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The problem of balancing a two-wheeled bicycle robot is a problem that attracts many 

researchers. The bicycle robot model is usually a nonlinear model. However, to simplify 

the control design process, the bicycle robot model is often linearized into a linear 

model. The design of a bicycle robot balance controller using a robust control algorithm, 

based on the linear model of the bicycle robot, often results in a high-order controller 

(original controller). A high-order controller will make the control program code 

complex and may reduce the quality of the control system. To make the controller 

simpler, the paper applied the model order reduction algorithm (ORA) to determine the 

low-order robust controllers. Through comparison and analysis of the low-order 

controllers, the paper selected the second-order controller as the most suitable controller 

to replace the original controller. At the same time, the paper also evaluates the 

efficiency of the control system when using a second-order controller in the case of a 

bicycle robot model that is a nonlinear model and a linear model, thereby determining 

the application limits of the second-order controller. 
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1. INTRODUCTION

The most difficult and fascinating issue in bicycle robot 

research is maintaining the robot's ability to balance. Bicycle 

robot is one of the types of robots that many researchers are 

interested in this field. There are many methods to solve the 

problem of balancing bicycle robots, such as the flywheel 

balancing method [1-13], the centrifugal force balancing 

method [14, 15], and the center of gravity shifting balancing 

method [16]. In this paper, we focus on the flywheel balancing 

bicycle robot model based on the inverted pendulum principle, 

with the main characteristics that the flywheel usually rotates 

at low speed and consumes little energy, and the robot has 

stable balance when standing still and moving. 

Because the operating condition of a bicycle robot is 

affected by several uncertain factors suchlike usage load, 

outside force effect, etc., in most studies on bicycle robot 

modeling, the bicycle robot model is considered a tentative 

model. There are many control algorithms proposed to design 

the bicycle robot balance controller, such as the Proportional 

Integral Derivative (PID) algorithm [1, 7, 8], Proportional 

Derivative (PD) algorithm [10], Linear–Quadratic–Gaussian 

(LQG) [4] and Model Predictive Control (MPC) control [2, 3, 

9]. However, suppose the robot model is considered as an 

uncertain model. In that case, the sustainable and optimally 

stable control algorithm is regarded as the most suitable for the 

robot balance controller design problem [5, 12, 13]. 

Controllers designed based on robust control algorithms are 

often high-order. High-order controllers often lead to complex 

control program codes that increase the processing time of the 

controller, which in turn increases the response time of the 

control system. Slow response time of the control system can 

cause the bicycle robot to oscillate more strongly or the robot 

to lose stability. Therefore, along with the problem of 

designing a robust controller, there is often the problem of 

determining a low-order robust controller that can replace the 

high-order controller to simultaneously satisfy the two 

requirements of robust control and simple control. The first 

way is to simplify the controller right during the design of the 

robust controller, in this way, after the design process, the 

authors will get the low-order stable controller [5]. The second 

way is to apply the order reduction algorithm (ORA) to 

simplify the controller obtained from the controller design 

process based on the robust control algorithm [12-14]. 

According to many studies, the first way has higher 

computational complexity than the second way [12-14]. At the 

same time, in the first way, when the order of the low-order 

controller is chosen unreasonably, it may make the problem of 

finding the controller parameters ineffective. With the second 

way, the low-order controller will always be defined in all 

cases. However, to find a suitable low-order controller, it is 

necessary to compare and evaluate the low-order controllers 
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obtained by the order reduction method. Previous studies [5, 

6, 12-14] often only compare the low-order controllers 

obtained by a specific order reduction algorithm. But in fact, 

there are many different order reduction algorithms, so when 

applying these algorithms to the order reduction problem, 

high-order controllers will obtain low-order controllers. 

Therefore, it is necessary to compare and evaluate the low-

order controllers obtained from different order reduction 

algorithms to find the most suitable low-order controller. At 

the same time, in previous studies [5, 6, 12-14], the influence 

of linearization of the bicycle robot model on the stability of 

the control system when using a strong low-order controller 

has not been studied and evaluated. Therefore, in this study, 

the author will focus on the problem of determining the most 

suitable low-order controller to replace the high-order 

controller and at the same time consider and evaluate the effect 

of linearizing the bicycle robot model on the stability of the 

control system when using the low-order controller. 

The paper is organized as follows: The introduction is 

presented in Section 1; Section 2 introduces the kinematic 

model of the bicycle robot; the design process of a robust 

controller for the robotic bicycle balance system is presented 

in Section 3; Section 4 presents the order reduction results of 

the high-order robust controller; Section 5 presents the 

conclusion. 

 

 

2. DYNAMIC MODEL OF BICYCLE ROBOT 

MODELING 

 

A bicycle robot was based on a typical bicycle to test the 

control algorithms [5, 6]. A flywheel system is arranged on the 

robot to help it maintain an upright stand. When the flywheel 

system (which is rotating around the Y-axis at a constant 

speed) is driven around the Z-axis with an offset angle , the 

flywheel system generates a torque that opposes the gravity 

torque. When the robot deviates from the vertical position with 

an inclined angle , a moment of gravity will cause the robot 

to fall. A DC motor drives the flywheel to rotate around the Z 

axis. The task is to design a controller to change the voltage 

supplied to the motor, thereby helping the robot maintain a 

state of balance, i.e., the robot tilt angle  always approaches 

zero. Figure 1 describes the details of the robot as follows: 

 

 
(a) Bicycle robot model 

 
(b) Diagram of reference coordinates of bicycle robot 

 

Figure 1. Detailed model and projection model of bicycle 

robot [5, 6] 

The dimensions of the robot are described in references [5, 

6], where the robot uses a DC motor to rotate the flywheel. 

Based on the description of the kinematics of the bicycle 

robot using the Lagrange equation, the authors in references 

[5, 6] have built a mathematical model of the robot, with the 

following results: 
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where, i is the current and U is the voltage of the DC motor. 

From Eqs. (1) and (2), it can be seen that the dynamic model 

of the robot is a nonlinear model. Table 1 shows the technical 

specifications of the robot model.  

 

Table 1. The technical specifications of the robot model 

 
Parameter Value Unit 

𝐼𝑝 0.215926 Kg.m2 

𝐼𝑟 0.215926 Kg.m2 

𝐼𝑏 27.584 Kg.m2 

ℎ𝑏 0.8 m 

ℎ𝑓 0.86 m 

𝑚𝑏 43.1 Kg 

𝑚𝑓 8.1 Kg 

𝐾𝑒 0.215926 V.s/Rad 

𝐾𝑚 0.215926 N.m/A 

𝐵𝑚 0.000253 Kg.2/s 

𝑅 0.41  

𝐿 0.0006 H 

𝑔 9.81 m/s2 

 

The robot's equilibrium position is the position with the tilt 

angle =0. The task of the balance control system is to always 

maintain the robot's tilt angle at the robot's equilibrium 

position. In fact, to ensure that the balance control system 

works well, the robot's tilt angle is only allowed to fluctuate 

around the equilibrium position with a small value (𝜃 ≤ 1. 5°). 

If the robot's tilt angle is too large, the balance control system 

cannot maintain the robot's equilibrium (because the moment 

of the flywheel system is not enough to balance the moment of 

the robot's gravity). Therefore, to linearize Eqs. (1) and (2), we 

perform linearization around the robot's equilibrium position 

(𝜃 = 𝜑 ≤ 1. 5°, 𝑠𝑖𝑛 𝜃 = 𝑠𝑖𝑛 𝜑 ≈ 0), the results obtained are as 

follows [5, 6]: 
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Let 𝑥 = [

𝜃 = 𝑥1

�̇� = 𝑥
�̇� = 𝑥3

𝑖 = 𝑥4

] be the state variable, 𝑦 = 𝜃, 𝑢 = 𝑈. 

The authors have the following equations of state describing 

the bicycle robot: 
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= +
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The matrices of the state Eq. (5) have the following form [5, 

6]: 
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Using the specifications of Table 1 to determine the 

parameters of the matrices of the state Eq. (5), the authors get 

the following results [5, 6]: 
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Converting the state model of the robot to the transfer 

function model, the authors have the result [5, 6]: 
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A control system for the bicycle robot based on the robust 

control structure diagram is designed as shown in Figure 2. 

 

 
 

Figure 2. Block diagram describing the control system for 

the bicycle robot 

Design a robust controller according to references [6, 17], 

specifically as follows: 

Step 1: The first S object is formatted 2 by W2 and W2 to 

achieve the required open-loop form. (W1, W2 are the pre-

compensator and post-compensator respectively) 𝐒s =
𝐖2𝐒𝐖1. 

With 𝑾𝟏(𝑠) = 𝑲
𝑠+𝛼1

𝑠+𝛽1
 and 𝑾2(𝑠) = 𝑲

𝑠+𝛼1

𝑠+𝛽1
. 

After selecting W1 and W2, the 𝛾𝑜𝑝𝑡  value is calculated 

using to the following formula (The details of the calculation 

process 𝛾𝑜𝑝𝑡 are shown in the document [17]): 
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where, Z and X are determined from the following Riccati 

equation: 
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In which 
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Step 2: Select 𝜀 < 𝜀𝑜𝑝𝑡 = 𝛾𝑜𝑝𝑡
−1  and synthesize a controller 

K∞ according to the following formula: 
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In which  

 

𝑭 = −𝑺−1(𝑫𝑇𝑪 + 𝑩𝑇𝑿), 𝑸 = (1 − 𝛾2)𝑰 + 𝑿𝒁 

 

Step 3: Define a controller of the form 𝐊 = 𝐖1𝐊∞𝐖2. 

Based on the suggestion: function W1 is associated with 

adjusting the mathematical model of the robot and function W2 

is associated with correcting the sensor measurement noise, 

through many times of selecting W1, W2 and checking the 

results of the controller K, we have chosen a suitable pair of 

W1, W2 values as follows: 
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Following the above design steps, the result is a stable 

controller as follows: 

 

( )
( )

( )

s
s

s
=

H
K

D
 (8) 

 

with 
 

4 5 7 4 7 3

7 2 6 5

( ) 2.423.10 1.655.10 1.604.10

1.404.10 3.161.10 2.256.10

s s s s

s s

= − − +

+ + +

H
 

6 5 4 4 6 3

5 2 5

( ) 777.8 6.599.10 1.222.10

7.116.10 1.401.10 9231

s s s s s

s s

= + + +

+ + +

D
 

1673



 

Simulating the control system using controller (8), the 

results are as follows Figure 3. 

 

 
 

Figure 3. The angle response of bicycle robot 

 

From Figure 3, it can be seen that: The dynamic quality 

indicators of the output response of the robot balance control 

system are: 

•Number of oscillations: 04 

•Maximum tilt angle: 0.43 rad  

•Transition time: 2.25 s 

With the initial tilt angle of the robot being pi/180 rad, after 

4 oscillations, the control system has returned the tilt angle of 

the robot to 0 rad. Thus, the original controller is capable of 

maintaining the robot's stable balance. 

However, the 6th-order controller (original controller) will 

lead to many disadvantages, such as a complicated control 

program and increased response time of the system, and can 

make the system unstable. Therefore, to improve the quality of 

the control system, the authors need to simplify the original 

controller so that the control program is simple, reducing the 

system's response time while still satisfying the stable and 

sustainable requirements of the system. 

 

 

3. RESULT OF REDUCING THE ORDER OF THE 

BICYCLE ROBOT BALANCE CONTROLLER 

 

There have been many model reduction algorithms 

proposed to solve the model reduction problem. However, in 

the author's opinion, the "best" model reduction algorithm, i.e. 

the algorithm that meets all the requirements of the reduction 

problem in general and the controller reduction problem in 

particular, has not yet appeared. Each model reduction 

algorithm has its own advantages and disadvantages and its 

own scope of application. Therefore, to find a controller to 

replace the high-order controller, it is necessary to evaluate 

and compare the low-order controllers obtained by different 

model order reduction methods both in simulation and 

experiment.  

Truncation techniques are applied when the system is in 

equilibrium representation to retain the states with large 

Hankel singular values in the reduced order system. The 

balance truncation algorithm (BTA) [18-20] performed a 

simultaneous crossover of the controllability and observability 

Gramians of the original system, thereby bringing the original 

system to the equilibrium representation. The truncation 

technique is used to retain large Hankel singular values in the 

low-order system. The BTA algorithm is introduced in detail 

in reference [18]. 

The optimal Hankel norm approximation (OHNA) [21-23] 

performs calculations to determine the optimal approximate 

order reduction system based on approximating the optimal 

Hankel singular value without bringing the original system to 

equilibrium representation. The OHNA algorithm is 

introduced in detail in reference [21]. 

The algorithm based on preserving dominant poles (PDP) 

[24, 25] will transform the original system to the upper 

triangular form. Then, the dominant points will be sorted 

according to the descending dominant index on the main 

diagonal of the A matrix of the system. The truncation 

technique is used to retain the poles with a large dominant 

index in the low-order system. The PDP algorithm is 

introduced in detail in reference [24]. 

The balance truncation algorithm [18-20], the optimal 

Hankel norm approximation [21-23], and the algorithm based 

on PDP [24-26] are considered popular order reduction 

algorithms. Therefore, in this study, the authors will use the 

above three algorithms to simplify the 6th-order robust 

controller (the original system).  

Performing order reduction of the original system according 

to the order reduction algorithms, the results obtained in 

Tables 2-4. 

The reduced order error values in Tables 2-4 are determined 

by the H norm of the error transfer function, which is the 

difference between the transfer function of the original system 

and the transfer function of the corresponding reduced order 

system. 

 

Table 2. The low-order controllers obtained by the BTA 

 

Order The Low-Order Controller Kr(s) 
Error 

‖𝑲 − 𝑲𝑟‖∞ 

3 
−2.423104𝑠2 + 3.311.104𝑠 + 8264

𝑠3 + 93.49𝑠2 + 1749𝑠 + 338.2
 8.0348.10-4 

2 
−2.423.104𝑠 + 3.797.104

 𝑠2 + 93.29𝑠 + 1730
 2.4868 

1 
8.581

𝑠 + 0.03045
 257.399 

 

Table 3. The low-order controllers obtained by the OHNA 

 

Order The Low-Order Controller Kr(s) 
Error 

‖𝑲 − 𝑲𝑟‖∞ 

3 
−2.423104𝑠2 + 3.31.104𝑠 + 8269

𝑠3 + 93.49𝑠2 + 1749𝑠 + 338.4
 7.9387.10-4 

2 
−2.47.104𝑠 + 3.802.104

 𝑠2 + 95.1𝑠 + 1732
 2.4869 

1 
211.5

𝑠 + 0.746
 259.03 

 

Table 4. The low-order controllers obtained by the algorithm 

based on PDP 

 

Order The Low-Order Controller Kr(s) 
Error 

‖𝑲 − 𝑲𝑟‖∞ 

3 
−2.423104𝑠2 + 3.299.104𝑠 + 8447

𝑠3 + 93.49𝑠2 + 1749𝑠 + 346.1
 0.0286 

2 
−6334𝑠 + 1474

 𝑠2 + 25.74𝑠 + 5.108
 264.1099 

1 
−6227

𝑠 + 25.54
 268.2455 
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4. DISCUSSION OF LOW-ORDER CONTROLLERS 

 

Controllers are usually evaluated through transient response 

and frequency response. A low-order controller that wants to 

replace the original controller needs to preserve the transient 

and frequency characteristics of the original controller. 

Therefore, in addition to the basis of the order reduction error 

value in Tables 2-4, we compare the transient response and 

frequency response of low-order controllers and the original 

controller, the results are shown in Figure 4 and Figure 5. 

 

 
(a) The step response of the 1st-order controllers 

 
(b) The step response of the 2nd-order controllers 

 
(c) The step response of the 3rd-order controllers 

 

Figure 4. The comparison results of the step response of the 

controllers 

 
(a) The frequency diagram of the 2nd-order controllers 

 
(b) The frequency diagram of the 3rd-order controllers 

 

Figure 5. The comparison results of the frequency diagram 

of the controllers 

 

From Figures 4 and 5 and Tables 2-4, it is shown that: 

•The responses of the 3rd-order controllers coincide with 

those of the original controller; 

•The deviation between the response of the second-order 

controller, obtained by BTA and OHNA, and the response of 

the original system is very small. 

•The responses of the 1st-order controller and the 2nd-order 

controller, obtained by the algorithm based on PDP, has a 

significant error compared to the responses of the sixth order 

controller. 

The suitable low-order controller to replace the original 

controller must satisfy the criteria such as the lowest possible 

controller order and the smallest possible order reduction 

error. The third-order controller has a small order reduction 

error but has a higher order than the second-order controller. 

Therefore, the most suitable lower-order controller to replace 

the original controller is the second-order controller. 

In which, the 2nd-order controller, obtained by the BTA, 

has a smaller order reduction error than the 2nd-order 

controller obtained by OHNA. Therefore, the second-order 

controller, obtained from BTA, is the most suitable low-order 

controller to replace the original controller. 

 

 

5. 2ND-ORDER CONTROLLER FOR BICYCLE 

ROBOT BALANCE 

 

To clarify the substitutability of the second-order controller 

for the original controller in the bicycle robot balancing 
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control system, in this part, the author will simulate the bicycle 

robot balance control system using the 2nd-order controller, 

obtained by BTA and the original controller. 

On the other hand, to get more information about the 

influence of the linearization process of the bicycle robot 

mathematical model on the quality of the bicycle robot balance 

control system, we perform simulations in the following 2 

cases.  

Case 1: Using the linear mathematical model of the bicycle 

robot. The initial assumption is that the bicycle robot deviates 

from the equilibrium position with the tilt angle 𝜃 =
𝜋

180
(𝑟𝑎𝑑) 

and 𝜃 =
𝜋

4
(𝑟𝑎𝑑). The simulation results of the bicycle robot 

balance control system when the robot initially deviates from 

the vertical at an angle 𝜃 =
𝜋

180
(𝑟𝑎𝑑)  and 𝜃 =

𝜋

4
(𝑟𝑎𝑑)  is 

shown in Figure 6. 

 

 
(a) The angle of the robot when the robot initially deviates 

from the vertical at an angle 𝜃 =
𝜋

180
(𝑟𝑎𝑑) 

 
(b) The angle of the robot when the robot initially deviates 

from the vertical at an angle 𝜃 =
𝜋

4
(𝑟𝑎𝑑) 

 

Figure 6. The angle of the robot when using the linear robot 

model 

 

Comment: From Figure 6(a), it can be seen that: The 

dynamic quality indicators of the output response of the robot 

balance control system are: 

•Number of oscillations: 04 

•Maximum tilt angle: 1.8 rad  

•Transition time: 2.25 seconds 

With the initial tilt angle of the robot being pi/180 rad, after 

4 oscillations, the bicycle robot balance control system has 

brought the robot back to the equilibrium position (the robot's 

tilt angle is equal 0). 

From Figure 6(b), it can be seen that: The dynamic quality 

indicators of the robot balance control system are: 

•Number of oscillations: 04 

•Maximum tilt angle: 0.43 rad  

•Transition time: 2.25 seconds 

With the initial tilt angle of the robot being pi/4 rad, after 4 

oscillations, the bicycle robot balance control system has 

brought the robot back to the equilibrium position (the robot's 

tilt angle is equal 0). 

When using the linear model of the robot, the second order 

controller can maintain the robot's equilibrium with a large 

initial robot tilt angle. 

Case 2: Using the nonlinear mathematical model of the 

bicycle robot. The initial assumption is that the bicycle robot 

deviates from the equilibrium position with tilt angles 𝜃 =
𝜋

180
(𝑟𝑎𝑑), 𝜃 =

1.5𝜋

180
(𝑟𝑎𝑑) and 𝜃 =

2𝜋

180
(𝑟𝑎𝑑). The simulation 

results of the bicycle robot balance control system when the 

robot initially deviates from the vertical at an angle 𝜃 =
𝜋

180
(𝑟𝑎𝑑) , 𝜃 =

1.5𝜋

180
(𝑟𝑎𝑑)  and 𝜃 =

2𝜋

180
(𝑟𝑎𝑑)  is shown in 

Figure 7. 

 

 
(a) The angle of the robot when the robot initially deviates 

from the vertical at an angle 𝜃 =
𝜋

180
(𝑟𝑎𝑑) 

 
(b) The angle of the robot when the robot initially deviates 

from the vertical at an angle 𝜃 =
1.5𝜋

180
(𝑟𝑎𝑑) 
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(c) The angle of the robot when the robot initially deviates 

from the vertical at an angle 𝜃 =
2𝜋

180
(𝑟𝑎𝑑) 

 

Figure 7. The angle of the robot when using the nonlinear 

robot model 

 

Comment: From Figure 7(a), it can be seen that: The 

dynamic quality indicators of the output response of the robot 

balance control system are: 

•Number of oscillations: 04 

•Maximum tilt angle: 0.43 rad  

•Transition time: 2.25 seconds 

With the initial tilt angle of the robot being pi/180 rad, after 

4 oscillations, the bicycle robot balance control system has 

brought the robot back to the equilibrium position (the robot's 

tilt angle is equal 0). 

From Figure 7(b), it can be seen that: The dynamic quality 

indicators of the robot balance control system are: 

•Number of oscillations: 04 

•Maximum tilt angle: 0.65 rad  

•Transition time: 3.25 seconds 

With the initial tilt angle of the robot being 1.5*pi/180 rad, 

after 7 oscillations, the bicycle robot balance control system 

has brought the robot back to the equilibrium position (the 

robot's tilt angle is equal to 0). 

From Figure 7(c), it can be seen that: With the initial tilt 

angle of the robot being 2*pi/180 rad, the robot balance control 

system cannot bring the robot back to balance (i.e., the robot 

will fall over). 

When using the 2nd-order controller, the system can 

maintain the robot balance when the robot deviates from the 

equilibrium stand with a small angle. When the robot deviates 

from the equilibrium stand with a large angle (𝜃 >
1.5𝜋

180
(𝑟𝑎𝑑)), 

the system using the original and the 2nd-order controller 

cannot maintain the robot’s balance. 

The design of the 6th-order controller is based on the linear 

model of the two-wheeled robot with the condition of small tilt 

angle (1.5°- corresponding to 2*pi/180 rad, then sin = 

sin  0). When using the linear model of the bicycle robot, 

the estimated tilt angle value of the controller and the tilt angle 

value calculated from the linear model completely match, so 

the control system will create a moment with enough value and 

in time to balance with the moment of gravity of the robot, 

thereby maintaining stable balance of the robot. Therefore, 

when changing the tilt angle value to the value =45° (beyond 

the linear condition of the tilt angle), the robot is still able to 

balance stably. 

When using the nonlinear model of the bicycle robot, with 

a small tilt angle (1.5°- linear condition of the tilt angle), 

the estimated tilt angle value of the controller and the tilt angle 

value calculated from the nonlinear model have a small 

deviation, so the control system will still create a moment with 

enough value and in time to balance with the moment of 

gravity of the robot, thereby maintaining stable balance of the 

robot.  

When using the nonlinear model of the bicycle robot, with 

a large tilt angle (>1.5°- the linearization condition of the 

robot model is not guaranteed), the estimated tilt angle value 

of the controller with the calculated tilt angle value from the 

nonlinear model has a large deviation. Because of this reason, 

the control system will not be able to generate a sufficiently 

large and timely moment value to balance the robot's gravity 

moment, so the robot cannot maintain stable balance.  

Thus, the control system using the controller designed based 

on the linear model of the bicycle robot model is only capable 

of maintaining stable balance of the bicycle robot when the tilt 

angle of the robot must be within the limit of the tilt angle 

(1.5°), or the condition of linearization of the model is 

guaranteed. 

The central controller of the bicycle robot model usually 

uses a microcontroller, so the controller of the robot control 

system will be written in the form of program code. In fact, 

compared with the program code of the 6th order controller, 

the program code of the 2nd order controller will be simpler 

and shorter, which will help reduce the processing time of the 

controller, thereby helping to reduce the response time of the 

control system. 

 

 

6. CONCLUSION 

 

The design of a robust controller for the balance control 

problem for a bicycle robot, based on the linear model of the 

bicycle robot, has obtained a 6th-order controller. In order to 

make the controller simpler while still maintaining the 

characteristics of a robust controller, the paper has applied 

some MOR algorithms to determine the low-order controllers 

from the 6th-order controller. At the same time, to compare 

and evaluate the low-order controllers, the paper has applied 

many different evaluation methods such as evaluation based 

on order reduction error, evaluation based on transient 

response and frequency response, evaluation based on 

transient response of the control system. Based on those 

evaluation results, the paper has selected the most suitable 

low-order controller to replace the 6th-order controller, these 

approaches of the paper can be applied to similar problems. 

On the other hand, the paper also points out the limitations of 

the controller (both low-order controller and 6th-order 

controller) when applied to the nonlinear model of the bicycle 

robot model. In the following studies, the author will compare 

and evaluate the low-order controller in the actual bicycle 

robot control system. 
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NOMENCLATURE 

 

A, B, C Matrix of the model 

S(s) Transfer function 

R DC motor resistance () 

 DC motor angular velocity (rad/s) 

𝐼𝑝  The flywheel polar moment of inertia (Kg.m2) 

𝐼𝑟   The flywheel radial moment of inertia (Kg.m2) 

𝐼𝑏   The bicycle moment of inertia (Kg.m2) 

ℎ𝑏  The height of bicycle center of gravity (m) 

ℎ𝑓  The height of flywheel center of gravity (m) 

𝑚𝑔  Bicycle masses (Kg) 

𝑚𝑓  Flywheel masses (Kg) 

𝐾𝑒  The back emf constants of the motor (V.s/Rad) 

𝐾𝑚  The torque constants of the motor (Nm/A) 

𝐵𝑚  The DC motor viscosity coefficient (Kg.m2/s) 

𝜃  
The angular velocity of the bicycle around Z 

axis (Rad) 

𝜑  
The angular velocity of the flywheel around its 

control axis (X1 axis) (Rad) 

𝑇𝑚  Torque generated by the motor (Kg.m2) 

U The input voltage to the DC motor (V) 

𝑔  Free fall acceleration (m/s2) 
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