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The IT industry is revolutionized by cloud computing due to its flexible, scalable, and 

demand-based access to resources. However, choosing an appropriate cloud service 

becomes difficult due to the increase in adoption and diversity across pricing models, 

performance parameters, and Quality of Service (QoS) benchmarks. Stratus-provided 

algorithms for automatic selection of user-defined services tend to overlook user 

requirements and the cloud environment’s dynamic attributes. This paper proposes an 

Exponential Similarity Measure (ESM)-based approach for efficient selection of service 

provisioning. The model revises the service matching problem by applying an 

exponentially weighted similarity function which increases precision by placing more 

focus on the critical user-defined criteria and dampening the influence of less relevant 

parameters. The proposed ESM model integrates and multi criteria decision making 

techniques to validate and process for services. The model attains contextual and 

precision recommendations by minimizing user preference differences through high 

attribute exponential weighting. To assess performance, the model was compared with 

traditional selection-based algorithms and against real-life datasets of cloud services. It 

is shown in the experimental results that the application of the ESM approach leads to 

higher service selection accuracy, user preference adaptability, and scalability in multi-

faceted scenarios. This work introduces a new framework for supporting decision-

making in cloud environments which helps consumers make decisions and enables 

service providers to refine their offerings. The algorithms based on ESM provide 

powerful, configurable, and low-cost solutions for the sophisticated problems arising 

from the provisioning of services in the cloud environment. 

Keywords: 

multi-criteria decision making, service selection, 

cloud service provisioning, Exponential 

Similarity Measure (ESM), Quality of Service 
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1. INTRODUCTION

Cloud computing has revolutionized the way software is 

designed, deployed, and accessed, with Internet-Centric 

Software being a key concept in this paradigm. The cloud 

model offers three well- defined service delivery models: 

1) Platform as a Service (PaaS): Provides a platform for

application development and deployment. An

example is Google App Engine, which enables

developers to build and host applications without

managing the underlying infrastructure.

2) Infrastructure as a Service (IaaS): Offers virtualized

computing resources over the internet. Amazon EC2

(Elastic Compute Cloud) exemplifies this model,

providing scalable compute capacity. 

3) Software as a Service (SaaS): Delivers software

applications over the internet on a subscription basis.

Google Docs is a notable example, allowing users to

create, edit, and share documents online.

In addition to these service models, cloud computing 

encompasses four primary deployment models [1]: 

• Private Cloud: Exclusively used by a single

organization, offering greater control over security

and resources.

• Public Cloud: Hosted and managed by third-party

providers, making services accessible to multiple

organizations and individuals.

• Community Cloud: Shared infrastructure serving a
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specific group of organizations with common 

interests or regulatory requirements. 

• Hybrid Cloud: A combination of private and public 

clouds, allowing data and applications to be shared 

between them for optimized performance and 

scalability. 

A critical enabling technology for cloud computing is 

virtualization [2], which enhances scalability, security, and 

resource management while providing a shared computing 

environment. Virtualization allows multiple operating systems 

and applications to run on the same physical hardware, 

improving efficiency and resource utilization. Cloud 

computing presents numerous advantages, making it an 

attractive solution for various sectors, including academia, 

industry, government, and Small to Medium Enterprises 

(SMEs). These sectors leverage cloud computing for cost 

efficiency, flexibility, and enhanced collaboration. However, 

despite its benefits, cloud computing poses several challenges. 

As highlighted by Liaqat et al. [3], fundamental issues arise in 

legal, technical, and economic domains, affecting both users 

and cloud service providers. Addressing these concerns is 

crucial for the widespread adoption and long-term 

sustainability of cloud computing technologies. 

The selection of a Cloud Service Provider (CSP) is crucial 

for meeting an organization's IT requirements. Decision-

makers must evaluate CSPs based on operational needs, 

financial constraints, and long-term performance goals. 

Various service providers offer different cloud models, 

necessitating a structured approach for selection. The Analytic 

Hierarchy Process (AHP), as discussed by Kogias et al. [4], 

simplifies decision-making by assessing alternatives based on 

key criteria. This study identifies eight critical parameters for 

CSP selection, including cybersecurity, portability, 

interoperability, and compliance with data protection 

regulations. Data must be stored only as needed and in 

accordance with security policies. To avoid vendor lock-in, 

CSPs should allow seamless transition between services. 

Additionally, contractual and legal agreements ensure 

accountability, defining responsibilities and providing legal 

recourse in case of disputes. A well- informed selection 

process enhances security, compliance, flexibility, and 

operational efficiency. Cloud computing enhances 

productivity through advanced technologies and tools aligned 

with current needs. Data reliability is ensured by network 

backups, preventing data loss due to hardware or software 

failures. Standards and certifications establish trust and 

credibility among cloud service providers. Cloud services 

evolve over time, supported by a Service Roadmap that 

guarantees planned enhancements. Key factors in CSP [5] 

selection include vendor capabilities, human resources, and 

technical expertise. Reliability is ensured through 

connectivity, performance, and security, while Migration 

Support facilitates seamless data transfers between cloud 

environments [6]. 

Multi-criteria decision analysis (MCDA) helps in CSP [5] 

selection by ranking cloud parameters. The cosine 

maximization technique determines priority vectors, and a 

non-linear optimization model is used for pairwise 

comparisons. Security and transparency are critical concerns 

in cloud adoption. Trust [7] is a key factor in transferring 

computing infrastructure to the cloud, with challenges related 

to control, ownership [8], security, and compliance. Security 

controls in cloud computing align with traditional IT settings 

but vary based on SaaS, PaaS, and IaaS delivery models [9], 

distributing responsibility between cloud providers and 

customers. 

Adopting cloud computing involves a degree of control loss 

for customers, necessitating a "trust but verify" approach. 

Cloud providers must offer tools for security verification and 

monitoring to enhance transparency [10]. Different providers 

offer varied cloud services to meet customer requirements 

[11], but concerns such as security compliance and provider 

history remain critical [12]. The cloud services can be 

partitioned in the different classes using the different data 

mining techniques [13]. The Cloud Controls Matrix (CCM) 

improves transparency by guiding customers in assessing 

cloud security practices. The AHP helps prioritize selection 

criteria based on expert evaluation and institutional 

importance. The cosine maximization technique is employed 

for vector measurement and unique vector analysis, refining 

priority calculations. If the pairwise coefficient consistency 

meets required thresholds through an iterative process, 

adjustments are made using methods like geometric mean 

weight or arithmetic mean weight. In cases where 

inconsistencies arise, the pairwise comparison matrix is 

reallocated to ensure meaningful and accurate decision-

making. 

This section overview of CSP performance evaluation in 

cloud computing, but gives disproportionate attention to 

service delivery models (IaaS, PaaS, SaaS) and deployment 

models (public, private, hybrid, community) thinking these 

will help to build background context. Although such 

components add to the context, their explanation overshadows 

the focal area of the research which is CSP selection. The 

readers who have some working knowledge about the cloud 

technologies may find these sections redundant, while those 

who are interested in the frameworks discussing CSP decision-

making would find this section too shallow. In my opinion, 

these sections could remain in the introduction, but authors 

should try to explain them in only a few sentences so they can 

then address particular problems organizations face when 

selecting a CSP, including dealing with the multifaceted 

tangled provider service offerings, mapping provider 

capabilities to defined business or technical needs, and 

meeting regulatory and security compliance requirements. 

Also, the introduction does not take advantage of clearly 

stating the current CSP selection methodologies gaps and lack 

of an explicit motivation for introducing an Exponential 

Similarity Measure (ESM) CSP selection model. Focusing on 

the research problem, gaps, and the argument for the solution 

would strengthen the focus of the study while increase its 

relevance for researchers and practitioners interested in 

optimizing cloud services. 

 

1.1 Application allocation in hybrid and inter-cloud 

environments 

 

Allocating application components across multiple public 

clouds is a preferred strategy due to the diverse service 

offerings of cloud providers. Sidhu and Singh [8] presented 

that such allocation can yield significant cost savings while 

considering inter-cloud communication costs and delays, 

which impact application performance. Inter-cloud 

communication has recently shown high performance within 

cloud federations. Hybrid cloud models, combining public and 

private cloud resources, are widely adopted for service 

provisioning. In resource-constrained scenarios, network 

bandwidth availability and communication demands are key 
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factors in workflow scheduling across public and private 

infrastructures [10]. 

 

1.2 Role of networking in cloud computing performance 

 

Networking plays a crucial role in hybrid, single, and inter-

cloud service provisioning [11-14]. It is essential for the 

integrated management of network and computing resources 

to ensure high-performance, end-to-end service delivery. For 

instance, a research lab generating 100GB of raw data 

processes it using Amazon EC2 [15]. Each EC2 instance 

processes 20GB per hour, and with 10 virtual machines, the 

total processing time is 30 minutes. However, data 

transmission delays exceed an hour due to a 200 Mb/s network 

bandwidth, contributing to over 80% of total service delay in 

a round-trip scenario. This example illustrates that end-to-end 

cloud services depend on both cloud and network 

infrastructure, with Quality of Service (QoS) in networking 

being a key factor in overall cloud service performance. 

 

1.3 Advancements in networking for cloud computing 

 

Traditional networking systems provide data 

communication services but struggle to meet the growing 

demands of cloud computing. Cloud computing requires high-

performance, predictable network performance, integrating 

network and computing resources through application-driven 

network management [16, 17]. Conventional networks are 

built on rigid infrastructures with limited flexibility for 

reconfiguration. However, advancements in network 

virtualization, Software-Defined Networking (SDN), and 

Service-Oriented Architecture (SOA) have significantly 

enhanced network management for cloud service provisioning 

[18]. A key feature of future networking is network 

virtualization, which decouples network service provisioning 

from data transport infrastructure [19]. Network Function 

Virtualization (NFV) allows virtualized network functions, 

reducing dependence on dedicated data center hardware [20]. 

The European Telecommunications Standards Institute 

(ETSI), Industry Specification Group (ISG), NFV 

architectural framework provides a virtualized layer for 

managing storage, computing, and network resources [21]. A 

standard orchestrator ensures end-to-end service provisioning 

by coordinating virtual storage, computing, and network 

management [22-25]. These advancements in networking and 

virtualization bridge the gap between network and computing 

resources, enabling federated management for seamless 

composite service provisioning. Table 1 presents a 

comparative analysis of existing approaches. 

From the literature review, it is evident that a multi-

parameter-based approach is essential for selecting the most 

suitable cloud service provider. Additionally, factors such as 

security, technology, transparency, trustworthiness, business 

policies and governance, industry best practices, reliability, 

performance, service level agreements, financial stability, 

company profile, and migration support must be enhanced to 

develop a robust framework for cloud provider selection based 

on diverse user requirements. To address this complexity, the 

Cloud-based Hierarchy Process (CHP) is introduced as a 

decision-making technique that effectively resolves intricate 

problems involving multiple subjective and varied choices. 

In addition, the existing approaches often lack the ability to 

handle qualitative parameters and their relative importance 

effectively, especially in cases where user needs change 

rapidly or criteria are conflicting. The absence of an adaptive 

rational weighing mechanism that discriminates among 

fundamental components aggravate the precision 

shortcomings of the existing approaches even more. This 

underlines the challenge of having a precise, flexible, and 

robust approach which is mathematically formulated to 

adaptively assess the CSPs under multiple criteria. To address 

this defined gap, this work develops a model based on the 

ESM for the selection of cloud services. With the ESM 

approach, precision in decisions is achieved through the 

assignment of exponential weights to each service attribute 

based on users’ priorities, therefore, ensuring that key 

parameters influence selection outcomes disproportionately. 

This vastly improves the selection process and mitigates the 

issues posed by existing frameworks through more 

sophisticated alignment and tuning. This proposed framework 

enhances the precision of the context-aware provisioning of 

cloud services decision support systems. This approach 

employs pairwise comparisons to establish priorities, 

facilitating optimal decision-making. The proposed system 

offers several key contributions, as outlined below: Cloud 

Vendor Selection, ESM, Expert-Driven Evaluation. The 

structure of this work is as follows: Section 2 presents a 

comprehensive analysis of existing methodologies; Section 3 

discusses the proposed. 

ESM model in detail, Section 4 provides numerical 

outcomes related to cloud service provisioning, Section 5 

summarizes the research findings. 

 

Table 1. Comparison of various existing approaches with their merits and demerits 

 
References Methods/Approach Merit Demerit 

Akter et al. 

[19] 

Non-linear constraint 

optimization approaches. 

Systematic, trusted, transparent and 

qualitative information. rank the 

performance scores. 

Representation with a single value, subjective 

information, scalability and transparent 

problem, and uncertainty are solutions. The 

calculation is difficult. 

Andrikopoulos 

et al. [21] 

QoS, Trust, reputation and 

feedback technique. 

CSP is selected that based on QoS 

parameters like performance, availability, 

reliability and serviceability, having 

consumer’s feedback and recommendations. 

Problems invalidation, cost and resource 

constraints, scalability and dependability. 

Kou et al. [17] 
An iterative cosine 

maximization technique. 

Flexible to compute the prioritization 

vector. 
The consistency index needs to be improved. 

Yao and Lu 

[23] 

Round-robin load balancer 

and heuristic technique to find 

the approximate result. 

Data centres' overloading is reduced and 

lowers the cost, improving the performance 

in service. 

The initial cost of implementing the data centre 

is more significant. In the selection of routes, 

the processing time is high. The connection 

will fail when the timestamp has elapsed in the 

round-robin technique. 

1645



2. METHODS AND ANALYSIS 

 

This section provides a detailed analysis of the proposed 

exponential similarity metrics for provisioning the suitable 

cloud service provisioning process. The proposed model is 

designed to handle the multi-objective constraints and provide 

an appropriate framework for cloud providers. A multi-

parameter-based approach is essential for selecting the optimal 

cloud service provider. Key factors such as security, 

technology, transparency, trustworthiness, business policies, 

reliability, performance, SLAs, and migration support must be 

considered to develop a structured selection framework. The 

CHP is introduced as a decision- making technique to handle 

complex, subjective choices. It employs pairwise comparisons 

to establish priorities, ensuring consistency in evaluation. The 

final phase of CHP integrates weight criteria and optional 

scores to compute a final score, synthesizing outcomes for 

optimal decision- making. It is proved with the following 

analysis. 

Definition 1: Let A=(aij)n×n be the square matrix that is 

mentioned as the positive reciprocal if aij>0, and aij=
1

𝑎𝑗𝑖
 is 

expressed as in Eq. (1): 
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 (1) 

 

Definition 2: The reciprocal matrix A=(aij)n×n is said to be 

as per the existing model is consistent perfectly when 

aij=aikakj∀i, 𝑗, 𝑘 ∈{1,2,3, …, 𝑛}. 

Definition 3: The similarity measure among wo vectors vi 

and vj is denoted SM (vi,vj)→[0,1], whose domain is V2. Here, 

V specifies the n-dimensional vector space and it holds the 

below valuables: 

1) S(avi, vj)=1; ∀v𝑖 ∈ 𝑉. This has the reflexive property. 

2) S(avi, vj)=0; ∀v𝑖 , v𝑗 ∈ 𝑉, when vi and vj is not similar 

vectors to all; 

3) SM(vi, vj)<SM(vi, vk), ∀v𝑖 , v𝑗 , v𝑘 ∈ 𝑉, when vi is more 

like to vk, thus it is same as vj. Then, the similarity 

measure has the triangle property of metrics. 

ESM: The objective optimal function is used to obtain the 

exponential similarity measures of the consistency index. The 

C* equals the Pairwise Comparison Matrix (PCM) order when 

the PCM is consistent. On the other hand, this relies on the 

ranges from 0 and 1. The consistency index of ESM makes the 

PCM's sizes available, i.e., 𝐸𝑆𝐼 = 𝐶∗/𝑛. 

The matrix is consistent perfectly when the CCI is 1. The 

CCI's lower value represents that the PCM has a familiar 

constant. Commonly, if the CCI is less than 90%, the CCI 

needs to be more than 90%. Moreover, the PCM’s consistency 

is not improved using the existing cosine similarity method. 

Generally, the PCM's consistency needs to be enhanced using 

the process in the recursive technique for the entries of the 

revised judgment matrix till one does not attain the required 

accuracies for the consistency of the judgment matrix. The 

weighted geometric mean method or arithmetic mean is 

selected to enhance consistency. 

 

2.1 Theoretical proof of exponential similarity measures 

 

The memory-based collaborative filtering algorithm is 

proposed that accepts all similarity formulas for the user to 

service provisioning calculation. The selection process is 

predicted using any similarity measure by this algorithm for 

the specific service provider. This algorithm 1 compares the 

similarity measures for Root Mean Square Error (RMSE) 

outcomes for selection and user similarity. The selections are 

predicted with the help of user similarity. The similarity 

between service selection and users are identified using 

different measures. One of the approaches is the ESM which 

is used to compute the angle among two space vectors. Based 

on the study conducted by Esposito et al. [25], Pearson 

introduced the normalized factor of the similarity measure 

where Manhattan and Euclidean are the other similarity 

measures [26, 27]. The Manhattan distance is the sum of 

vertical and horizontal distances on the points between points. 

The theoretical similarity measures [28] like the replacements 

to compute the RMSE [29, 30] for the similarity function and 

every similarity measure’s results are compared. 

 

Algorithm 1 Similarity measure 

Input: Selection matrix where the column specifies the user 

and the row defines the similarity metrics for the available 

users. 

Output: Filled selection Matrix 

1. For all vectors 𝑢  with the corresponding index over the 

matrix, do 

2. Compute array-based sum and div based on the number of 

empty services and initiate the selection process using the 

matrix; 

3. Measure the array based on the number of available users 

with size 𝑁 for measuring the similarity of all the users and 

instantiate with zero’s (include -1 with index S); 

4. for all vector v in U along with the corresponding index, do 

5. Compute the higher-order mean value of all the similarity; 

//𝑆(𝑣𝑖𝑛𝑑𝑒𝑥)=𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑢, 𝑣); 
6. Declare the similar values (highest 𝑆 values) and the most 

similar values of 𝑆; 

7. for all the empty elements index of 𝑢 in the index, do 

8. 𝑖=0; 

9. for 𝑠=0, …, |𝑆𝐾| − 1 do 

10. user=vector U(Sindex (s)) 

11. selection=user (index); //if not empty else continue with 

the looping process; 

12. 𝑠𝑢𝑚 (𝑖) = 𝑠𝑢𝑚 (𝑖) + 𝑆𝐾(𝑠) ∗ 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛; 
13. 𝑑𝑖𝑣 (𝑖) = 𝑑𝑖𝑣 (𝑖) + 𝑆𝑘(𝑠); 
14. 𝑢(𝑖𝑛𝑑𝑒𝑥) = 𝑠𝑢𝑚 (𝑖)𝑖𝑣 (𝑖) 
15. 𝑖 = 𝑖 + 1 

 

The introduction of the ESM is used to measure the 

exponential distance that manages the vectors containing the 

empty elements. The given Eq. (2) describes the ESM as: 

 
| |

2

1

( ( ) ( ))

( , )

j

i j

item

u item u item

f

i jExp u u e

=

−





=  

(2) 

 

The both service similarity weight has considered for 

recommender list and weight of QoS parameters has utilized 

for ESM calculation. Here, 0 ≤ 𝐸𝑥𝑝(𝑢𝑖, 𝑢𝑗) ≤ 1 equals the 
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difference between maximal obtainable and minimal 

obtainable ratings. The user needs to provide and |𝐼| represent 

the items number. However, 𝑓 means the elements' numbers 

that are rated using both users, and the similarity needs to be 

identified between intersections of filled elements. Figure 1 

and Table 2 represent the similarities smoothly as smooth 

functions are computed to generate better coefficients like the 

similarity measure. 

The two vectors' distances need to be measured in the rating 

matrix such as way that the intersection of filled elements of 

two user’s vectors like filling the elements using both the user 

vectors to identify the similarity that is compared to find the 

similarities and the similarity measure's exponential natures 

generates the coefficient of similarity for the smooth function. 

The similarity measure has the issues that do not have the 

balanced nature that results from the various intersection of 

filled elements among vectors that create the biased similarity 

coefficients. It is represented in Figure 1, where user one and 

user three are considered the same users with a similarity 

coefficient. The two users are not assumed as completely 

identical since the two users have one filled element alone in 

general, and the user 3 has another filled element that is not 

intersected with user 1’s filled elements. Whereas, since many 

intersecting filled elements are nearer in value, user three and 

user 5 are the same users in the real world. Hence user 3's 

empty element is 0.89 when considering the similar-users are 

not the optimum rating. Another novel similarity measure is 

introduced to solve this issue the ESMs provide importance to 

the number of filled elements among two vectors. Eq. (3) is 

used in Figure 1. Since user three does not include the ratings 

of similar items like user one, which provides fewer 

intersecting elements, user one and user 3 are entirely 

dissimilar. The similarity measure of novel normalized 

exponential is represented by Eq. (3). Multi-criteria decision-

making methods ensure accurate and consistent weighting, 

which is then used for selecting cloud service providers (see 

Table 3). 
 

 
 

Figure 1. Exponential similarity function 
 

Table 2. Exponential similarity measure 

 
Item No. User 1 User 2 User 3 User 4 User 5 

Item 1 5 4 5 4 4 

Item 2  2 4  4 

Item 3 1   5 1 

Item 4  1 3  3 

 

Table 3. Service providers 

 
Features Amazon Microsoft Azure Google VM Ware Adobe 

Technological & service roadmap ✓ ✓ ✓ ✓ ✓ 

Business policies & data governance ✓ ✓ ✓ ✓ ✓ 

Certifications & standard ✓ ✓ ✓ ✓ ✓ 

Service dependencies and partnership ✓ ✓ ✓ ✓ ✓ 

SLA & commercial ✓ ✓ ✓ ✓ ✓ 

Reliability & performance ✓ ✓ ✓ ✓ ✓ 

Support lock & vendor ✓ ✓ ✓ ✓ ✓ 

Business health & company profile ✓ ✓ ✓ ✓ ✓ 

 

𝐸𝑥𝑝 − 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑢𝑖 , 𝑢𝑗) =
𝑒

√∑ (𝑢𝑖(𝑖𝑡𝑒𝑚)−𝑢𝑗(𝑖𝑡𝑒𝑚))
2|𝑗|

𝑖𝑡𝑒𝑚=1

∅√𝑓

|𝑈𝑖|
𝑓

 (3) 

 

Here ∅  is equalized to the difference between maximal 

obtainable and minimal obtainable ratings (see Table 4 and 

Figure 2). The user needs to provide and |𝐼|  represent the 

items number. However, f means the elements' numbers that 

are rated using both users, and the similarity needs to be 

identified between intersections of filled elements. |𝑈𝑖| 

represents the number of filled elements for selecting the 

present vector user. The theoretical proof of the similarity 

measure is given below: 

Theorem 1: Let �̂� ∗= (�̂� ∗ 1. 𝜔 ∗ 2. �̂� ∗ 3. … , �̂� ∗ 𝑛 ) 

specifies the optimal solution, let C* represents then, 

 

�̂� ∗=
∑ 𝑏𝑖𝑗
𝑛
𝑗

√∑ (∑ 𝑏𝑘𝑗
2𝑛

𝑗 )𝑛
𝑘=1

𝑖 = 1,2,3. . . 𝑛 
(4) 

 

Table 4. RMSE based similarity measure 

 
Similarity Techniques K=2 K=5 K=10 K=20 K=30 K=100 Accuracy 

Manhattan 1.3440 1.2200 1.1494 1.0973 1.0749 1.0285 98.60 

Euclidean 1.3881 1.2441 1.1662 1.1116 1.0877 1.0366 97.30 

Jaccard 1.0924 1.0263 0.9964 0.9812 0.9762 0.9733 96.80 

Cosine 1.0725 1.0142 0.9886 0.9752 0.9719 0.9714 99.30 

Pearson 1.0225 0.9780 0.9618 0.9547 0.9537 0.9575 97.80 

Normalized 1.0195 0.9647 0.9391 0.9273 0.9259 0.9352 97.20 

Exponential similarities measure 0.9573 0.9399 0.9370 0.9411 0.9448 0.9591 98.90 
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Figure 2. Similarity measure comparison 

 

The objective function with optimal value is expressed by 

Eq. (5): 

 

* 2 2

1 1

( )
n n

ij

k j

C b
= =

=    (5) 

 

where, 2

1

ˆ ˆ
n

k

k

  
=

=  , 𝑖=1,2,3, …, n. 

Let, 𝛽∗ = √∑ 𝜔𝑘
2𝑛

𝑘=1 ≥0. 

It leads in the form in Eq. (6) as, 

 
* * *ˆ
i i  =  (6) 

 

The system of equations is used to solve similarity of 

exponential measure. Here, β* is the coefficient of weighted 

assignments, and the assignment weight is the partial 

exponential normalization that constrains the obtained weights 

for optimizing the similar exponential measure. The 

coefficient of weight assignment represents the reciprocal of 

sum of the distinct maximization optimum solution. 

 

* * *

1 1

ˆ
n n

i

i i

  
= =

=   (7) 

 

∑𝜔𝑖
∗ = 1

𝑛

𝑖=1

 

 

𝛽∗ =
1

∑ �̂�𝑦
∗𝑛

𝑗=1

 (8) 

 

The adjusted priority vector is given by Eq. (10). 

 

𝜔𝑖
∗ = �̂�𝑖

∗𝛽∗ = �̂�𝑖
∗

1

∑ �̂�𝑦
∗𝑛

𝑗=1

 (9) 

Theorem 2: Let PCM A=(aij)n*n is consistent perfectly 

where the matrix method is derived precisely with the optimal 

objective function value C*= 𝑛 , and the properties 𝜔𝑗
∗ =

1

∑ 𝑎𝑖𝑗
𝑛
𝑖=1

, where, j = 1, 2, 3, …, n. The PCM of matrix A intends 

to form the matrix as in Eq. (10): 

 

𝐴 =

(

 
 

𝜔1
𝜔1

𝜔1
𝜔1

𝜔1
𝜔1

⋮ ⋮ ⋮
𝜔𝑛
𝜔1

𝜔𝑛
𝜔2

𝜔𝑛
𝜔𝑛)

 
 

 (10) 

 

The similarity is attained with the priority vector 𝜔 and the 

jth column vector with matrix A. It is expressed as in Eq. (11). 

 

𝐶𝑗 = 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑀𝑎𝑡𝑟𝑖𝑥(𝜔, 𝑎𝑗) 

=
∑ 𝜔𝑘𝑎𝑘𝑗
𝑛
𝑘=1

√∑ 𝜔𝑘
2𝑛

𝑘=1 √∑ 𝑎𝑘𝑗
2𝑛

𝑘=1

 (11) 

 

The values of j are set as 1,2, …, n where the priority vector 

𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)𝑇 and the PCM column entry is provided 

as 𝑎𝑗 = (𝑎1𝑗 , … , 𝑎𝑛𝑗)𝑇. The corresponding PCM matrix value 

with the priority vector is, 𝑎𝑖𝑗 =
𝜔𝑖

𝜔𝑗
, where for all 𝑗=1,2, …, 𝑛 

as in Eq. (12): 

 

𝐶𝑗 = 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑀𝑎𝑡𝑟𝑖𝑥(𝜔, 𝑎𝑗) 

=

∑
𝜔𝑘
2

𝜔𝑓
𝑛
𝑘=1

√∑ 𝜔𝑘
2𝑛

𝑘=1 √∑
𝜔𝑘
2

𝜔𝑗
𝑛
𝑘=1

= 1 (12) 

 

The matrix is consistent ideally iff the similarity measure 

for the priority vector, and matrix-vector is equal to 1. Else, 

the matrix is not constant ideally. It helps to enhance the 
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similarity measure among the priority vector and pairwise 

comparison matrix. 

Figure 3 demonstrates the general architecture of the 

process for choosing a cloud service provider, illustrating a 

focus on users’ needs and preference details as a primary 

structure. All models begin with the identification of 

requirements which serves as the foundation of the entire 

thought process. Requirements typically consist of 

expectations: functional, technical, non-functional in terms of 

cost, security, performance, scale, and compliance needs. 

After this, users state their criteria preferences which delineate 

the ranking of parameters in-terms of importance for their 

cloud service. frameworks. The next step deals with the 

prioritization of criteria that is among the most crucial stages 

where each criterion is given relative focus in terms of 

importance. The multi-criteria decision-making approaches to 

criteria weighting because they guarantee accuracy and 

consistency in weighting allocation. Following the weighted 

criteria, the cloud service provider selection is carried out 

(Table 3). This entails assessing available CSPs against the 

defined criteria to ascertain where the specific user’s priorities 

and limitations meet the greatest value as the user’s cloud 

service provider. The model captures some feedback loops 

which are cycles whereby the user feedback or response is 

solicited after interested treatments have been applied. With 

this, the users can evaluate the effectiveness of their chosen 

provider and improve the selection process in the future. The 

feedback makes sure that the model captures something 

measurable and provides responsiveness to the user, 

technology, or fluctuations in service level changes. The 

Figure 3 highlights a self-directed and self-altering process in 

decision-making of a model where selection of the cloud 

service is not a singular action, but a repetitive loop driven by 

use and ever-evolving needs. This is excessive when 

attempting to improve accuracy in decision-making, increase 

cloud adoption satisfaction in the long run, and sustain 

transparency. 

 

 
 

Figure 3. Cloud service provider frameworks 

 

2.2 Cloud selection process 

 

The data needs to be analyzed using the CHP model. The 

company's business profile needs to be concerned with 

selecting the cloud criteria such as security, technologies, 

transparency, trustworthiness, business policies and 

governance, best industry standards, reliability and 

performance, migration support, and service level agreements. 

There are eight parameters (Figure 4) called service roadmap, 

technologies, business policies, governance, security, 

choosing the best industry standards and certifications, 

services partnership and services dependency, reliability and 

performance, service level agreements, business and company 

profile and migration support are represented in Table 5 for 

optimizing the cloud selection. 

 

 
 

Figure 4. Comparison of total similarity measure 

1649



Table 5. Total similarity measure based on cloud services 

 

Cloud 

Services 

Experiment 

Exp1-Total 

Similarity 

Measure 

Exp2-Total 

Similarity 

Measure 

Exp3-Total 

Similarity 

Measure 

Linode 0.465 0.45 0.65 

Rackspace 0.0 0.0 0.0 

Google 0.95 0.97 1.1 

HP 0.50 0.50 0.50 

Soft layer 0.49 0.49 0.55 

City-cloud 0.60 0.59 0.52 

Amazon 0.0 0.81 0.82 

Joyent 0.0 0.0 0.35 

 

 

3. NUMERICAL ANALYSIS AND DISCUSSION 
 

The user-provided PCM chooses the priority vector using 

the exponential similarity measures. The IT experts and the 

academicians help to assign the weightage of the grouped 

attributes. Here, MATLAB 2020a is used to obtain the results. 

This program comprises the computation of the standard 

matrix, the weights. The weights for the attributes are adjusted 

by using the coefficient of weight assignment. The coefficient 

of weight assignment is depicted as the reciprocal of the sum 

of weights (attributes). The normalized matrix B and the final 

weighted evaluation are presented in Tables 6 and 7. 
 

𝛽∗ =
1

∑ �̂�𝑦
∗𝑛

𝑗=1

 (13) 

 

A weight assignment coefficient’s computational value is 

given below: 
 

* 0.0301 =  (14) 

 

CMM is achieved using the optimal objective function with 

the square root of the sum of squares of the PCM's normal 

weight. 
 

* 2 2

1 1

( )
n n

ij

i j

C b
= =

=    (15) 

 

The objective function’s computational value is given 

below. 
 

* 7.2429C =  (16) 
 

Exponential Similarity Index (ESI): the average optimal 

objective function needs to obtain the exponential similarity 

index. 
 

*C
ESI

n
=  (17) 

 

The proposed method has the outcomes used to evaluate the 

priority vector is efficient, simple, flexible, and accurate from 

the PCM. The exponential similarity measures the present 

PCM’s consistency. The given PCM’s computational ESI 

shows 90.5367%. The high level of consistency is represented 

in the Tables 6 and 7. The PCM's observed data is valid. 

Figures 5 and 6 illustrate the cloud parameters with their 

computational weights and preferences. The consistency of 

matrix A ensures the reliability of the Cloud Service Model 

(CSM), which ranks alternatives CS1 to CS10 (refer to Tables 

6 and 7). Different methods yield varied priority vectors, but 

their relative superiority remains unaddressed in recent 

studies. However, this analysis confirms that the proposed 

model demonstrates better performance compared to other 

approaches in cloud service provisioning. 

In an evaluation Table 8, the performance of AHP used in 

five research studies is compared against a proposed Cosine 

Similarity-based method on eight criteria concerning CSP 

(Cloud Service Provider) selection. The criteria are Weight 

Sensitivity, Handling of Qualitative Criteria, Scalability, User 

Involvement, Consistency Checking, Adaptability, 

Computational Complexity, and Overall Accuracy of the 

Decision. Ratings are given from 1 to 5, with 1 being low and 

5 high. AHP-based studies [31-35] demonstrated high scores 

on weight sensitivity and consistency checking, scoring 

predominantly in the 4-5 range. 

According to Figure 7, various QoS parameters are valuated 

in comparative analysis. User Involvement and Adaptability 

also show this differing dependable nature suggesting the need 

for expert input and inflexible response to change. In contrast, 

the proposed method of Cosine Similarity shows marked 

improvements in Scalability (5.0), Computational Complexity 

(5.0), and Adaptability (5.0). This indicates possible broad 

automated evaluation for low oversights around the system. It 

also does fairly well in User Involvement (4.6) and Overall 

Decision Accuracy (4.5), indicating strong performance in 

practical applications. In addition, it does not perform as well 

in Weight Sensitivity (4.5) and Qualitative Criteria Handling 

(4.3) when compared to AHP, which shows some 

compromises in the logic-based decision-making. Besting 

AHP in efficiency of execution and scalability of workload, 

the Table 7 shows the Cosine Similarity-based approach’s 

advantage complements the AHP’s framework of structured 

and systematic reliability of decision-making. 

 

Table 6. Total similarity measure 
 

Cloud Services Total Measure 

CS1 0.7 

CS2 0.0 

CS3 1.0 

CS4 0.59 

CS5 0.43 

CS6 0.74 

CS7 0.89 

CS8 0.62 

CS9 0.35 

CS10 0.77 

 
 

Table 7. Cloud service selection based on ranking 
 

Cloud 

Services 

CS1 

(Joyent) 

CS2 

(Amazon 

CS3 (City 

Cloud) 

CS4 (Soft 

Layer) 

CS5 

(HP) 

CS6 

(Century 

Link) 

CS7 

(Rackspace) 

CS8 

(Google) 

CS9 

(Linode) 

CS10 

(Azure) 

Total 

measure 
8 2 10 5 4 7 10 6 3 9 
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Figure 5. Total similarity measure 

 

 
 

Figure 6. Total similarity measure based on ranking 
 

Table 8. Comparative analysis between AHP, Cosine similarity of proposed approach 
 

Criteria Khan et al. [31] 
Xiahou et al. 

[32] 

Akbar et al. 

[33] 

Wu and Chen 

[34] 
Rahimi et al. [35] 

Cosine 

Similarity 

(Proposed) 

Weight Sensitivity 5 4 5 4 4 4.5 

Qualitative Criteria 

Handling 
5 4 5 4 4 4.3 

Scalability 3 3 4 3 4 5 

User Involvement 4 4 4 3 3 4.6 

Consistency Checking 5 4 5 4 4 5 

Adaptability 3 3 4 3 4 5 

Computational 

Complexity 
2 3 2 3 3 3 

Overall Decision 

Accuracy 
5 4 5 4 4 4.5 
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Figure 7. Comparative analysis between AHP and proposed cosine similarity approach 

 

 

4. CONCLUSION 

 

This work describes a dynamic service selection using 

similarity-based techniques. The seven different similarity 

techniques are applied for accurate process of 

recommendation. The selection of the cloud section 

parameters is identified in the proposed model. The 

exponential similarity measures are applied, and this is 

considered the non-linear constraint optimization approach in 

the selection of cloud for estimating the reliable priority 

vectors. Some cloud parameters such as certifications and 

standards, technologies, problems in security, service level 

agreement (SLA), policies, reliability, performance and so on 

are the key parameters for choosing the services in the cloud. 

The technologies priority and service roadmap, data 

governance, and data security are represented in the outcomes, 

considered essential parameters when the cloud is selected. 

The IT experts provide the data gathered to construct the 

pairwise compared matrix. The experimental results compute 

the exponential consistency index, which shows the weights 

assigned at the high level of agreements. The evaluation has 

done with various AHP processing algorithms where proposed 

similarity-based techniques obtain 98.90% accuracy which is 

higher than all conventional approaches. The attributes 

weightage is related to the selection criteria of the cloud, which 

is ranked. The exponential similarity transformation method 

provides complete performance, an excellent single 

parametric model. The necessity of the technique is discussed 

to uplift the customers for adopting cloud computing and assist 

in choosing the correct cloud service providers having no 

security compromises for both parties. Cloud provider 

provides the transparency that is encouraged. The integration 

of machine learning algorithm for service recommendation 

based on QoS parameters will be the future work for this 

system. 
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