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The aim of the paper is to present a numerical technique that applies the homotopy 

perturbation method to solve the time-Fractional Black-Scholes European option 

pricing equation with boundary conditions. The study employs the 𝜑 − Caputo 

Fractional derivative in time, and the operator admits as particular cases the Caputo and 

Caputo–Hadamard Fractional derivatives describe the solutions of these equations that 

contribute to the generalization and development of certain recent results. The method 

offers a convergent series with easily computed components as an analytical solution. 

The method outperforms currently available analytical techniques without the need for 

linearization or minor perturbations. The homotopy perturbation approach is a practical 

and efficient way to get over the limitations of more conventional techniques, as 

demonstrated by the two examples presented under Caputo–Hadamard memory, when 

applied to the time-Fractional Black-Scholes European option pricing equation, the 

techniques' accuracy and ease of implementation are demonstrated by the numerical 

findings. 
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1. INTRODUCTION

The well-known theoretical option value model was 

developed in 1973 by Black and Scholes [1]. Their 

methodology is based on the premise of building a risk-free 

portfolio by investing in cash bonds, options, and the 

underlying stock. As a result, the Black-Scholes formula is 

frequently employed as a model to value American options, 

which can be exercised at any time up to the stock's expiration 

date, and European options, which can only be exercised on a 

given future date [2]. To obtain a closed form solution for the 

Black-Scholes equation, one must first solve the heat equation 

fundamentally. Consequently, it is crucial to adjust some 

variables at this point in order to convert the B-S equation into 

the heat equation. It is possible to convert the closed form 

solution of the heat equation back into the appropriate-solution 

of the Black-Scholes partial differential equation. Financial 

models were generally formulated utilizing stochastic 

differential equations. Nevertheless, it was quickly shown that 

these models may be described as linear evolutionary PDE 

with changing coefficients under specific circumstances [3]. 

Thus, the following equation the equation represents the 

Black-Scholes model, which calculates an option's value: 

𝜕𝑈(𝑥, 𝑡)

𝜕𝑡
+

𝜎2𝑥2

2

𝜕2𝑈(𝑥, 𝑡)

𝜕𝑥2

+𝑟(𝑡)𝑥
𝜕𝑈(𝑥, 𝑡)

𝜕𝑥
−𝑟(𝑡)𝑈 = 0, (𝑡, 𝑥) ∈ ℝ+ × (0, 𝑇)

(1) 

where, T is the2maturity date, K is the exercise2price, 𝑟(𝑡) is 

the risk-free interest2rate, and 𝜎(𝑥, 𝑡)  is the volatility 

function2of the underlying2asset. 𝑈(𝑥, 𝑡)  is the price of a 

European call option at asset price x and at time t. The values 

of the European call and put options will be shown by the 

variables  𝑈𝐶(𝑥, 𝑡)  and 𝑈𝑝(𝑥, 𝑡) , respectively. The payout

mechanisms consist of: 

𝑈𝐶(𝑥, 𝑡) = 𝑚𝑎𝑥(𝑥 − 𝐸, 0) , 𝑈𝑝(𝑥, 𝑡)

= 𝑚𝑎𝑥(𝐸 − 𝑥, 0) 
(2) 

In this case, the function 𝑚𝑎𝑥(𝑥, 0) produces the greater 

value between 𝑥  and 0, where 𝐸  represents the options’ 

expiration price. Over the last few decades, numerous scholars 

have examined the possibility of Black-Scholes model 

solutions using a variety of techniques [4-12]. Fractional 

differential equations also provide an excellent description of 

many important phenomena in the disciplines of 

electromagnetic, acoustics, viscoelasticity, electrochemistry, 

and material science [13-15]. Oldham and Spanier's book [16] 

has been significant in the field's advancement. The following 

sources contain some basic findings about solving fractional 

differential equations: Miller [17], Podlubny [18], Kilbas et al. 

[19], and Podlubny [20]. In order to achieve analytic and 

approximate solutions for fractional BS equations, this study 

aims to expand the application of the homotopy perturbation 

method (HPM) under Caputo-Hadamard memory. The 

homotopy perturbation method was initially introduced and 

used by a mathematician from He [21-25]. Yıldırım and Koçak 

[26] successfully adapted the approach to the space time
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fractional2advection - dispersion problem. Fractional KdV 

equation by Abdulaziz et al. [27], fractional Zakharov-

Kuznetsov equations2by Yildirim and Gülkanat [28]. Khan et 

al. [29] fractional chemical engineering equation. The 

homotopy perturbation method [30-34] is one of the very 

applicable analytical approaches. Numerous nonlinear 

problems are solved using this approach [35-39], and the 

references therein cover a broad range of linear and nonlinear, 

homogeneous and inhomogeneous scientific and engineering 

applications. 

The Fractional Black-Scholes equation can be expressed as 

follows: 
 

𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑈(𝑥, 𝑡) +
𝜎2𝑥2

2

𝜕2𝑈(𝑥, 𝑡)

𝜕𝑥2
+ 𝑟(𝑡)𝑥

𝜕𝑈(𝑥, 𝑡)

𝜕𝑥
− 𝑟(𝑡)𝑈 = 0, 0 < 𝛼 ≤ 1 

(3) 

 

Equipped with the terminal and boundary condition: 
 

𝑈(𝑥, 𝑇) = max(𝑥 − 𝐸, 0) , 𝑥 ∈ ℝ+, 
𝑈(0, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] 

(4) 

 

Numerous novel kinds of fractional derivatives have been 

put out, studied, and used in real-world models in recent years. 

It is therefore normal to attempt to merge those ideas into a 

single one. Developing the foundations of a theory for 

fractional differential equations with a general derivative is 

crucial. In this research, we chose the 𝜑 −Caputo2Fractional 

derivative in time2 whose operator admits as particular2 cases 

the Caputo and Caputo-Hadamard2Fractional derivatives to 

solve the time-Fractional Black-Scholes2 European option 

pricing2 equation utilizing homotopy perturbation method it 

was created to deal with fractional differential equations, 

which are common in engineering and science. Its ability to 

produce quickly convergent series solutions for fractional 

partial differential equations is its primary benefit. We seek to 

find both analytical and numerical solutions of the time-

Fractional Black-Scholes European  option pricing equation. 

Consequently, the numerical results are presented through the 

graphical illustrations. The solution is provided by the 

proposed method in a quickly converging series, which may 

ultimately lead to both an exact and approximate solution. This 

research paper is divided as follows: In Section 2, basic ideas 

related to the characteristics and notations of fractional 

calculus are explored, which are pertinent to the topics covered 

in this work. In Section 3, we employ the homotopy 

perturbation method approach2to derive solutions for the time-

fractional2B-S equation. In Section 4, we apply the proposed 

method to the time-fractional B-S equation to verify the 

effectiveness and accuracy of this method under Caputo-

Hadamard memory. We present the results through graphical 

and numerical analyses. Finally, Section 5 presents the 

conclusions drawn from our results. 
 

 

2. BASIC DEFINITIONS OF FRACTIONAL 

CALCULUS 
 

Mathematics' propensity toward potential generalization is 

a crucial feature of the 20th century. The first conference 

devoted solely to the fractional calculus and its applications in 

various fields of knowledge brought significant attention to the 

introduction of new mathematical concepts as well as the 

generalization of existing ones. Two such concepts were the 

fractional integral and the fractional derivative [40]. 

Numerous versions of the fractional derivative operator, 

referred to as the Riemann-Liouville, Günwald-Letnikov, and 

Caputo derivatives, were introduced. We are interested in a 

specific variant of the Caputo derivative in this study. Later in 

the 20th century, Gerasimov and Dzerbashian retrieved and 

shared it, and Caputo was the one who suggested studying it 

in order to apply it with the Laplace transform. For a fractional 

calculus, Reference [41] provides a recent fractional calculus 

chronology. This section provides an overview of the 

definitions/ and characteristics of the fractional derivatives and 

integrals of a function f in relation to another function  𝜑 . 

References [19, 42] provide definitions and attributes for some 

of these terms. 

This section contains some of the 𝜑 −Caputo Fractional 

derivative [42] notations, definitions, lemmas, and results that 

are utilized throughout the paper. 

Definition 2.1 [19, 42]: Let f be an integrable function 

defined on I, 𝜑 ∈ 𝐶1(𝐼)  be a growing function such that 

𝜑′(𝑡) ≠ 0 for every 𝑡 ∈ 𝐼, and let 𝛼 > 0, 𝐼 = [𝑎, 𝑏] be a finite 

or infinite interval. In relation to another function 𝜑 of order 

𝛼, the definition of the left fractional integral of f is 

 

ℐ𝑎
𝛼;𝜑[𝑓(𝑥, 𝑡)] 

=
1

Γ(𝛼)
∫ 𝜑′(𝜇)(𝜑(𝑡) − 𝜑(𝜇))

𝛼−1
𝑡

𝑎

𝑓(𝑥, 𝜇)𝑑𝜇 
(5) 

 

The Riemann-Liouville fractional integral is obtained if 

𝜑(𝑡) = 𝑡, while the Hadamard fractional integral is obtained 

if 𝜑(𝑡) = ln 𝑡  [19]. Assuming 𝛼 = 0 , we obtain 

ℐ𝑎
0;𝜑[𝑓(𝑥, 𝑡)] = 𝑓(𝑥, 𝑡). 

Theorem 2.1 [40]: Let𝛼 > 0, 𝑛 ∈ ℕ, I is the interval −∞ ≤
𝑎 < ∞, and 𝑓, 𝜑 ∈ 𝐶𝑛(𝐼)  two functions such that φ is 

increasing and 𝜑′(𝑡) ≠ 0, for all 𝑡 ∈ 𝐼. The left 𝜑 −Caputo 

fractional derivative of f of order 𝛼 is given by: 

 

𝒟𝑡
𝐶

𝑎
𝛼;𝜑[𝑓(𝑥, 𝑡)] = ℐ𝑎

𝑛−𝛼;𝜑
(

1

𝜑′(𝑡)

𝜕

𝜕𝑡
)

𝑛

𝑓(𝑥, 𝑡) (6) 

 

where, 

𝑛 = [𝛼] + 1 for 𝛼 ∉ ℕ, 𝑛 = 𝛼 for 𝛼 ∈ ℕ. 
We shall utilize the shortened notation to make the notation 

simpler. 

 

𝑓[𝑛];𝜑(𝑥, 𝑡) = (
1

𝜑′(𝑡)

𝜕

𝜕𝑡
)

𝑛

𝑓(𝑥, 𝑡) (7) 

 

In the event when 𝜑(𝑡) = 𝑡 , the Caputo fractional 

derivative is obtained [43], while the Caputo-Hadamard 

Fractional derivative is obtained if 𝜑(𝑡) = ln 𝑡 [44]. 

We introduce the Caputo-type Hadamard Fractional 

derivatives, as follows: 

Theorem 2.2 [44]: Let ℜ(𝛼) ≥ 0, 𝑛 = [ℜ(𝛼)] + 1. If 𝑓 ∈
𝐶𝛿

𝑛([𝑎, 𝑏]), where 0 < 𝑎 < 𝑏 < ∞, and 
 

𝐴𝐶𝛿
𝑛([𝑎, 𝑏]) = 

{𝑔: [𝑎, 𝑏] → ℂ: 𝛿𝑛−1𝑔(𝑥) ∈ 𝐴𝐶[𝑎, 𝑏], 𝛿 = 𝑥
𝑑

𝑑𝑥
} 

 

then 𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑓(𝑡) exist everywhere on [𝑎, 𝑏]: 
 

𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑓(𝑡) =
1

Γ(𝑛 − 𝛼)
∫ (𝑙𝑛

𝑡

𝜉
)

𝑛−𝛼−1𝑡

𝑎

(𝑡
𝑑

𝑑𝑡
)

𝑛

𝑓(𝜉)
𝑑𝜉

𝜉
 

Lemma 2.1 [44]: Let 𝑓 ∈ 𝐶([𝑎, 𝑏]) , ℜ(𝛼) > 0, 𝑛 =
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[ℜ(𝛼)] + 1 if ℜ(𝛼) ≠ 0 𝑜𝑟 𝛼 ∈ ℕ, then 
 

𝒟𝑡
𝐶

𝑎
𝛼;𝜑

ℐ𝑎
𝛼;𝜑

𝑓(𝑡) = 𝑓(𝑡). 
 

Lemma 2.2 [44]: Let 𝑓 ∈ 𝐴𝐶𝑛([𝑎, 𝑏]), and 𝛼 ∈  ℂ, then 
 

ℐ𝑎
𝛼;𝜑

𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑓(𝑡) = 𝑓(𝑡) − ∑
𝛿𝑘𝑓(𝑎)

𝑘!
(𝑙𝑛

𝑡

𝑎
)

𝑘
𝑛−1

𝑘=0

 

 

Theorem 2.3 [42]: Let 𝑓 ∈ 𝐶𝑛([𝑎, 𝑏]), and  𝑛 − 1 < 𝛼 ≤
𝑛, 𝑛 ∈ ℕ, 𝜂 > 0, then 

 

1. 𝑓(𝑡) = (𝜑(𝑡) − 𝜑(𝑎))
𝜂−1

, then ℐ𝑎
𝛼;𝜑[𝑓(𝑡)] =

𝛤(𝛼)

𝛤(𝛼+𝜂)
(𝜑(𝑡) − 𝜑(𝑎))

𝛼+𝜂−1
 

2. ℐ𝑎
𝛼;𝜑

𝒟𝑡
𝐶

𝑎
𝛼;𝜑[𝑓(𝑥, 𝑡)] = 𝑓(𝑥, 𝑡) − ∑

𝑓[𝑘],𝜑(𝑥,𝑎)

𝑘!
(𝜑(𝑡)  −𝑛−1

𝑘=0

𝜑(𝑎))
𝑘
 

 

Definition 2.2 [45]: Let 𝛼, 𝑚 > 0 . The power series 

represents the one-parameter Mittag-Leffler function. 
 

Ε𝛼,𝑚(𝑡) = ∑
𝑡𝑚

Γ(𝑚𝛼 + 1)

∞

𝑚=0

 (8) 

 

where, Γ(. ) is gamma function. 
 

 

3. HOMOTOPY PERTURBATION METHOD (HPM) 
 

The following analysis of the fractional-order nonlinear non 

homogeneous partial differential equation with starting 

conditions (IC) illustrates the fundamental concept of the 

homotopy perturbation method: 

 

𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑢(𝑥, 𝑡) + 𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡),
0 < 𝛼 ≤ 1 

(9) 

 

subject to IC: 

 

𝑢(𝑘)(𝑥, 0) = ℎ𝑘(𝑥), 𝑘 = 0,1, … , 𝑛 − 1 (10) 

 

where, 𝑔(𝑥, 𝑡) is the source term, R and N stand for linear and 

nonlinear differential operators, respectively, 𝒟t
C

a
α;φ

=
∂α

∂tα, for 

the differential operator, and 𝒟t
C

a
α;φ

u(x, t) for the derivative of 

𝑢(𝑥, 𝑡) of the Caputo type [46]. 

 

𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑢(𝑥, 𝑡) + 𝑝(𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) − 𝑔(𝑥, 𝑡))

= 0, 0 < 𝛼 ≤ 1 
(11) 

 

where, the embedding parameter is 𝑝 ∈  [0, 1]. When 𝑝 = 0, 

Eq. (11) turn into: 

 

𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑢(𝑥, 𝑡) = 0 (12) 

 

and Eq. (11), when 𝑝 = 1, prove to be the original Eq. (9). 

Initially, we must take into account the following series 

form solution with the embedding parameter 𝑝 ∈ [0, 1]: 
 

𝑢(𝑥, 𝑡) = ∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

 (13) 

and He's polynomials can be used to decompose the nonlinear 

term as follows: 

 

𝑁𝑢(𝑥, 𝑡) = ∑ 𝑝𝑛𝐻𝑛(𝑢)

∞

𝑛=0

 (14) 

 

where, 𝐻𝑛(𝑢) is He’s polynomials [47] and is given by: 

 

𝐻𝑛(𝑢0, 𝑢1, 𝑢2, … 𝑢𝑛) =
1

𝑛!

𝜕

𝜕𝑝𝑛
[𝑁 ∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞

𝑛=0 ]𝑝=0, 𝑛 = 1,2,3, … 
(15) 

 

Substituting Eqs. (13) and (14) in Eq. (11), we get: 

 

𝒟𝑡
𝐶

𝑎
𝛼;𝜑

[∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

] 

= 𝑝 [𝑔(𝑥, 𝑡) − 𝑅 ∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

− 𝑁 ∑ 𝑝𝑛𝐻𝑛(𝑢)

∞

𝑛=0

] 

(16) 

 

The following approximations can be obtained successively 

by contrasting the coefficients on both sides of Eq. (15) for the 

same powers of p. 
 

𝑝0: 𝒟𝑡
𝐶

𝑎
𝛼;𝜑[𝑢0(𝑥, 𝑡)] = 0 (17) 

 

𝑝1: 𝒟𝑡
𝐶

𝑎
𝛼;𝜑[𝑢1(𝑥, 𝑡)] = 𝑔(𝑥, 𝑡) − 𝑅𝑢0(𝑥, 𝑡) − 𝑁𝐻0(𝑢) (18) 

 

𝑝2: 𝒟𝑡
𝐶

𝑎
𝛼;𝜑[𝑢2(𝑥, 𝑡)] = −𝑅𝑢1(𝑥, 𝑦, 𝑡) − 𝑁𝐻1(𝑢) (19) 

 

𝑝3: 𝒟𝑡
𝐶

𝑎
𝛼;𝜑[𝑢3(𝑥, 𝑡)] = −𝑅𝑢2(𝑥, 𝑡) − 𝑁𝐻2(𝑢), 
⋮                   ⋮                                ⋮ 

𝑝𝑛: 𝒟𝑡
𝐶

𝑎
𝛼;𝜑[𝑢𝑛(𝑥, 𝑡)] = −𝑅𝑢𝑛−1(𝑥, 𝑡) − 𝑁𝐻𝑛−1(𝑢) 

(20) 

 

The first few terms of the homotopy perturbation method 

solution can be expressed as follows by using the operator 

ℐ𝑎
𝛼;𝜑

, the inverse operator of 𝒟𝑡
𝐶

𝑎
𝛼;𝜑

 that is given in the 

preceding chapter, on both sides of the equations indicated 

above, and by the use of the IC in Eq. (10). 

 

𝑢0(𝑥, 𝑡) = ∑ 𝑢𝑘(𝑥)
𝑡𝑘

𝑘!
= ∑ 𝑔𝑘(𝑥)

𝑡𝑘

𝑘!

𝑛−1

𝑘=0

𝑛−1

𝑘=0
 (21) 

 

𝑢1(𝑥, 𝑡) = ℐ𝑎
𝛼;𝜑[𝑔(𝑥, 𝑡)] 

−ℐ𝑎
𝛼;𝜑[𝑅𝑢0(𝑥, 𝑡)] − ℐ𝑎

𝛼;𝜑[𝑁𝐻0(𝑢)] 
(22) 

 

𝑢2(𝑥, 𝑡) = ℐ𝑎
𝛼;𝜑[𝑅𝑢1(𝑥, 𝑡)] − ℐ𝑎

𝛼;𝜑[𝑁𝐻1(𝑢)] (23) 

 

and so forth. Thus, the solution to Eq. (9) can be found as: 

 

𝑢(𝑥, 𝑡) = lim
𝑛→∞

𝑢𝑛(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) 

+𝑢2(𝑥, 𝑡)+𝑢3(𝑥, 𝑡) + ⋯ 
(24) 

 

3.1 Convergence analysis and error estimation 
 

These two theorems prove the convergence of the homotopy 

perturbation technique  towards a solution for the time-

Fractional Black-Scholes equation and the error estimation of 

the homotopy perturbation method. With 0 < 𝑇 ≤ ∞, let T be 

a positive constant and Ω ∈ ℝn  be an opened and bounded 

domain. In order to demonstrate the HPM approach concept, 

let's look at the F B-S equation for any (x, t) ∈ Ω × [0, T]. 
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Theorem 3.1 [48]: Let 𝑢𝑛(𝑥, 𝑡)be the function2in a Banach 

space 𝐶(Ω × [0, 𝑇]) = {u such that u is continuous ∗
 on Ω × [0, 𝑇]} defined* by Eq. (24) for any  𝑛 ∈ ℕ . The 

infinite -series ∑ 𝑢𝑘(𝑥, 𝑡)∞
𝑘=0 converges2to the2solution 𝑢  of 

Eq. (9) if there exists a2constant 0 < 𝜇 < 1 such that 

𝑢𝑛(𝑥, 𝑡) ≤ 𝜇𝑢𝑛−1(𝑥, 𝑡)  for all 𝑛 ∈ ℕ .Thus, {𝑆𝑛}𝑛=0
∞  is a 

Cauchy2sequence in the2Banach2space 𝐶𝑛([𝑎, 𝑏], ℝ) ; 

consequently, the2solution ∑ 𝑢𝑘(𝑥, 𝑡)∞
𝑘=0  converge to u. 

The following is the theorem we use to truncate an 

imprecise solution: 

Theorem 3.2 [48]: The series solution's highest absolute 

error, defined in Eq. (35), is assessed as follows: 

 

|𝑢(𝑥, 𝑡) − ∑ 𝑢𝑘(𝑥, 𝑡)

∞

𝑘=0

| ≤ (
𝜇𝑚+1

1 − 𝜇
) ‖𝑢0‖ (25) 

 

 

4. APPLICATION OF HOMOTOPY PERTURBATION 

METHOD ON TIME-FRACTIONAL BLACK-

SCHOLES EQUATION  

 

In this part, we solve Fractional Black-Scholes using the 

homotopy2perturbation technique Eq. (1). 

 

4.1 Application 1 

 

Consider the following Fractional Black-Scholes equation: 

 

𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑈(𝑥, 𝑡) 

=
𝜕2𝑢

𝜕𝑥2
+ (𝑘 − 1)

𝜕𝑢

𝜕𝑥
−𝑘𝑈, 0 < 𝛼 ≤ 1, 𝑡 ≥ 0, 𝑥 ∈ ℝ 

(26) 

 

With IC: 

 

𝑈(𝑥, 0) = max(𝑒𝑥 − 1,0) (27) 

 

Let's build the homotopy of Eq. (26) in accordance with Eq. 

(11) as follows: 

 

𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑈(𝑥, 𝑡) = 𝑝 (
𝜕2𝑢

𝜕𝑥2
+ (𝑘 − 1)

𝜕𝑢

𝜕𝑥
− 𝑘𝑈) (28) 

 

Substituting Eqs. (13) and (14) into Eq. (28), 

where, 𝐻𝑛(𝑈) are He’s polynomials2which signify the 

nonlinear2terms. 

 

𝐻𝑛(𝑈) = 𝐻𝑛(𝑈0, 𝑈1, 𝑈2, … 𝑈𝑛) 

=
1

𝑛!

𝜕

𝜕𝑝𝑛
[𝑁 ∑ 𝑝𝑛𝑈𝑛

∞

𝑛=0

],   

n = 0, 1, 2, 3, . .. 

(29) 

 

The first few2components of He’s polynomialsare2given 

as2follows: 

 

𝐻𝑛(𝑈) =
𝜕2𝑈𝑛

𝜕𝑥2
+ (𝑘 − 1)

𝜕𝑈𝑛

𝜕𝑥
− 𝑘𝑈𝑛 , 𝑛 ∈ 𝑁 

 

The following expressions result from gathering the like 

power of p: 

𝑝0: 𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑈0(𝑥, 𝑡) = 0, 

𝑝1: 𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑈1(𝑥, 𝑡) =
𝜕2𝑈0

𝜕𝑥2 + (𝑘 − 1)
𝜕𝑈0

𝜕𝑥
− 𝑘𝑈0, 

𝑝2: 𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑈2(𝑥, 𝑡) =
𝜕2𝑈1

𝜕𝑥2
+ (𝑘 − 1)

𝜕𝑈1

𝜕𝑥
− 𝑘𝑈1, 

𝑝3: 𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑈3(𝑥, 𝑡) =
𝜕2𝑈2

𝜕𝑥2
+ (𝑘 − 1)

𝜕𝑈2

𝜕𝑥
− 𝑘𝑈2, 

⋮                     ⋮                         ⋮ 

𝑝𝑛: 𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑈𝑛(𝑥, 𝑡) =
𝜕2𝑈𝑛−1

𝜕𝑥2
+ (𝑘 − 1)

𝜕𝑈𝑛−1

𝜕𝑥
− 𝑘𝑈𝑛−1, 

 

Utilizing the in initial condition Eq. (27), we have the 

following after applying the operator ℐ𝑎
𝛼;𝜑

 on both sides of the 

previously described expressions: 
 

𝑝0: 𝑈0(𝑥, 𝑡) = max (𝑒𝑥 − 1,0), 

𝑝1: 𝑈1(𝑥, 𝑡)  = − max(𝑒𝑥, 0)
−𝑘(𝜑(𝑡) − 𝜑(𝑎))

α

Γ(𝛼 + 1)
+ max (𝑒𝑥

− 1,0)
−𝑘(𝜑(𝑡) − 𝜑(𝑎))

α

Γ(𝛼 + 1)
, 

𝑝2: 𝑈2(𝑥, 𝑡) = − max(𝑒𝑥, 0)
𝑘2(𝜑(𝑡)  − 𝜑(𝑎))

2α

Γ(2𝛼 + 1)
+ max (𝑒𝑥

− 1,0)
𝑘2(𝜑(𝑡)  − 𝜑(𝑎))

2α

Γ(2𝛼 + 1)
, 

𝑝3: 𝑈3(𝑥, 𝑡) = − max(𝑒𝑥, 0)
𝑘3(𝜑(𝑡)  − 𝜑(𝑎))

3α

Γ(3𝛼 + 1)
+ max (𝑒𝑥

− 1,0)
𝑘3(𝜑(𝑡)  − 𝜑(𝑎))

3α

Γ(3𝛼 + 1)
, 

  ⋮                     ⋮                         ⋮ 
 

In consequence, the solutions 𝑈(𝑥, 𝑡) are written in the form 

of: 
 

𝑈(𝑥, 𝑡) = 𝑈0(𝑥, 𝑡) + 𝑈1(𝑥, 𝑡) + 𝑈2(𝑥, 𝑡) + 𝑈3(𝑥, 𝑡)
+ ⋯ = max(𝑒𝑥 , 0) − max (𝑒𝑥, 0) 

(30) 

 

Lastly, we write infinite sums in terms of the Mittag-Leffler 

function. Eq. (8) looks like this: 

 

𝑈(𝑥, 𝑡) = 

max(𝑒𝑥, 0) (1 − 𝔼𝛼(−𝑘(𝜑(𝑡) − 𝜑(𝑎))
𝛼

)) 

+ max(𝑒𝑥 − 1,0) 𝔼𝛼(−𝑘(𝜑(𝑡) − 𝜑(𝑎))
𝛼

) 

(31) 

 

This solution leads us to the conclusion that Eq. (31). Has 

two significant special instances. Initially, assuming 𝜑(𝑡) = 𝑡, 

and  𝛼 = 1  (This is the fractional integral of Riemann-

Liouville) 𝑎 = 0. The exact solution in this case is as follows: 
 

𝑈(𝑥, 𝑡) = max(𝑒𝑥, 0) (1 − 𝔼𝛼(−𝑘𝑡)) 

+ max(𝑒𝑥 − 1,0) 𝔼𝛼(−𝑘𝑡) 
(32) 

 

Which is in full agreement with the results acquired by 

Edeki et al. [49] through the use of the projected 

differential1transformation1method (PDTM) and are alike in 

agreement2with the2solutions found by Saratha et al. [50] 

using fractional generalized homotopy analysis approach 

(FGHAM). On the other hand, if 𝜑(𝑡) = 𝑙𝑛 𝑡, (we have the 

Hadamard2fractional2integral) 𝑎 > 0 , Eq. (31) yields a 

solution that becomes: 
 

𝑈(𝑥, 𝑡) = max(𝑒𝑥, 0) (1 − 𝔼𝛼 (−𝑘 (𝑙𝑛
𝑡

𝑎
)

𝛼

)) 

+ max(𝑒𝑥 − 1,0) 𝔼𝛼 (−𝑘 (𝑙𝑛
𝑡

𝑎
)

𝛼

) 

(33) 

1565



 

 
(a) 

 
(b) 

 

Figure 1. The graphs of Eq. (33) different value of parameter 

α with, a=1, α=1, 0.85,0.65, 0.35, 0.1 
 

 
 

Figure 2. Surface shows the behavior of solution U(x, t) of 

application 1 using Eq. (33) with respect to t and x with α=1, 

α=0.85, α=0.65, α=0.35 

 

Solution plots of Eq. (33)  is shown in Figure 1 for the 

different fractional parameter settings of α=0.85, 0.65, 0.35, 

0.1 and 1, respectively. Financial pricing derivatives according 

to various fractional parameter settings (α=0.85, 0.65, 0.35, 

0.1 and 1) are shown in Figure 2. 

The convergence of the series solution of Eq. (26) is 

demonstrated by Table 1, which also displays numerical 

values for various values of α and φ(t) = lnt. They also show 

the absolute errors with respect to specific different values of 

t and α = 1, as well as the solution obtained by the homotopy 

perturbation method and the exact solution Eq. (32). 

 

Table 1. Numerical values of the approximate and exact 

solutions Eq. (32) to applications 1 for different values of 𝑡, 

and 𝑥 = 1, and α=1, α=0.85, α=0.65 
 

t 
α=1, φ(t)=t 

𝒖𝒆𝒙𝒂 𝒖𝑯𝑷𝑴 𝒆𝒓𝒓 = |𝒖𝒆𝒙𝒂 − 𝒖𝑯𝑷𝑴| 
1 2,71154388 2,71154388 0 

1,1 2,71419506 2,71419506 0 

1,2 2,71580308 2,71580308 0 

1,3 2,71677839 2,71677839 0 

1,4 2,71736995 2,71736995 0 

1,5 2,71772874 2,71772874 0 

1,6 2,71794637 2,71794637 0 

1,7 2,71807836 2,71807836 0 

1,8 2,71815842 2,71815842 0 

1,9 2,71820698 2,71820698 0 

2 2,71823643 2,71823643 0 

2,1 2,71825429 2,71825429 0 

2,2 2,71826513 2,71826513 0 

2,3 2,7182717 2,7182717 0 

2,4 2,71827568 2,71827568 0 

2,5 2,7182781 2,7182781 0 

2,6 2,71827957 2,71827957 0 

2,7 2,71828046 2,71828046 0 

2,8 2,718281 2,718281 0 

2,9 2,71828132 2,71828132 0 

3 2,71828152 2,71828152 0 

t 
α=1, φ(t)=lnt α=0.85, φ(t)=lnt α=0.65, φ(t)=lnt 

𝒖𝑯𝑷𝑴 𝒖𝑯𝑷𝑴 𝒖𝑯𝑷𝑴 

1 1,71828183 1,71828183 1,71828183 

1,1 2,09736051 2,21065749 2,38036384 

1,2 2,31640426 2,41000123 2,52698344 

1,3 2,44895275 2,51706844 2,59525552 

1,4 2,5323474 2,5803458 2,63311371 

1,5 2,58659459 2,62013549 2,65628103 

1,6 2,6229144 2,64633436 2,67143191 

1,7 2,6478522 2,66422438 2,68183678 

1,8 2,66535968 2,67681167 2,68925894 

1,9 2,67789572 2,68589403 2,6947178 

2 2,68703183 2,69259062 2,69883544 

2,1 2,69379664 2,69762186 2,70200824 

2,2 2,69887804 2,70146493 2,70449801 

2,3 2,70274506 2,70444383 2,70648293 

2,4 2,70572315 2,70678341 2,70808746 

2,5 2,70804183 2,70864272 2,70940048 

2,6 2,70986529 2,71013626 2,71048676 

2,7 2,71131266 2,71134774 2,7113943 

2,8 2,71247138 2,71233921 2,71215924 

2,9 2,71340643 2,71315731 2,71280919 

3 2,7141666 2,71383744 2,71336549 

 

4.2 Application 2 

 

Consider the following Fractional Black-Scholes equation: 

 

𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑈(𝑥, 𝑡) = −0.08(2 + 𝑠𝑖𝑛𝑥)2𝑥2
𝜕2𝑈

𝜕𝑥2
 

−0.06𝑥
𝜕𝑈

𝜕𝑥
+0.06𝑈, 0 < 𝛼 ≤ 1, 𝑡 ≥ 0, 𝑥 ∈ ℝ 

(34) 

 

with IC: 
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𝑈(𝑥, 0) = max(𝑥 − 25𝑒−0.06, 0) (35) 

 

The homotopy of Eq. (34) can be constructed as follows in 

accordance with Eq. (11). 

 

𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑈(𝑥, 𝑡) = 𝑝 (−0.08(2 + 𝑠𝑖𝑛𝑥)2𝑥2
𝜕2𝑈

𝜕𝑥2

− 0.06𝑥
𝜕𝑈

𝜕𝑥
+ 0.06𝑈) 

(36) 

 

 

Substituting Eqs. (13) and (14) into Eq. (36), where 𝐻𝑛(𝑈) 

are He’s polynomials which signify the nonlinear terms: 
 

𝐻𝑛(𝑈) = 𝐻𝑛(𝑈0, 𝑈1, 𝑈2, … 𝑈𝑛) =
1

𝑛!

𝜕

𝜕𝑝𝑛
[𝑁 ∑ 𝑝𝑛𝑈𝑛

∞

𝑛=0

], 

n = 0, 1, 2, 3, . .. 
 

The first few components of He’s polynomials are given as 

follows: 

 

𝐻𝑛(𝑈) = 0.08(2 + 𝑠𝑖𝑛𝑥)2𝑥2
𝜕2𝑈𝑛

𝜕𝑥2
+ 0.06𝑥

𝜕𝑈𝑛

𝜕𝑥
− 0.06𝑈𝑛 , 𝑛 ≥ 0 

(37) 

 

The following expressions result from gathering the like 

power of p: 
 

𝑝0: 𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑈0(𝑥, 𝑡) = 0, 𝑝𝑛: 𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑈𝑛(𝑥, 𝑡) = − (0.08(2 +

𝑠𝑖𝑛𝑥)2𝑥2 𝜕2𝑈𝑛−1

𝜕𝑥2 + 0.06𝑥
𝜕𝑈𝑛−1

𝜕𝑥
− 0.06𝑈𝑛−1) 

 

Utilizing the in initial condition Eq. (35), we have the 

following after applying the operator ℐ𝑎
𝛼;𝜑

 on both sides of the 

previously described expressions: 
 

𝑝0: 𝑈0(𝑥, 𝑡) = max (𝑥 − 25𝑒−0.06, 0), 

𝑝1: 𝑈1(𝑥, 𝑡) =
−𝑥(0.06(𝜑(𝑡) − 𝜑(𝑎))

α
)

Γ(𝛼 + 1)
+ max (𝑥

− 25𝑒−0.06, 0)
(0.06(𝜑(𝑡) − 𝜑(𝑎))

α
)

Γ(𝛼 + 1)
, 

𝑝2: 𝑈2(𝑥, 𝑡) =
−𝑥(0.06(𝜑(𝑡) − 𝜑(𝑎))

α
)

2

Γ(2𝛼 + 1)
+ max (𝑥

− 25𝑒−0.06, 0)
(0.06(𝜑(𝑡) − 𝜑(𝑎))

α
)

2

Γ(2𝛼 + 1)
, 

𝑝3: 𝑈3(𝑥, 𝑡) =
−𝑥(0.06(𝜑(𝑡) − 𝜑(𝑎))

α
)

3

Γ(3𝛼 + 1)
+ max (𝑥

− 25𝑒−0.06, 0)
(0.06(𝜑(𝑡) − 𝜑(𝑎))

α
)

3

Γ(3𝛼 + 1)
, 

  ⋮                     ⋮                         ⋮ 
 

In consequence, the solutions 𝑈(𝑥, 𝑡) are written in the form 

of: 𝑈(𝑥, 𝑡) = 𝑈0(𝑥, 𝑡) + 𝑈1(𝑥, 𝑡) + 𝑈2(𝑥, 𝑡) + 𝑈3(𝑥, 𝑡) + ⋯. 

Finally, we work on writing infinite sums in terms of the 

Mittag-Leffler function, hence the Eq. (8) is: 

 

𝑈(𝑥, 𝑡) = 𝑥 (1 − 𝔼𝛼(0.06(𝜑(𝑡)  − 𝜑(𝑎))
𝛼

)) 

+ 𝑚𝑎𝑥(𝑥 − 25𝑒−0.06, 0) 𝔼𝛼(0.06(𝜑(𝑡)  − 𝜑(𝑎))
𝛼

) 
(38) 

 

This solution leads us to the conclusion that Eq. (38) has 

two significant special instances. Initially, assuming φ(t)=t, 

and α=1 (This is the fractional integral of Riemann-Liouville) 

a=0. In this instance, the exact solution takes the form of: 
 

𝑈(𝑥, 𝑡) = 𝑥(1 − 𝑒(0.06𝑡)) 

+ 𝑚𝑎𝑥(𝑥 − 25𝑒−0.06, 0)𝑒(0.06𝑡) 
(39) 

 

These solutions of Eq. (39) have shown to be in agreement 

with the solutions found by [49], using PDTM, are comparable 

to the answers obtained by Saratha et al. [50] through the use 

of the FGHAM. If the Hadamard fractional integral is 𝜑(𝑡) =
𝑙𝑛𝑡 and 𝑎 > 0, the solution provided by Eq. (38) is as follows: 

 

𝑈(𝑥, 𝑡) = 𝑥 (1 − 𝑒
(0.06 𝑙𝑛(

𝑡
𝑎

)
𝛼

)
) 

+ max(𝑥 − 25𝑒−0.06, 0)𝑒
(0.06 𝑙𝑛(

𝑡
𝑎

)
𝛼

)
 

(40) 

 

Solution plots of Eq. (40) is shown in Figure 3 for the 

different fractional parameter settings of α=0.85, 0.65, 0.35, 

0.1 and 1, respectively. Financial pricing derivatives according 

to various fractional parameter settings (α=0.85, 0.65, 0.35, 

0.1 and 1) are shown in Figure 4. 
 

 
 

Figure 3. The graphs of Eq. (40) different value of parameter 

α with a=1, α=0.85, α=0.65, α=0.35, α=0.1 
 

 
 

Figure 4. Surface shows the behavior of solution U(x, t) of 

application 2 using Eq. (40) with respect to t and x with α=1, 

α=0.85, α=0.65, α=0.35 
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In Table 2, the convergence of the series solution of Eq. (34) 

is demonstrated, which displays the numerical values of the 

solution produced by the homotopy perturbation approach and 

the precise solution Eq. (39) as well as the absolute errors with 

regard to certain specific varied values of t and α = 1 . 

Additionally, numerical values for various values of α and 

φ(t) = lnt are provided. 

 

Table 2. Numerical values of the approximate and exact 

solutions Eq. (32) to Applications 1 for different values of t, 

and x=1, and α=1, α=0.85, α=0.65 

 

t 
α=1, φ(t)=t 

𝒖𝒆𝒙𝒂 𝒖𝑯𝑷𝑴 𝒆𝒓𝒓 = |𝒖𝒆𝒙𝒂 − 𝒖𝑯𝑷𝑴| 
1 -0,4946923 -0,4946923 0 

1,1 -0,5458137 -0,5458137 0 

1,2 -0,5972427 -0,5972427 0 

1,3 -0,6489812 -0,6489812 0 

1,4 -0,7010311 -0,7010311 0 

1,5 -0,7533942 -0,7533942 0 

1,6 -0,8060725 -0,8060725 0 

1,7 -0,8590677 -0,8590677 0 

1,8 -0,9123819 -0,9123819 0 

1,9 -0,966017 -0,966017 0 

2 -1,0199748 -1,0199748 0 

2,1 -1,0742573 -1,0742573 0 

2,2 -1,1288665 -1,1288665 0 

2,3 -1,183804 -1,183804 0 

2,4 -1,2390728 -1,2390728 0 

2,5 -1,2946739 -1,2946739 0 

2,6 -1,3506096 -1,3506096 0 

2,7 -1,4068819 -1,4068819 0 

2,8 -1,4634928 -1,4634928 0 

2,9 -1,5204445 -1,5204445 0 

3 -1,5777389 -1,5777389 0 

t 
α=1, φ(t)=lnt α=0.85, φ(t)=lnt α=0.65, φ(t)=lnt 

𝒖𝑯𝑷𝑴 𝒖𝑯𝑷𝑴 𝒖𝑯𝑷𝑴 

1 0 0 0 

1,1 -0,0458799 -0,0653548 -0,1048363 

1,2 -0,0879947 -0,1137688 -0,1603625 

1,3 -0,1269312 -0,1554157 -0,2037045 

1,4 -0,1631479 -0,1924510 -0,2399895 

1,5 -0,1970099 -0,2259771 -0,2714418 

1,6 -0,2288128 -0,2566866 -0,2993003 

1,7 -0,2587994 -0,2850611 -0,3243498 

1,8 -0,2871717 -0,3114569 -0,3471284 

1,9 -0,3140992 -0,3361478 -0,3680254 

2 -0,3397260 -0,3593512 -0,3873336 

2,1 -0,3641756 -0,3812429 -0,4052800 

2,2 -0,3875543 -0,4019682 -0,4220449 

2,3 -0,4099547 -0,4216484 -0,4377740 

2,4 -0,4314576 -0,4403864 -0,4525872 

2,5 -0,4521342 -0,4582700 -0,4665843 

2,6 -0,4720476 -0,4753751 -0,4798495 

2,7 -0,4912536 -0,4917678 -0,4924543 

2,8 -0,5098022 -0,5075058 -0,5044604 

2,9 -0,5277383 -0,5226400 -0,5159211 

3 -0,5451022 -0,5372155 -0,5268826 

 

 

5. CONCLUSION 

 

In light of the findings presented in this research paper, the 

time-Fractional Black-Scholes European option pricing 

equation with boundary condition for a European option 

problem has been effectively solved using the homotopy 

perturbation technique and the 𝜑 − Caputo Fractional 

derivative. Furthermore, this paper offers two instances that 

demonstrate the method's applicability and dependability 

under Caputo-Hadamard memory. Nonetheless, the results 

show that homotopy perturbation method is a strong and 

effective method for determining both precise and 

approximate answers to nonlinear fractional partial differential 

equations. The method's ability to reduce the amount of 

computing labour while retaining a high level of precision in 

the numerical result is crucial. Taking into account the Caputo-

Hadamard fractional derivative, we visually portray the 

solutions to these issues using MATLAB to generate the 

graphs. 
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NOMENCLATURE 

 

𝜑 growing function 

𝑓 be an integrable function 

T  maturity date  

k the exercise price 

𝑟(𝑡) the risk-free interest rate 

𝜎(𝑥, 𝑡)  the volatility function of the underlying asset 

𝑈(𝑥, 𝑡) the price of a European call option at asset 

price x and at time t 

Γ(. ) gamma function 

ℐ𝑎
𝛼;𝜑

 fractional integration operator 

𝒟𝑡
𝐶

𝑎
𝛼;𝜑

 Caputo fractional derivative 

𝒟𝑡
𝐶

𝑎
𝛼;𝜑

𝑢(𝑥, 𝑡) derivative of 𝑢(𝑥, 𝑡) in the Caputo sense 

R and N R and N denote linear and nonlinear 

differential operators 

𝑔(𝑥, 𝑡) stands for the source term 

𝐻𝑛(𝑢) He’s polynomials 

𝑎 real number 

𝛼 order derivative 
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