, reflecting relatively 

low spatial variation. For 𝛽3 , the mean is 1.2965 with a 

standard deviation of 0.0029, and the estimates vary between 

1.2878 and 1.3043. Finally, 𝛽4  exhibits the least variability, 

with a mean of 0.0009112, a standard deviation of 0.0000018, 

and a range of 0.0009063 to 0.0009153. 

These results highlight the strength of BGWR Conjugate 

priors in maintaining stable and precise estimates while 

accounting for spatial heterogeneity, particularly for 

parameters 𝛽1 and 𝛽4. 

Table 6 summarizes the local parameter estimates derived 

from BGWR using Jeffreys priors, which incorporate a more 

uninformative prior structure. The intercept ( 𝛽0 ) displays 

significantly wider variability, with a mean of 3.6409, a 

standard deviation of 4.4921, and a range from -11.8000 to 

12.0846. This suggests potential instability in the intercept 

estimation under this prior. The coefficient for 𝛽1  shows a 

mean of 0.5042, a standard deviation of 0.0828, and a range of 

0.0004 to 0.7603, indicating more considerable spatial 

variability than the Conjugate prior. Similarly, 𝛽2 has a mean 

of 0.8765, but its standard deviation (0.2501) and range (-

0.0462 to 1.5250) reflect considerable spatial heterogeneity. 

The estimate for 𝛽3 averages 1.1319, with a standard deviation 

of 0.2058 and a range of 0.0003 to 1.5961, further supporting 

the presence of substantial variability. Lastly, 𝛽4 has a mean 

of 0.0010, a standard deviation of 0.0005, and ranges between 

0.0005 and 0.0050, suggesting moderate precision for this 

parameter. 

Although the Jeffreys prior approach enables a broader 

exploration of parameter variability, it introduces greater 

uncertainty and reduced stability in local estimates compared 

to the Conjugate prior approach. This limitation is particularly 

evident in the considerable variability observed in parameter 

estimates derived from the Jeffreys prior model, with several 

extreme values emerging in specific regions. Two key factors 

contribute to this phenomenon. First, the Jeffreys prior—

uninformative and invariant under reparameterization—offers 

high flexibility, allowing the model to accommodate complex 

spatial structures without enforcing strong prior assumptions. 

Second, regions with sparse data, such as Nias and Simeulue, 

exacerbate this effect; limited observations in these areas make 

local estimates more sensitive to random variation and thus 

more volatile. 

While such flexibility enhances the model’s ability to 

capture spatial heterogeneity, it also introduces a greater risk 

of localized overfitting, as reflected in the near-perfect R² 

value (0.9999) and extreme parameter ranges (e.g., β0 ranging 

from −11.8 to 12.08). These patterns underscore the 

importance of cautious interpretation, particularly in data-

sparse regions where model outputs may be overly driven by 

noise. To address this, future research may consider 

incorporating hierarchical or weakly informative priors to 

better balance the trade-off between model flexibility and 

estimate stability, potentially mitigating excessive variability 

while preserving the ability to represent complex spatial 

structures. 

Next, it evaluates the predictive capabilities of three models 

for the HDI: GWR, Bayesian Conjugate GWR, and Bayesian 

Jeffreys GWR. This analysis provides insights into these 

models' practical applicability and robustness in spatial data 

contexts by comparing their numerical outcomes, prediction 

accuracy, mapping outputs, and interpretative implications. 

On this occasion, an evaluation will be conducted as outlined 

in Table 7 and Figure 1. 

The predictive results obtained from the GWR, Bayesian 

Conjugate GWR, and Bayesian Jeffreys GWR models exhibit 

remarkable numerical similarity. Incorporating Bayesian 

frameworks, whether using Conjugate or Jeffreys priors, does 

not substantially alter the predictive outcomes compared to the 

standard GWR model. The minor numerical differences 

observed are consistent with the expected variability due to 

model assumptions and the inclusion of prior distributions in 

Bayesian methodologies. 
 

Table 7. Comparison of prediction accuracy metrics for GWR and Bayesian GWR models 

 

Model Mean Absolute Bias (MAB) Mean Squared Deviation (MSD) Root Mean Squared Error (RMSE) R-Squared 

GWR 0.2664 0.1762 0.4198 0.9913971 

Bayesian GWR Conjugate 0.2665 0.1764 0.4200 0.9913884 

Bayesian GWR Jeffreys 0.0291 0.0024 0.0489 0.9998831 
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Figure 1. Thematic map of HDI prediction of districts/cities in Sumatra Island 

All three models demonstrate robust predictive performance 

across geographic units, effectively capturing spatial 

heterogeneity in the data. The slight variations in predictions 

reflect the influence of Bayesian priors, with the Bayesian 

GWR Jeffreys occasionally yielding marginally higher or 

lower predictions compared to the other two methods. These 

variations underline the reliability of each model in 

maintaining consistent performance across diverse spatial 

contexts. 

The Bayesian Jeffreys model demonstrates the smallest 

MAB of 0.0291, indicating the least average deviation from 

actual HDI values. By comparison, the GWR and Bayesian 

Conjugate models exhibit MAB values of 0.2664 and 0.2665, 

respectively, showing slightly higher deviation. These results 

highlight the Bayesian Jeffreys model's superior accuracy in 

capturing the central tendencies of the data. 

In terms of MSD, the Bayesian Jeffreys model achieves the 

lowest value (0.0024), indicating its effectiveness in 

minimizing more significant deviations. The GWR and 

Bayesian Conjugate models exhibit higher MSD values 

(0.1762 and 0.1764, respectively), suggesting less 

effectiveness in reducing variability in prediction errors. 

The Bayesian Jeffreys model also outperforms the other 

models in RMSE with a value of 0.0489, reflecting the minor 

average prediction error in the same units as HDI. The GWR 

and Bayesian Conjugate models show higher RMSE values 

(0.4198 and 0.4200, respectively), indicating slightly larger 

average errors. 

The Bayesian Jeffreys model's R-squared value of 

0.9998831 indicates that it explains 99.99% of the variance in 

HDI values, surpassing the GWR model (0.9913971) and the 

Bayesian Conjugate model (0.9913884). This demonstrates 

the Bayesian Jeffreys model's ability to capture spatial 

dependencies with minimal unexplained variance. 

The Bayesian Jeffreys GWR model consistently 

outperforms both the GWR and Bayesian GWR Conjugate 

models across all measures, demonstrating its reliability in 

predicting HDI values. This enhanced performance can be 

attributed to its use of an uninformative prior, which enables 

better adaptation to the data structure while avoiding 

overfitting. 

While the GWR and Bayesian Conjugate models exhibit 

robust performance, their reliance on spatial regression and 

conjugate priors may limit their flexibility in adapting to 

complex spatial relationships in this dataset. 

These findings suggest that the Bayesian GWR Jeffreys 

model is particularly well-suited for applications requiring 

high precision in spatial data analysis, such as regional 

development planning or resource allocation. Future studies 

could explore the integration of additional covariates or 

alternative priors to enhance predictive accuracy further. 

To validate the robustness of the Bayesian GWR Jeffreys 

model and assess its generalizability beyond the in-sample fit, 

a LOOCV was conducted using GWR as a frequentist analog 

of the Bayesian model. This approach is methodologically 

appropriate, as the prior primarily influences posterior 

uncertainty rather than the structural form of prediction. 

Table 8 presents the Bayesian GWR Jeffreys model's out-

of-sample predictive performance. While the in-sample R² 

(0.9999) and RMSE (0.0489) in Table 7 indicate an excellent 

fit, the LOOCV results with an R² of 0.9902 and RMSE of 

0.4481 still reflect high predictive accuracy. These values 

demonstrate that the model does not overfit and can generalize 

well to unseen data, even in complex socioeconomic indicators 

such as HDI. 

Table 8. Out-of-sample prediction accuracy from LOOCV 

(Bayesian GWR Jeffreys) 

Model RMSE R-Squared 

Bayesian GWR Jeffreys  

(LOOCV via GWR analog) 
0.4481 0.9902 

The spatial prediction maps produced by the three models 
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are nearly indistinguishable, underscoring the limited impact 

of model choice on the visualization and interpretation of HDI 

values. This uniformity suggests that stakeholders can rely on 

any of these models for spatial analysis and policy-making 

without significant differences in mapping outputs. The 

similarity in mapping outcomes simplifies decision-making 

processes by minimizing the influence of methodological 

variations. Therefore, only a single map is presented on this 

occasion, as shown in Figure 1. 

Figure 1 presents the spatial distribution of predicted HDI 

values across districts and cities in Sumatra Island. The map 

reveals pronounced spatial disparities in HDI, reflecting 

varying levels of regional development. 

Urban centers such as Pekanbaru, Medan, and Padang are 

visualized in red to dark red, indicating HDI values above 82, 

which align with well-developed infrastructure, higher 

average education levels, and better health service 

accessibility. In contrast, rural and peripheral regions—such 

as Nias, Simeulue, parts of South Bengkulu, and several inland 

districts—are shown in green to blue shades, with HDI 

predictions ranging between 61 and 70. These lower scores 

suggest limited access to key development drivers such as 

education, healthcare, and economic opportunity. 

The map provides a powerful visual summary that supports 

the statistical model, emphasizing areas where development 

interventions are most needed. It enables region-specific 

prioritization, reinforcing the case for differentiated policies 

rather than uniform development strategies. 

These spatial insights directly inform policy planning and 

resource allocation, guiding local governments to focus 

investment where HDI returns are potentially highest and 

where disparities remain most severe. 

From a practical perspective, the standard GWR model 

offers simplicity and computational efficiency, making it a 

suitable choice for routine applications unless Bayesian 

approaches are warranted explicitly for uncertainty 

quantification or minor sample size adjustments. While 

methodologically sophisticated, the Bayesian GWR Conjugate 

and Bayesian GWR Jeffreys models provide comparable 

predictive outcomes, affirming their viability in addressing 

specific analytical needs such as overfitting and the 

incorporation of prior knowledge. 

Among the three models, the Bayesian Jeffreys model 

provides the closest predictions to the actual HDI values, 

making it the most suitable choice for applications requiring 

precise estimation. However, the GWR and Bayesian 

Conjugate models remain reliable alternatives with only 

slightly larger errors. This finding suggests that decision-

makers should prioritize considerations such as computational 

efficiency, the necessity for Bayesian inference, and the 

context-specific demands of spatial data analysis when 

selecting a model. Ultimately, any of the three methods can be 

confidently utilized for HDI prediction and related spatial 

policy recommendations. 

Before implementing Bayesian GWR-Kriging—a hybrid 

method that integrates GWR and Kriging while leveraging 

Bayesian probabilistic frameworks to address parameter 

uncertainty—the spatial autocorrelation of residuals from the 

GWR and BGWR models was first assessed using Moran's I 

test. As summarized in Table 9, this analysis was essential for 

determining the need for additional spatial modeling. 

The results revealed Moran’s I statistics of 0.49831 and 

0.49827 for the GWR and Bayesian GWR Conjugate models, 

respectively, both accompanied by highly significant p-values 

(2.2×10⁻¹⁶). These findings indicate pronounced spatial 

autocorrelation, necessitating the rejection of the null 

hypothesis of spatial randomness. Despite capturing 

substantial spatial heterogeneity, these models failed to fully 

account for spatial dependencies, thereby justifying the 

application of supplementary methods such as Kriging to 

address residual autocorrelation and enhance predictive 

performance. 

Table 9. Results of the Moran's I test for GWR and Bayesian 

GWR models 

Model 

Z-Score

(Standard

Deviate)

Moran’s I 

Statistic 
p-value Decision

GWR 11.954 0.498317406 2.2×10⁻¹⁶ 
Reject 

𝐻0

Bayesian GWR 

Conjugate 
11.954 0.498277158 2.2×10⁻¹⁶ 

Reject 

𝐻0

Bayesian GWR 

Jeffreys 
-0.18123 -0.014196110 0.5719

Accept 

𝐻0

By contrast, analysis of the Bayesian GWR Jeffreys model 

residuals yielded a Moran’s I statistic of -0.0142 (variance: 

0.00179, z-score: -0.1812, p-value: 0.5719), indicating no 

statistically significant spatial autocorrelation. The proximity 

of this value to zero, alongside the non-significant p-value, 

supports the conclusion that the model residuals are spatially 

random. 

As noted by Anselin [31], Moran’s I near zero values 

suggest the absence of spatial dependence, implying that the 

residuals follow a spatially independent structure. 

Furthermore, Moraga [32] highlights that minor negative 

Moran’s I values, particularly those not statistically 

significant, do not indicate accurate dispersion or 

overcorrection but are consistent with random spatial 

variation. In this case, the negligible z-score (–0.1812) 

reinforces the interpretation that no meaningful deviation 

exists from the null hypothesis of spatial randomness. 

Collectively, these findings highlight the superior 

performance of the Bayesian GWR Jeffreys model in 

mitigating spatial autocorrelation compared to the GWR and 

Bayesian GWR Conjugate models. Leveraging an 

uninformative Jeffreys prior, this model adapts flexibly to 

spatial patterns without overfitting or introducing undue 

complexity. Unlike the other models, which still require 

integration with Kriging to correct for residual spatial 

dependencies, the Bayesian GWR Jeffreys model substantially 

reduces spatial autocorrelation, offering a more streamlined 

and statistically robust approach to spatial data modeling. 

After analyzing the Moran's I test results for the residuals of 

the GWR and BGWR models, an empirical semivariogram 

was generated to identify spatial autocorrelation, and a 

theoretical semivariogram model, such as spherical or 

exponential, was fitted. Subsequently, Kriging was performed 

on the residuals. 

Three widely used theoretical semivariogram models were 

initialized: Spherical, Exponential, and Gaussian. Each model 

was parameterized with a partial sill (psill) of 1, a range of 1, 

and a nugget effect (nugget) of 0.1. Based on the training data, 

these initial settings served as starting points for subsequent 

semivariogram fitting. 

In response to standard geostatistical practice, a LOOCV 

procedure was implemented to evaluate and select the best-

fitting semivariogram model. This method involves 

1610



 

sequentially removing each observation, fitting the 

semivariogram using the remaining data, and predicting the 

omitted value. The mean squared prediction error (MSPE) was 

calculated across all folds for each candidate model—

Spherical, Exponential, and Gaussian. The model with the 

lowest MSPE was selected as the most suitable for capturing 

spatial structure. This LOOCV-based selection process 

replaces the previously used AIC approach, ensuring greater 

methodological rigor and alignment with best practices in 

geostatistics. The use of LOOCV aligns with geostatistical 

recommendations and avoids reliance on information-

theoretic criteria like AIC, which is less conventional in this 

context. 

 

Table 10. Selection of semivariogram models for the 

residuals in GWR and Bayesian GWR models 

 

Model 
LOOCV (MSPE) 

Spherical Exponential Gaussian 

GWR 0.09097208 0.09047708 0.10132481 

Bayesian GWR Conjugate 0.09090096 0.09040269 0.10131537 

Bayesian GWR Jeffreys - - - 

 

Table 10 summarizes the LOOCV-based model selection 

results for the GWR and Bayesian GWR models. The model 

with the lowest MSPE was selected as the most suitable 

semivariogram. The Exponential semivariogram model 

yielded the lowest MSPE in this evaluation, indicating its 

superior predictive performance compared to the Spherical 

and Gaussian alternatives. 

 

Comparison with existing GWR-Kriging studies 

To contextualize our results, we compared our Bayesian 

GWR-Kriging approach's predictive performance and residual 

behavior with findings from prior studies [2-7]. Traditional 

GWR-Kriging models, such as those in references [2, 5], 

typically use classical GWR followed by ordinary Kriging on 

residuals. These models often report improvements in spatial 

prediction, but still suffer from moderate residual spatial 

autocorrelation. 

In contrast, our approach integrates Bayesian GWR with 

Jeffreys' prior, which leads to a more robust estimation process 

and better uncertainty quantification. Our results demonstrate 

a near-perfect in-sample R² of 0.9999 and a strong out-of-

sample R² of 0.9902 based on leave-one-out cross-validation. 

Moran's I on residuals was substantially reduced to 

approximately 0.02, indicating effective mitigation of spatial 

autocorrelation—an aspect not explicitly addressed in prior 

models such as references [3, 6]. 

This study's novelty lies in incorporating Jeffreys' prior 

within a Bayesian GWR framework and coupling it with a 

semivariogram-informed Kriging process selected via 

LOOCV. No previous study has adopted this fully Bayesian 

GWR-Kriging integration to model and predict HDI or other 

socioeconomic variables. The proposed framework, therefore, 

offers both methodological contributions and practical 

implications for spatial analysis in regional development 

studies. 

Table 11 summarizes the predictive accuracy of five spatial 

modeling approaches: GWR, Bayesian GWR Conjugate, 

Bayesian GWR Jeffreys, GWR Kriging, and Bayesian GWR 

Conjugate Kriging. Four key metrics are used: MAB, MSD, 

RMSE, and R-squared. These metrics comprehensively 

evaluate the models' capability to predict the HDI while 

accounting for spatial variability. 

The GWR model demonstrates robust predictive 

capabilities with an MAB of 0.2664, MSD of 0.1762, and an 

RMSE of 0.4198. Its R-squared value of 0.9914 indicates that 

it explains a significant proportion of the variance in the data. 

However, compared to Bayesian models, it exhibits slightly 

higher error values, suggesting opportunities for improvement 

in accuracy. 

 

Table 11. Comparison of prediction accuracy metrics for 

GWR, Bayesian GWR, GWR-Kriging, and Bayesian GWR-

Kriging models 

 
Model MAB MSD RMSE R-Squared 

GWR 0.266448736 0.176205309 0.419768161 0.99139710 

Bayesian 

GWR 

Conjugate 

0.266495375 0.176382065 0.419978648 0.99138840 

Bayesian 

GWR 

Jeffreys 

0.029060284 0.002394484 0.048933469 0.99988310 

GWR 

Kriging 
0.212319254 0.090477082 0.300794085 0.99586961 

Bayesian 

GWR 

Conjugate 

Kriging 

0.212453396 0.090402687 0.300670396 0.99587444 

 

The Bayesian Conjugate GWR model closely mirrors 

GWR's performance, with an MAB of 0.2665, MSD of 0.1764, 

and an RMSE of 0.4200. The R-squared value (0.9914) 

remains nearly identical to the GWR model. While the 

Bayesian approach adds probabilistic rigor, its overall 

predictive performance is comparable to the standard GWR. 

Among all models, the Bayesian Jeffreys GWR 

demonstrates superior predictive accuracy, achieving the 

lowest MAB (0.0291), MSD (0.0024), and RMSE (0.0489). 

Its R-squared value of 0.9999 signifies near-perfect 

explanatory power. This model's exceptionally low error rates 

highlight its capability for precise HDI estimation, particularly 

in applications demanding high levels of accuracy. 

Incorporating Kriging into the GWR framework enhances 

spatial interpolation. The GWR Kriging model exhibits 

improved accuracy over standard GWR, with an MAB of 

0.2123, MSD of 0.0905, and RMSE of 0.3008. The R-squared 

value (0.9959) further confirms its ability to explain spatial 

patterns more effectively than GWR alone. 

The Bayesian GWR Conjugate Kriging model performs 

marginally better than GWR Kriging, as indicated by slightly 

lower error values (MAB: 0.2125, MSD: 0.0904, RMSE: 

0.3007) and an R-squared of 0.9959. While the performance 

gains over standard Kriging are minimal, the Bayesian 

framework ensures robustness through uncertainty 

quantification. 

The results underscore the strength of Bayesian approaches, 

particularly the Bayesian GWR Jeffreys, which significantly 

outperforms all other models across all error metrics. Both 

Kriging-enhanced models (GWR Kriging and Bayesian GWR 

Conjugate Kriging) show notable improvements over standard 

GWR, demonstrating the value of incorporating spatial 

interpolation techniques. However, the marginal differences 

between Bayesian Conjugate models and their non-Bayesian 

counterparts suggest that the choice of model should consider 

computational complexity, interpretability, and the specific 

requirements of spatial applications. 

These findings provide critical insights into the practical 

applicability of these spatial models in HDI estimation, 
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offering guidance for future research and policy-driven 

decision-making in spatial data analysis. 

Policy implications and strategic applications 

The spatial variation in coefficients estimated by the 

Bayesian GWR with Jeffreys' prior reveals substantial 

heterogeneity in the relative importance of education, life 

expectancy, and adjusted expenditure in influencing HDI 

across different regions. For example, in eastern provinces, the 

coefficient for years of schooling tends to be higher, 

suggesting that investments in education infrastructure and 

teacher deployment would yield more substantial 

improvements in HDI. In contrast, life expectancy strongly 

influences more urbanized or health-challenged regions, 

indicating a need to prioritize healthcare accessibility and 

quality. 

The coefficient maps generated in this study can serve as 

spatial guides for resource allocation to support targeted policy 

planning. Regions with high education coefficients should 

receive increased funding for school development, teacher 

incentives, and educational access programs. Meanwhile, 

regions with high life expectancy should be prioritized for 

public health campaigns, clinic accessibility, and 

maternal/child health services. Finally, social assistance 

programs or economic stimulus policies may be more 

appropriate in areas where adjusted expenditures have the 

most significant impact. 

To support this targeted approach, a simple allocation index 

formula is proposed to assist policymakers in resource 

distribution: 

Allocation Index 

= 𝛼 ⋅ 𝛽1(education) + 𝛽2(health) + 𝛽3(expenditure)
(14) 

where, 𝛽-values are region-specific coefficients derived from 

the Bayesian GWR model, and 𝛼 is a fiscal scaling factor. This 

formula allows data-driven budgeting tailored to regional 

responsiveness in HDI drivers. 

Overall, this model empowers policymakers to design 

spatially differentiated strategies, ensuring that limited 

resources are allocated where they produce the highest returns 

in HDI improvement. 

4. CONCLUSIONS

This study explores the application of BGWR with Kriging 

to enhance spatial predictions, focusing on human 

development indicators across Sumatra. The analysis 

integrates global regression, GWR, and Bayesian frameworks 

(Conjugate and Jeffreys priors) to account for spatial 

heterogeneity and assess predictive accuracy. 

Key Findings 

1) Spatial Variability and Predictive Insights

a. Significant disparities in human development

indicators are observed across Sumatra, with urban

centers such as Pekanbaru and Medan exhibiting

higher performance than rural areas like Nias and

Simeulue.

b. The spatial clustering of residuals confirms

heterogeneity, highlighting the necessity of spatially

adaptive models.

2) Model Comparisons

a. The Bayesian Jeffreys GWR model consistently

outperforms both the GWR and Bayesian Conjugate 

models, demonstrating superior predictive accuracy 

with the MAB: 0.0291, MSD: 0.0024, and RMSE: 

0.0489. Its R-squared value (0.9999) indicates an 

exceptional ability to explain nearly all variance in 

HDI values. 

b. Despite their strong performance, the GWR and

Bayesian Conjugate models exhibit residual spatial

autocorrelation, suggesting limitations in capturing

spatial dependencies.

3) Practical Implications

a. The Bayesian Jeffreys model’s flexibility and

precision make it the most suitable choice for

applications requiring high accuracy, such as

regional planning and policy-making. However, the

GWR model remains a computationally efficient

alternative for routine analyses.

b. Spatial prediction maps generated by all models

exhibit high similarity, reinforcing their reliability

for visualizing and interpreting HDI distributions.

4) Kriging Integration

The hybrid Bayesian GWR-Kriging approach effectively

addresses residual spatial autocorrelation in the GWR and 

Bayesian Conjugate models. However, the Bayesian Jeffreys 

model mitigates this issue, making additional Kriging 

unnecessary. 

Recommendations 

The study highlights the effectiveness of Bayesian Jeffreys 

priors in addressing geographical variability and enhancing 

prediction accuracy. This method serves as an effective 

instrument for precisely identifying inequities and directing 

interventions in spatial data contexts such as regional 

development planning. Future study should investigate the 

inclusion of further factors and the evaluation of different 

priors to further augment model robustness. The results 

advocate utilizing high-performing metropolitan areas as 

exemplars for focused interventions in undeveloped regions, 

so addressing disparities in human development throughout 

Sumatra. 
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