International Information and
Engineering Technology Association

%Ef

Mathematical Modelling of Engineering Problems
Vol. 12, No. 5, May, 2025, pp. 1562-1570

Journal homepage: http://iieta.org/journals/mmep

Analytical Solutions for Fractional Black-Scholes European Option Pricing Equation by ]
Using Homotopy Perturbation Method with Caputo Fractional Derivative Gheok for

Awatif Muflih Algahtani'®”, Hamza Mihoubi®*

updates

! Department of Mathematics, Shaqra University, Riyadh 11972, Saudi Arabia
2 Department of Mathematics, University of M’sila, University Pole, Road Bordj BouArreridj, M’sila 28000, Algeria

Corresponding Author Email: hamza.mihoubi@univ-msila.dz

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.120510

ABSTRACT

Received: 23 October 2024
Revised: 5 December 2024
Accepted: 10 December 2024
Available online: 31 May 2025

Keywords:

@ — Caputo Fractional derivative, Caputo—
Hadamard Fractional derivative, homotopy
perturbation method, Mittag—Leffler function,
Fractional Black-Scholes European option
pricing equation

The aim of the paper is to present a numerical technique that applies the homotopy
perturbation method to solve the time-Fractional Black-Scholes European option
pricing equation with boundary conditions. The study employs the ¢ — Caputo
Fractional derivative in time, and the operator admits as particular cases the Caputo and
Caputo—Hadamard Fractional derivatives describe the solutions of these equations that
contribute to the generalization and development of certain recent results. The method
offers a convergent series with easily computed components as an analytical solution.
The method outperforms currently available analytical techniques without the need for
linearization or minor perturbations. The homotopy perturbation approach is a practical
and efficient way to get over the limitations of more conventional techniques, as
demonstrated by the two examples presented under Caputo—Hadamard memory, when
applied to the time-Fractional Black-Scholes European option pricing equation, the
techniques' accuracy and ease of implementation are demonstrated by the numerical

findings.

1. INTRODUCTION

The well-known theoretical option value model was
developed in 1973 by Black and Scholes [1]. Their
methodology is based on the premise of building a risk-free
portfolio by investing in cash bonds, options, and the
underlying stock. As a result, the Black-Scholes formula is
frequently employed as a model to value American options,
which can be exercised at any time up to the stock's expiration
date, and European options, which can only be exercised on a
given future date [2]. To obtain a closed form solution for the
Black-Scholes equation, one must first solve the heat equation
fundamentally. Consequently, it is crucial to adjust some
variables at this point in order to convert the B-S equation into
the heat equation. It is possible to convert the closed form
solution of the heat equation back into the appropriate-solution
of the Black-Scholes partial differential equation. Financial
models were generally formulated utilizing stochastic
differential equations. Nevertheless, it was quickly shown that
these models may be described as linear evolutionary PDE
with changing coefficients under specific circumstances [3].
Thus, the following equation the equation represents the
Black-Scholes model, which calculates an option's value:

oU(x,t) o%x?93%U(x,t)
at 2 d0x?
U (x, ) M
+r(t)xT—r(t)U =0,(t,x) eR* x (0,T)

where, T is the maturity date, K is the exercise price, r(t) is
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the risk-free interest rate, and o(x,t) is the volatility
function of the underlying asset. U(x,t) is the price of a
European call option at asset price x and at time ¢. The values
of the European call and put options will be shown by the
variables Uc(x,t) and Uy,(x,t), respectively. The payout
mechanisms consist of:

Uc(x,t) = max(x — E,0),Up(x,t) @)
= max(E — x,0)

In this case, the function max(x, 0) produces the greater
value between x and 0, where E represents the options’
expiration price. Over the last few decades, numerous scholars
have examined the possibility of Black-Scholes model
solutions using a variety of techniques [4-12]. Fractional
differential equations also provide an excellent description of
many important phenomena in the disciplines of
electromagnetic, acoustics, viscoelasticity, electrochemistry,
and material science [13-15]. Oldham and Spanier's book [16]
has been significant in the field's advancement. The following
sources contain some basic findings about solving fractional
differential equations: Miller [17], Podlubny [18], Kilbas et al.
[19], and Podlubny [20]. In order to achieve analytic and
approximate solutions for fractional BS equations, this study
aims to expand the application of the homotopy perturbation
method (HPM) under Caputo-Hadamard memory. The
homotopy perturbation method was initially introduced and
used by a mathematician from He [21-25]. Yildirim and Kogak
[26] successfully adapted the approach to the space time
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fractional advection - dispersion problem. Fractional KdV
equation by Abdulaziz et al. [27], fractional Zakharov-
Kuznetsov equations by Yildirim and Giilkanat [28]. Khan et
al. [29] fractional chemical engineering equation. The
homotopy perturbation method [30-34] is one of the very
applicable analytical approaches. Numerous nonlinear
problems are solved using this approach [35-39], and the
references therein cover a broad range of linear and nonlinear,
homogeneous and inhomogeneous scientific and engineering
applications.

The Fractional Black-Scholes equation can be expressed as
follows:

. 0?x?92%U(x,t) oU(x,t)
CL:P ’ 7
D, U(x,t) + > 92 +r(t)x Ep 3)
—r@®U =0, 0<a<l
Equipped with the terminal and boundary condition:
U(x,T) = max(x — E,0),x € RY, @)

U(,t)=0,t€[0,T]

Numerous novel kinds of fractional derivatives have been
put out, studied, and used in real-world models in recent years.
It is therefore normal to attempt to merge those ideas into a
single one. Developing the foundations of a theory for
fractional differential equations with a general derivative is
crucial. In this research, we chose the ¢ —Caputo Fractional
derivative in time whose operator admits as particular cases
the Caputo and Caputo-Hadamard Fractional derivatives to
solve the time-Fractional Black-Scholes European option
pricing equation utilizing homotopy perturbation method it
was created to deal with fractional differential equations,
which are common in engineering and science. Its ability to
produce quickly convergent series solutions for fractional
partial differential equations is its primary benefit. We seek to
find both analytical and numerical solutions of the time-
Fractional Black-Scholes European option pricing equation.
Consequently, the numerical results are presented through the
graphical illustrations. The solution is provided by the
proposed method in a quickly converging series, which may
ultimately lead to both an exact and approximate solution. This
research paper is divided as follows: In Section 2, basic ideas
related to the characteristics and notations of fractional
calculus are explored, which are pertinent to the topics covered
in this work. In Section 3, we employ the homotopy
perturbation method approach to derive solutions for the time-
fractional B-S equation. In Section 4, we apply the proposed
method to the time-fractional B-S equation to verify the
effectiveness and accuracy of this method under Caputo-
Hadamard memory. We present the results through graphical
and numerical analyses. Finally, Section 5 presents the
conclusions drawn from our results.

2. BASIC
CALCULUS

DEFINITIONS OF FRACTIONAL

Mathematics' propensity toward potential generalization is
a crucial feature of the 20th century. The first conference
devoted solely to the fractional calculus and its applications in
various fields of knowledge brought significant attention to the
introduction of new mathematical concepts as well as the
generalization of existing ones. Two such concepts were the
fractional integral and the fractional derivative [40].

1563

Numerous versions of the fractional derivative operator,
referred to as the Riemann-Liouville, Giinwald-Letnikov, and
Caputo derivatives, were introduced. We are interested in a
specific variant of the Caputo derivative in this study. Later in
the 20th century, Gerasimov and Dzerbashian retrieved and
shared it, and Caputo was the one who suggested studying it
in order to apply it with the Laplace transform. For a fractional
calculus, Reference [41] provides a recent fractional calculus
chronology. This section provides an overview of the
definitions/ and characteristics of the fractional derivatives and
integrals of a function f in relation to another function ¢.
References [19, 42] provide definitions and attributes for some
of these terms.

This section contains some of the ¢ —Caputo Fractional
derivative [42] notations, definitions, lemmas, and results that
are utilized throughout the paper.

Definition 2.1 [19, 42]: Let f be an integrable function
defined on I, ¢ € C1(I) be a growing function such that
@'(t) # 0 foreveryt € I, and let @ > 0,1 = [a, b] be a finite
or infinite interval. In relation to another function ¢ of order
a, the definition of the left fractional integral of fis

Ia 1f (x, )]

[ rweo-0w) " rewa

I'(a)

The Riemann-Liouville fractional integral is obtained if
@(t) = t, while the Hadamard fractional integral is obtained
if @) =Int [19]. Assuming a=0 , we obtain
1201 (e, 0] = Fx, ).

Theorem 2.1 [40]: Leta > 0,n € N, / is the interval —oo <
a<oo,and f,p € C"(I) two functions such that ¢ is
increasing and ¢'(t) # 0, for all t € I. The left ¢ —Caputo
fractional derivative of f of order « is given by:

0

P'(t)at ©

DL 0] = T (=) fD)

where,

n=[a]l+1fora & N,n=aqafora €N.

We shall utilize the shortened notation to make the notation
simpler.

a n
) fen )

[nlie = _
[Tt = <go'(t) at

In the event when ¢@(t) =t , the Caputo fractional
derivative is obtained [43], while the Caputo-Hadamard
Fractional derivative is obtained if ¢ (t) = Int [44].

We introduce the Caputo-type Hadamard Fractional
derivatives, as follows:

Theorem 2.2 [44]: LetR(a) = 0,n = [R(a)]+ 1. If f €
C5([a,b]), where 0 < a < b < o, and

ACs([a,b]) =

{g: [a,b] » C:86™1g(x) € AC[a, b],6 = x:—x}

then $D % f (t) exist everywhere on [a, b]:

d\" __d

) 1 t t n—-a-1
Def(t) = mj <lng> (ta> (& z
Lemma 2.1 [44]: Letaf €C([a,b]) , R(a)>0,n=



[R(a)] + 1ifR(a) # 00or a € N, then

D %1% f (1) = (D).
Lemma 2.2 [44]: Let f € AC™([a, b]), and @ € C, then

()

Theorem 2.3 [42]: Let f € C™([a,b]), andn—1<a <
n,n € N,n > 0, then

5"f(a)

TP () = £ - Z

k=0

L. £ = (@) — p@)" ", then 3 [f (1)] =
i 0"
2 IEPEDIF(x, O] = f () — Tpzh L () —

o(@)"

Definition 2.2 [45]: Leta,m > 0. The power series
represents the one-parameter Mittag-Leffler function.

Egm(t) = rzom (¥

where, I'(.) is gamma function.

3. HOMOTOPY PERTURBATION METHOD (HPM)

The following analysis of the fractional-order nonlinear non
homogeneous partial differential equation with starting
conditions (IC) illustrates the fundamental concept of the
homotopy perturbation method:

¢D7%u(x,t) + Ru(x, t) + Nu(x, t) = g(x,t),

0<ac<1 ©)

subject to IC:
u®(x,0) = h(x),k=01,..,n—1 (10)
where, g(x,t) is the source term, R and N stand for linear and
nonlinear differential operators, respectively, Dy’ ¢ = :?, for

the differential operator, and $D5 “u(x, t) for the derivative of

u(x, t) of the Caputo type [46].

D Pu(x, t) + p(Ru(x, t) + Nu(x, t)
=0, 0<a<1

where, the embedding parameter is p € [0,1]. When p = 0,
Eq. (11) turn into:

DI u(x,t) =0 (12)
and Eq. (11), when p = 1, prove to be the original Eq. (9).

Initially, we must take into account the following series
form solution with the embedding parameter p € [0, 1]:

u(x,t) = Zp u,(x,t) (13)

and He's polynomials can be used to decompose the nonlinear
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term as follows:

Nu(x,t) = Z p"H, () (14)
where, H,,(u) is He’s polynomials [47] and is given by:
Hy (ug, Uy, Uy, - Up) = (15)
n'ap [ Zn oP un(x t)]p 0N = 123
Substituting Eqs. (13) and (14) in Eq. (11), we get:
ol PYEeR
n=0 (16)

=p|9G ) =R prun(e,t) =N ) pHy @)
n=0 n=0

The following approximations can be obtained successively
by contrasting the coefficients on both sides of Eq. (15) for the
same powers of p.

P°: Dg  [ue(x, )] = 0 (17)

L SDY P [uy (x, £)] = g(x,t) — Rug(x, t) — NHo(w) (18)

P?: Dy [uy(x, )] = —Ruy (x,y,t) — NH; (u) (19)
p3: Ctz)““” [us(x, t)] = —Ru,(x,t) — NHZ(u),

: (20)

pn CDa(p[un(x t)] Run 1(X t) NHn 1(”)

The first few terms of the homotopy perturbation method
solution can be expressed as follows by using the operator
37%, the inverse operator of ¢D;’? that is given in the
preceding chapter, on both sides of the equations indicated

above, and by the use of the IC in Eq. (10).

W)=Y = ngoo @n
uy (1, ) = 75 [g (x, £)]

—9%9 [Rug(x, )] — 1% [NHy ()] @2)

uy(x, t) = 7g;<p[Ru1(x' ] - 72”(”[NH1(u)] (23)

and so forth. Thus, the solution to Eq. (9) can be found as:

u(x, t) = lim u, (x,t) =uy(x, t) + u,(x, t)
n-oo

(24)
+u, (o, ) +ug(x, t) + -

3.1 Convergence analysis and error estimation

These two theorems prove the convergence of the homotopy
perturbation technique towards a solution for the time-
Fractional Black-Scholes equation and the error estimation of
the homotopy perturbation method. With 0 < T < oo, let 7 be
a positive constant and Q € R™ be an opened and bounded
domain. In order to demonstrate the HPM approach concept,
let's look at the F B-S equation for any (x,t) € Q x [0, T].



Theorem 3.1 [48]: Let u, (x, t)be the function in a Banach
space C(Q % [0,T] = {u such that u is continuous
on ) X [0,T]} defined by Eq. (24) for any n € N. The
infinite series Y5 Ux (X, t)converges to the solution u of
Eq. (9) if there exists a constant 0 < u < 1 such that
up(x, t) < pu,_,(x,t) for all n € N .Thus, {S,}ro is a
Cauchy sequence in the Banach space C"([a,b], R)
consequently, the solution Y.;-, uy (x, t) converge to u.

The following is the theorem we use to truncate an
imprecise solution:

Theorem 3.2 [48]: The series solution's highest absolute
error, defined in Eq. (35), is assessed as follows:

m+1

u
< (1 - #) Il

4. APPLICATION OF HOMOTOPY PERTURBATION
METHOD ON TIME-FRACTIONAL BLACK-
SCHOLES EQUATION

(25)

ulx,t) — ) up(x,t)

In this part, we solve Fractional Black-Scholes using the
homotopy perturbation technique Eq. (1).

4.1 Application 1
Consider the following Fractional Black-Scholes equation:

DU (x, t)

0%u ou (26)
=—+k-1)—-kU,0<a<1t>0,x€R
dx? dx
With IC:
U(x,0) = max(e* — 1,0) 27

Let's build the homotopy of Eq. (26) in accordance with Eq.
(11) as follows:

DY) = p( ok (k- 1)k 28
t~a x’ - p axz ax ( )
Substituting Egs. (13) and (14) into Eq. (28),

where, H,(U) are He’s polynomials which signify the
nonlinear terms.

Hn(U) H (UO' Ull UZ' n)

n
n'ap [ ZP Un

n—0123

) (29)

The first few components of He’s polynomialsare given
as follows:

2

07U,
H(U)—

—+ (k

n»

The following expressions result from gathering the like
power of p:
p%:$Dg Y Uy(x, t) = 0,

pL: DS, (x,6) = 2 2004 (k= 1) 22 — kU,
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2
dx?2
. 82
p*: €D3'¢U3(x, t) =

. U, au
p*: (DU, (x,t) = + (k - 1)_1 — kU,

U,
+ (k- 1)——kU2,

L4 (k L kU,

p™: Dy U, (x,t) = 0x2

Utilizing the in initial condition Eq. (27), we have the
following after applying the operator 7;°% on both sides of the
previously described expressions:

p°: Uy(x, t) = max (e* — 1,0),
—k(o(t) — p(a))”
F'la+1)

—k(p(t) — p(@)*
I'(a+1) ’
K2 (p(t) — (@)™
ra+1)
k(o) — @)™
rQa+1) ’
(o) — @)™
ra+1)
(o) — @)™
rBa+1)

= —max(e*,0)

p': U (x,t) + max (e*

- 1,0)

= —max(e*,0)

p*: Us(x, t) + max (e*

~1,0)

= —max(e*,0) +

p3:Us(x, t) max (e*

- 1,0)

In consequence, the solutions U (x, t) are written in the form
of:

U(x,t) =Uy(x,t) + U (x, t) + Uy (x, t) + Us(x, t)

+ -+ = max(e*, 0) — max (e*, 0) (30)

Lastly, we write infinite sums in terms of the Mittag-Leffler
function. Eq. (8) looks like this:
U(x,t) =
max(e*, 0) (1 — Eq(—k(p () — ¢(@))"))
+max(e* — 1,0) Eq(—k(@(t) — 0(@)®)

€2))

This solution leads us to the conclusion that Eq. (31). Has
two significant special instances. Initially, assuming @ (t) = t,
and a =1 (This is the fractional integral of Riemann-
Liouville) a = 0. The exact solution in this case is as follows:

U(x,t) = max(e*,0) (1 — IEa(—kt))

+ max(e* — 1,0) E,(—kt) (32)

Which is in full agreement with the results acquired by
Edeki et al. [49] through the use of the projected
differential transformation method (PDTM) and are alike in
agreement with the solutions found by Saratha et al. [50]
using fractional generalized homotopy analysis approach
(FGHAM). On the other hand, if ¢(t) = Int, (we have the
Hadamard fractional integral) a > 0, Eq. (31) yields a

solution that becomes:
t (04
B~k (ing) )

+ max(e* —1,0) E, <_k (ln 2)11)

U(x,t) = max(e*,0) (1 —
(33)
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— a=1
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Figure 1. The graphs of Eq. (33) different value of parameter
o with, a=1, a=1, 0.85,0.65, 0.35, 0.1

a=1 a=0.85

Figure 2. Surface shows the behavior of solution U(x, f) of
application 1 using Eq. (33) with respect to ¢ and x with a=1,
0=0.85, 0=0.65, 0=0.35

Solution plots of Eq. (33) is shown in Figure 1 for the
different fractional parameter settings of ¢=0.85, 0.65, 0.35,
0.1 and 1, respectively. Financial pricing derivatives according
to various fractional parameter settings (a=0.85, 0.65, 0.35,
0.1 and 1) are shown in Figure 2.

The convergence of the series solution of Eq. (26) is
demonstrated by Table 1, which also displays numerical
values for various values of o and @(t) = Int. They also show
the absolute errors with respect to specific different values of
tand a = 1, as well as the solution obtained by the homotopy
perturbation method and the exact solution Eq. (32).

Table 1. Numerical values of the approximate and exact
solutions Eq. (32) to applications 1 for different values of ¢,
and x = 1, and o=1, a=0.85, 0=0.65

p a=1, p(®)=t
Uexa Unpm err = |uexa — Uypm

1 2,71154388 2,71154388 0
1,1 2,71419506 2,71419506 0
1,2 2,71580308 2,71580308 0
1,3 2,71677839 2,71677839 0
1,4 2,71736995 2,71736995 0
1,5 2,71772874 2,71772874 0
1,6  2,71794637 2,71794637 0
1,7  2,71807836 2,71807836 0
1,8  2,71815842 2,71815842 0
1,9 2,71820698 2,71820698 0
2 2,71823643 2,71823643 0
2,1 2,71825429 2,71825429 0
2,2 2,71826513 2,71826513 0
2.3 2,7182717 2,7182717 0
24 2,71827568 2,71827568 0
2,5 2,7182781 2,7182781 0
2,6 2,71827957 2,71827957 0
2,7 2,71828046 2,71828046 0
2,8 2,718281 2,718281 0
2,9 2,71828132 2,71828132 0
3 2,71828152 2,71828152 0

a=1, p(O=Int a=0.85, p(t)=Int a=0.65, p(H)=Int

Unpm Unprm Unpm

1 1,71828183 1,71828183 1,71828183
1,1  2,09736051 2,21065749 2,38036384
1,2 2,31640426 2,41000123 2,52698344
1,3 2,44895275 2,51706844 2,59525552
1,4  2,5323474 2,5803458 2,63311371
1,5 2,58659459 2,62013549 2,65628103
1,6  2,6229144 2,64633436 2,67143191
1,7 2,6478522 2,66422438 2,68183678
1,8  2,66535968 2,67681167 2,68925894
1,9 2,67789572 2,68589403 2,6947178
2 2,68703183 2,69259062 2,69883544
2,1  2,69379664 2,69762186 2,70200824
2,2 2,69887804 2,70146493 2,70449801
2,3 2,70274506 2,70444383 2,70648293
24 2,70572315 2,70678341 2,70808746
2,5 2,70804183 2,70864272 2,70940048
2,6 2,70986529 2,71013626 2,71048676
2,7 2,71131266 2,71134774 2,7113943
2,8  2,71247138 2,71233921 2,71215924
2,9  2,71340643 2,71315731 2,71280919
3 2,7141666 2,71383744 2,71336549

4.2 Application 2

Consider the following Fractional Black-Scholes equation:

- 02U
EDEPY (x, t) = —0.08(2 + sinx)?x? —-
ox? (34)

au
—0.06x§+0.06U,0 <a<1lt=0,x€R

with IC:



U(x,0) = max(x — 25799 0) (35)

The homotopy of Eq. (34) can be constructed as follows in
accordance with Eq. (11).

2

: 22U
CDEPU(x,t) = p | —0.08(2 + sinx)2x?—-
0x? (36)

au
—0.06x— + 0.06U
ox

Substituting Egs. (13) and (14) into Eq. (36), where H,, (U)
are He’s polynomials which signify the nonlinear terms:

'a n[ anUn
=0

The first few components of He’s polynomials are given as
follows:

Hn(U) = HH(UO’ Ul' Uz, -

’

n=0123,..

H,(U) = 0.08(2 + )2x ZaZU +0.06 9Un
- S G Toax G0
—0.06U,,n=0

The following expressions result from gathering the like
power of p:

p%: DUy (x,t) = 0,p™: $DTP UL (x, t) =

6Un 1

- (0.08(2 +

sinx)?x? 2 "“ L4 0.06x ~ 0.06U,,_,)

Utilizing the in initial condition Eq. (35), we have the
following after applying the operator 7.°% on both sides of the
previously described expressions:

p°: Uy(x,t) = max (x — 25e7%06,0),
1 _ —x(0.06((p(t) — (p(a))a)
pilitet) = T(a+1)
(0.06(p(t) — p(@)®)
I'(a + 1) ’
—x(0.06(<p(t) (p(a)) )
T2a + 1) max (x
(0.06(p(t) — <p(a))°‘)
F2a+1) '

a3
p3:Us(x,t) = —x(006(¢(®) — p(@)) ) + max (x

FGa +1)
oas 3
(0.06((p(t) — (p(a)) )

T(3a + 1) ’

+ max (x

— 25¢709,0)

pz: UZ(x! t) =

— 256709, 0)

— 25¢709,0)

In consequence, the solutions U (x, t) are written in the form
of: U(x,t) = Uy(x,t) + Uy (x,t) + Uy (x, t) + Us(x,t) + -+

Finally, we work on writing infinite sums in terms of the
Mittag-Leffler function, hence the Eq. (8) is:

UCx,t) = x (1 — Eq(0.06(p(t) — <p(a))“))

ay (38
+max(x — 25e7°%,0) E,(0.06(¢(t) — ¢(a))")

This solution leads us to the conclusion that Eq. (38) has
two significant special instances. Initially, assuming ¢(¢)=t,
and o=1 (This is the fractional integral of Riemann-Liouville)
a=0. In this instance, the exact solution takes the form of:

U(x,t) = x(1 — e(0060) 39
+ max(x — 25e7006,0)e(0-061) (39)

These solutions of Eq. (39) have shown to be in agreement
with the solutions found by [49], using PDTM, are comparable
to the answers obtained by Saratha et al. [50] through the use
of the FGHAM. If the Hadamard fractional integral is @ (t) =
Int and a > 0, the solution provided by Eq. (38) is as follows:

UGk, t) = x <1 _ e(°-°“ﬂ(§)“))

a

(40)
t
+ max(x — 257996, O)e(o'%l"(a) )

Solution plots of Eq. (40) is shown in Figure 3 for the
different fractional parameter settings of a=0.85, 0.65, 0.35,
0.1 and 1, respectively. Financial pricing derivatives according
to various fractional parameter settings (a=0.85, 0.65, 0.35,
0.1 and 1) are shown in Figure 4.
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2 X & 1 T —t0

8
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Figure 3. The graphs of Eq. (40) different value of parameter
o with a=1, a=0.85, a=0.65, a=0.35, a=0.1

=1 0=0.85

u(x,t)

=

EENTea

Figure 4. Surface shows the behavior of solution U(x, ) of
application 2 using Eq. (40) with respect to ¢ and x with o=1,
a=0.85, 0=0.65, 0=0.35



In Table 2, the convergence of the series solution of Eq. (34)
is demonstrated, which displays the numerical values of the
solution produced by the homotopy perturbation approach and
the precise solution Eq. (39) as well as the absolute errors with
regard to certain specific varied values of t and a=1.
Additionally, numerical values for various values of a and
@(t) = Int are provided.

Table 2. Numerical values of the approximate and exact
solutions Eq. (32) to Applications 1 for different values of ¢,
and x=1, and o=1, =0.85, 0=0.65

‘ a=1, p(®)=t
Uexa UHpMm err = |Ueyq — Uppy
1 -0,4946923 -0,4946923 0
1,1 -0,5458137 -0,5458137 0
1,2 -0,5972427 -0,5972427 0
1,3 -0,6489812 -0,6489812 0
1,4 -0,7010311 -0,7010311 0
1,5 -0,7533942 -0,7533942 0
1,6 -0,8060725 -0,8060725 0
1,7 -0,8590677 -0,8590677 0
1,8 -0,9123819 -0,9123819 0
1,9 -0,966017 -0,966017 0
2 -1,0199748 -1,0199748 0
2,1 -1,0742573 -1,0742573 0
2,2 -1,1288665 -1,1288665 0
2,3 -1,183804 -1,183804 0
2,4 -1,2390728 -1,2390728 0
2,5  -1,2946739 -1,2946739 0
2,6 -1,3506096 -1,3506096 0
2,7 -1,4068819 -1,4068819 0
2,8  -1,4634928 -1,4634928 0
2,9 -1,5204445 -1,5204445 0
3 -1,5777389 -1,5777389 0
‘ a=1, p(O)=Int  a=0.85, p(t)=Int a=0.65, p(t)=Int
Unprm Unprm Unprm
1 0 0 0
1,1 -0,0458799 -0,0653548 -0,1048363
1,2 -0,0879947 -0,1137688 -0,1603625
1,3 -0,1269312 -0,1554157 -0,2037045
1,4 -0,1631479 -0,1924510 -0,2399895
1,5 -0,1970099 -0,2259771 -0,2714418
1,6 -0,2288128 -0,2566866 -0,2993003
1,7 -0,2587994 -0,2850611 -0,3243498
1,8 -0,2871717 -0,3114569 -0,3471284
1,9 -0,3140992 -0,3361478 -0,3680254
2 -0,3397260 -0,3593512 -0,3873336
2,1 -0,3641756 -0,3812429 -0,4052800
2,2 -0,3875543 -0,4019682 -0,4220449
2,3 -0,4099547 -0,4216484 -0,4377740
24  -0,4314576 -0,4403864 -0,4525872
2,5 -0,4521342 -0,4582700 -0,4665843
2,6  -0,4720476 -0,4753751 -0,4798495
2,7 -0,4912536 -0,4917678 -0,4924543
2,8 -0,5098022 -0,5075058 -0,5044604
2,9  -0,5277383 -0,5226400 -0,5159211
3 -0,5451022 -0,5372155 -0,5268826

5. CONCLUSION

In light of the findings presented in this research paper, the
time-Fractional Black-Scholes European option pricing
equation with boundary condition for a European option
problem has been effectively solved using the homotopy
perturbation technique and the ¢ — Caputo Fractional
derivative. Furthermore, this paper offers two instances that
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demonstrate the method's applicability and dependability
under Caputo-Hadamard memory. Nonetheless, the results
show that homotopy perturbation method is a strong and
effective method for determining both precise and
approximate answers to nonlinear fractional partial differential
equations. The method's ability to reduce the amount of
computing labour while retaining a high level of precision in
the numerical result is crucial. Taking into account the Caputo-
Hadamard fractional derivative, we visually portray the
solutions to these issues using MATLAB to generate the
graphs.
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NOMENCLATURE

Q growing function

f be an integrable function
T maturity date

k the exercise price

r(t) the risk-free interest rate

o(x,t) the volatility function of the underlying asset

U(x,t) the price of a European call option at asset
price x and at time t

re) gamma function

75 fractional integration operator

tpy? Caputo fractional derivative

¢ %u(x,t) derivative of u(x, t) in the Caputo sense

Rand N R and N denote linear and nonlinear
differential operators

gx,t) stands for the source term

H,(u) He’s polynomials

a real number

a order derivative





