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This study aims to analyze the stability of conditional variance and evaluate the 

productive performance of NAGARCH models when applied to natural gas future price. 

The research relied on the local linear approximation technique to transform nonlinear 

models into linear differential equations, with hybrid model combining NAGARCH and 

ARMA applied to improve the forecast. Monthly historical data of natural gas futures 

(May 1990- February 2022) were used to evaluate the performance. The results showed 

that the NAGARCH(1,1) model was the most stable according to the AIC, and BIC 

criteria, and was used with ARIMA(1,0,1) to create a hybrid model. However, the 

hybrid model suffered from poor predictive performance when comparing actual values 

with forecasts. The study highlights the importance of incorporating advanced methods 

to improve forecasts and reduce instability caused by price fluctuations. 
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1. INTRODUCTION

The stochastic process is described as second order 

stationary that is meant a variance and mean in the process are 

fixed is not reliant on time 𝑡 , the majority of significant 

condition for random error all the time model series ought to 

be the white noise process with constant variance and zero 

mean and uncorrelated. This model was discussed by a number 

of researchers and suggested some nonlinear time series model 

referred to as autoregressive conditional, heteroscedastic 

avoidance volatility in data, that causes dependency mean and 

variance on time 𝑡. The basic model suggestion in 1982 by R. 

Engle abbreviated as ARCH [1]. 

Quite a few researchers have studied and extended the 

stability of these extension ARCH and GARCH models. 

Glosten et al. [2] proposed GJR-GARCH. 

Non-linear Asymmetric Generalized Autoregressive 

Conditional Heteroscedasticity Variance model in 1992 which 

was short (NAGARCH model) proposed the NAGARCH 

model as an expansion of GARCH model [3]. 

Motivation for a study: 

• Natural gas price volatility is of strategic importance to

global financial markets and energy sectors, directly

affecting investment decisions and economic policies.

These volatility makes it necessary to develop accurate

models to analyze and predict them. In this context,

GARCH models are the most widely used to study

conditional variance. However, traditional models

(ARCH and GARCH) lack the flexibility to deal with

asymmetry in the impact of positive and negative

stocks, with led to the development of models such as

EGARCH, and GJR-GARCH.

• The NAGARCH model was chosen because it shows

advanced ability to capture asymmetric variance and

complex market dynamics, making it more suitable for

analyzing natural gas prices, which are highly affected

by unexpected events such as geopolitical crises and

weather.

The research aims to develop and analyze the stability of the 

NAGARCH model to determine the optimal conditions for 

stability and apply the NAGARCH model to natural gas price 

data to verify the predictive performance in addition to 

integrating the NAGARCH model with ARIMA to create a 

hybrid model and analyze its performance compared to 

individual models. 

The importance of the research is in providing accurate tools 

for analyzing natural gas price fluctuations, which enables 

decision-makers in the energy and finance sectors to predict 

fluctuations and make informed decisions. It also contributes 

to bridging the research gap by expanding the uses of 

NAGARCH models and analyzing their stability, as research 

combines NAGARCH model with ARIMA model, opening 

new horizons in hybrid models for analyzing time data. 

NAGARCH was chosen compared to other models because: 

dealing with asymmetry: it’s characterized by its ability to deal 

with the effects of different shocks on the conditional variance, 

provides more advanced techniques for analyzing the 

dynamics of volatile markets, and previous studies have 

proven its effectiveness in analyzing commodities and markets 

that change in a manner similar to natural gas. 

NAGARCH(Q,P) models will a new stability conditions by 

using the local linear approximation technique and converting 

the nonlinear model into a difference equation with fixed 

coefficients proposed by Ozaki [4] when he detect the 
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exponential autoregressive model's stability condition 

(EXPAR). Ali and Mohammad [5] found stability conditions 

of limit cycle for Gompertz Autoregressive model, 

Mohammad and Mudhir [6] found the stability of the 

EGARCH model, stability of GJR-GARCH model by Noori 

and Mohammad [7], stability conditions for a nonlinear time 

series model [8], N-SIR by Hussien and Azher [9], and 

stability exponential double autoregressive model [10]. 

This study including three sections: Section 1 including 

introduction, Section 2 including some primaries and theorems 

with its proving to find a stability of NAGARCH model, while 

Section 3 including application to apply the conditions which 

was finds in Section 2. 

 

 

2. PRELIMINARIES 

 

The discrete dynamical systems outlined by the system can 

be signified as a nonlinear time series model in discrete time. 

 

𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝑃, 𝑒𝑡) (1) 

 

where, f: nonlinear function, 𝑒𝑡 : white noise process 

(𝑒𝑡~𝑖𝑖𝑑 𝑁(0, 𝜓𝑒
2)). 

The Autoregressive Conditional Heteroscedasticity 

Variance model shortly (ARCH model) that Robert Engle 

proposed with the formulation: 

 

𝑥𝑡 = 𝜓𝑡𝑒𝑡 where 𝑒𝑡~𝑖𝑖𝑑 𝑁(0,1) 

 

𝜓𝑡
2 = 𝑤 + ∑ 𝜂𝑖𝑥𝑡−𝑖

2

𝐾

𝑖=1

 (2) 

 

where, 𝑤, ∑ 𝜂𝑖
𝑄
𝑖=1 : parameters of model. 𝜓𝑡

2 : conditional 

variance [11]. 

A martingale difference that is implemented in this model 

 

𝐸(𝑥𝑡+1
2 𝛶𝑡⁄ ) = 𝜓𝑡

2 (3) 

 

where, 𝛶𝑡  is filter of a random variable (𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝐾) 

[12], by using dynamical system to convey (2) as: 

 

𝜓𝑡
2 = 𝑓(𝑤, 𝜓𝑡−1

2 , 𝜓𝑡−2
2 , … , 𝜓𝑡−𝐾

2 ) (4) 

 

The local linearization approach (LLA) focuses on the 

stability of a non-zero fixed point of the original dynamic 

system in order to investigate and converge a nonlinear 

dynamical system to a linear dynamical system. A non-zero 

singular point 𝜁 of a function 𝑓. If their vicinity is devoid of 

any other fixed points. The necessary and sufficient condition 

for 𝜁 is met [13]: 

 

𝜁 = 𝑓(𝜁) (5) 

 

This method combines the effect of slightly disturbing a 

non-zero singular point ζ in its vicinity with a sufficiently tiny 

radius 𝜁𝑡  to ensure that 𝜁𝑡
𝑛 → 0 for n≥2. The impact of this 

little discomfort is caused by substituting 𝜁 + 𝜁𝑡−𝑖 for 1 ≤ 𝑖 ≤
𝐾  in state 𝜓𝑡−𝑖

2  hence, we use the following variational 

equation [14]: 

 

𝜓𝑡−𝑖
2 = 𝜁𝑡−𝑖 + 𝜁  for  1 ≤ 𝑖 ≤ 𝐾 (6) 

 

Once this variation equation comes in Eq. (4), we can next 

add a linear difference equation of order K in terms of 

𝜁𝑡 , 𝜁𝑡−1, 𝜁𝑡−2, … , 𝜁𝑡−𝐾 . Using the roots of its characteristic 

equation, we can debate the stability of the linear difference 

equation. The following diagram represents the flowchart for 

studying the stability of nonlinear models of time series. 

Box-Jenkins methodology was developed by Box and 

Jenkins in 1970 with the aim of finding the most appropriate 

model and using it for forecasting, although this methodology 

was mentioned in many sources and divided into five or six 

stages, but we can summarize this method as follows: Model 

Identification, Parameters Estimation, Diagnostic Checking 

and Forecast [15]. 

 

Lemma 2.1 [16] 

Let 𝜂1, 𝜂2, … , 𝜂𝑟 ∈ 𝑅+, the subsequent polynomial: 

 

𝑃(𝜔) = 1 − ∑ 𝜂𝑖

𝑟

𝑖=1

𝜔𝑖 

 

has no roots within or on the unit circle iff 𝑃(𝜔) > 1. 

In 1986 suggested GARCH(Q,P) has the formula below 

[17]: 

 

𝑥𝑡 = 𝜓𝑡𝑒𝑡 

 

𝜓𝑡
2 = 𝑤 + ∑ 𝜂𝑖

𝑄

𝑖=1

𝑥𝑡−𝑖
2 + ∑ 𝛿𝑗

𝑃

𝑗=1

𝜓𝑡−𝑗
2  (7) 

 

Figure 1 shows the flowchart of the stability of nonlinear 

models of time series in dynamic method. 

 

 
 

Figure 1. Flowchart for the study of the stability of nonlinear 

models of time series 
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Numerous models in which amplification is used and 

intended of the GARCH model. But NAGARCH’s model 

possesses the form: 

 

𝑥𝑡 = 𝜓𝑡𝑒𝑡 

 

𝜓𝑡
2 = 𝑤 + ∑ 𝜂𝑖(𝑥𝑡−𝑖 − 𝛾𝑖𝜓𝑡−𝑖)

2

𝑄

𝑖=1

+ ∑ 𝛿𝑗

𝑃

𝑗=1

𝜓𝑡−𝑗
2  (8) 

 

𝜓𝑡
2 = 𝑤 + ∑ 𝜂𝑖𝑥𝑡−𝑖

2 − 2𝜂𝑖 𝛾𝑖  𝑥𝑡−𝑖  𝜓𝑡−𝑖 + 𝛾𝑖
2 𝜓𝑡−𝑖

2

𝑄

𝑖=1

+ ∑ 𝛿𝑗

𝑃

𝑗=1

𝜓𝑡−𝑗
2  

 

𝜓𝑡
2 = 𝑤 + ∑ 𝜂𝑖(𝑥𝑡−𝑖

2 − 2 𝛾𝑖  𝜓𝑡−𝑖
2  𝑒𝑡−𝑖 + 𝛾𝑖

2 𝜓𝑡−𝑖
2 )

𝑄

𝑖=1

+ ∑ 𝛿𝑗

𝑃

𝑗=1

𝜓𝑡−𝑗
2  

(9) 

 

Iff the NAGARCH process becomes stationary 

 

[∑ 𝜂𝑖(1 + 𝛾𝑖
2) + ∑ 𝛿𝑗] < 1

𝑃

𝑗=1

𝑄

𝑖=1

 (10) 

 

In this case the variance is 𝜓𝑥
2 = 𝐸(𝑥𝑡

2 𝛶𝑡⁄ ) = 𝐸(𝑥𝑡−𝑖
2 𝛶𝑡⁄ ) 

for 𝑖 = 1,2, . . . , 𝑄 , according to the supposition that the 

stochastic process of squares {𝑥𝑡
2} is stationary. 

Next, on both sides of the equation, the conditional 

expectation has to be included in the filter 𝛶𝑡 that we derive 

Eq. (9). 

 

E(𝜓𝑡
2 𝛶𝑡⁄ ) 

= 𝐸(𝑤 𝛶𝑡⁄ ) + ∑ 𝜂𝑖  E((𝑥𝑡−𝑖
2 − 2 𝛾𝑖  𝜓𝑡−𝑖

2  𝑒𝑡−𝑖 + 𝛾𝑖
2 𝜓𝑡−𝑖

2 ) 𝛶𝑡⁄ )

𝑄

𝑖=1

+ ∑ 𝛿𝑗 E(𝜓𝑡−𝑗
2 𝛶𝑡⁄ )

𝑃

𝑗=1

 

 

𝜓𝑥
2 = 𝑤 + ∑ 𝜂𝑖(1 + 𝛾𝑖

2)𝜓𝑥
2

𝑄

𝑖=1

+ ∑ 𝛿𝑗 𝜓𝑥
2

𝑃

𝑗=1

 (11) 

 

So the unconditional variance of the model in Eq. (4) is 

provided by 

 

𝜓𝑥
2 =

𝑤

1 − [∑ 𝜂𝑖(1 + 𝛾𝑖
2)𝑄

𝑖=1 + ∑ 𝛿𝑗
𝑃
𝑗=1 ]

 (12) 

 

Of the unconditional variance 𝜓𝑥
2 exists if 

 

[∑ 𝜂𝑖(1 + 𝛾𝑖
2) + ∑ 𝛿𝑗

𝑃

𝑗=1

𝑄

𝑖=1

] < 1 

 

Subsequently, as per reference [18], the NAGARCH 

model's stationarity required that the conditional variance 𝜓𝑡
2 

converges the unconditional variance 𝜓𝑥
2. By using LLA 𝑥𝑡 =

𝜓𝑡𝑒𝑡, as long as: 

 

𝐸(𝑥𝑡) = 𝐸(𝜓𝑡  𝑒𝑡) = 𝐸(𝑒𝑡). 𝐸(𝜓𝑡) = 𝐸(𝜓𝑡). 0 = 0 

𝑉𝑎𝑟(𝑥𝑡) = E(𝑥𝑡
2) = E(𝑒𝑡

2. 𝜓𝑡
2) = 𝜓𝑡

2. E(𝑒𝑡
2) = 𝜓𝑡

2. 1 = 𝜓𝑡
2 

 

We ensure that it is occupied a conditional expectation and 

paid attention to the filtering 𝛶𝑡−𝑖  for 𝑖 = 1,2, . . . , 𝑄  on both 

sides of the model Eq. (9). 

 

E(𝜓𝑡
2 𝛶𝑡⁄ ) = 𝐸(𝑤 𝛶𝑡⁄ ) 

+ ∑ 𝜂𝑖 E((𝑥𝑡−𝑖
2 − 2 𝛾𝑖  𝜓𝑡−𝑖

2  𝑒𝑡−𝑖 + 𝛾𝑖
2 𝜓𝑡−𝑖

2 ) 𝛶𝑡−𝑖⁄ )

𝑄

𝑖=1

 

+ ∑ 𝛿𝑗 E(𝜓𝑡−𝑗
2 𝛶𝑡−𝑗⁄ )

𝑃

𝑗=1

 

𝜓𝑡
2 = 𝑤 + ∑ 𝜂𝑖 . 𝜓𝑡−𝑖

2

𝑄

𝑖=1

+ ∑ 𝜂𝑖 . 𝛾𝑖
2. 𝜓𝑡−𝑖

2

𝑄

𝑖=1

+ ∑ 𝛿𝑗. 𝜓𝑡−𝑗
2

𝑃

𝑗=1

 

 

𝜓𝑡
2 = 𝑤 + ∑ 𝜂𝑖 𝜓𝑡−𝑖

2

𝑄

𝑖=1

+ ∑ 𝜂𝑖. 𝛾𝑖
2. 𝜓𝑡−𝑖

2

𝑄

𝑖=1

+ ∑ 𝛿𝑗 𝜓𝑡−𝑗
2

𝑃

𝑗=1

 

(13) 

 

By put 𝜓𝑡
2 = 𝜓𝑡−1

2 = 𝜓𝑡−2
2 = ⋯ = 𝜓𝑡−𝑄

2 = 𝜓𝑡−𝑃
2 = 𝜁  to 

get a fixed point 

 

𝜁 = 𝑤 + [∑ 𝜂𝑖(1 + 𝛾𝑖
2)

𝑄

𝑖=1

+ ∑ 𝛿𝑗

𝑃

𝑗=1

] 𝜁 (14) 

 

∴  𝜁 =
𝑤

[1 − ∑ 𝜂𝑖(1 + 𝛾𝑖
2)𝑄

𝑖=1 − ∑ 𝛿𝑗
𝑃
𝑗=1 ]

 

 

Then the non-zero singular point satisfies the condition in 

Eq. (5) of the NAGARCH model is 𝜓𝑥
2  (unconditional 

variance). 

Let 𝑟 = max (𝑄, 𝑃) then when 𝑄 > 𝑃 put 𝜂𝑟(1 + 𝛾𝑟
2) = 0 

for 𝑟 = 𝑃, 𝑃 + 1, … , 𝑄 − 1 if else put 𝛿𝑟 = 0 for 𝑟 = 𝑄, 𝑄 +
1, … , 𝑃 − 1 then NAGARCH becomes: 

 

𝜓𝑡
2 = 𝑤 + ∑ 𝜂𝑖(𝑥𝑡−𝑖

2 − 2 𝛾𝑖  𝜓𝑡−𝑖
2  𝑒𝑡−𝑖 + 𝛾𝑖

2 𝜓𝑡−𝑖
2 )

𝑄

𝑖=1

+ ∑ 𝛿𝑗

𝑃

𝑗=1

𝜓𝑡−𝑗
2  

 

Of the unconditional variance 

 

𝜁 = 𝜓𝑥
2 =

𝑤

[1 − ∑ [𝜂𝑖(1 + 𝛾𝑖
2) + 𝛿𝑖 

𝑟
𝑖=1 ]

 (15) 

 

Proposition 2.1: 

The NAGARCH model's non-zero singular point is stable 

iff 
 

[∑ 𝜂𝑖(1 + 𝛾𝑖
2) + 𝛿𝑖

𝑟

𝑖=1

] < 1 
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Proof: 

In the vicinity of a non-zero singular point with a radius of 

𝜁𝑡  that is sufficiently small to cause 𝜁𝑡
𝑛 → 0  for 𝑛 ≥ 2 , we 

substitute 𝜁 + 𝜁𝑡−𝑖  in state 𝜓𝑡−𝑖
2  for 𝑖 = 0,1 , … , 𝑟.  Eq. (13) 

gives: 

 

𝜁 + 𝜁𝑡 = 𝑤 + ∑(𝜂𝑖(1 + 𝛾𝑖
2) + 𝛿𝑖) (𝜁 + 𝜁𝑡−𝑖)

𝑟

𝑖=1

 

 

𝜁 + 𝜁𝑡 = 𝑤 + ∑(𝜂𝑖(1 + 𝛾𝑖
2) + 𝛿𝑖)

𝑟

𝑖=1

𝜁

+ ∑(𝜂𝑖(1 + 𝛾𝑖
2) + 𝛿𝑖)

𝑟

𝑖=1

𝜁𝑡−𝑖 

 

𝜁 [1 − ∑(𝜂𝑖(1 + 𝛾𝑖
2) + 𝛿𝑖)

𝑟

𝑖=1

] − 𝑤 + 𝜁𝑡

= ∑(𝜂𝑖(1 + 𝛾𝑖
2) + 𝛿𝑖)

𝑟

𝑖=1

𝜁𝑡−𝑖 

 

But 𝜁[1 − ∑ (𝜂𝑖(1 + 𝛾𝑖
2) + 𝛿𝑖)

𝑟
𝑖=1 ] = 𝑤 from Eq. (15) 

 

𝜁𝑡 = ∑(𝜂𝑖(1 + 𝛾𝑖
2) + 𝛿𝑖)

𝑟

𝑖=1

𝜁𝑡−𝑖 (16) 

 

Eq. (16) is a fixed coefficient The characteristic equation 

and the linear difference Eq. (16), on the other hand, can be 

expressed as 

 

𝜆r − ∑(𝜂𝑖(1 + 𝛾𝑖
2) + 𝛿𝑖) 

𝑟

𝑖=1

𝜆r−i = 0 (17) 

 

The non-zero singular point is stable, i.e., |𝜑𝑖| < 1 for 𝑖. =
0,1,2, … , 𝑟. Where 𝜑𝑖 is the root of characteristic equation for 

Eq. (17). From Eq. (17) 

 

𝜆𝑟 (1 − ∑(𝜂𝑖(1 + 𝛾𝑖
2) + 𝛿𝑖)

𝑟

𝑖=1

𝜆−i) = 0 

 

𝑃 (
1

𝜆
) = 1 − ∑ (𝜂𝑖(1 + 𝛾𝑖

2) + 𝛿𝑖)
𝑟
𝑖=1 (

1

𝜆
)

𝑖

= 0 (since 

𝜆𝑟 ≠ 0) 
(18) 

 

then by Lemma (2.1) we get: inside and on the unit cycle, the 

polynomial (18) has no roots if and only if 𝑃 (
1

𝜆
) > 0 

 

∵ |
1

𝜆𝑖
| > 1 for 𝑖. = 0,1,2, … , 𝑟 

∴ |𝜆𝑖| < 1 for 𝑖. = 0,1,2, … , 𝑟 

 

and on account of 𝑃(1). > 0 then 

 

[1 − ∑(𝜂𝑖(1 + 𝛾𝑖
2) + 𝛿𝑖)

𝑟

𝑖=1

] > 0 

 

which implies that ∑ (𝜂𝑖(1 + 𝛾𝑖
2) + 𝛿𝑖)

𝑟
𝑖=1 < 1. ∎ 

 

Proposition 2.2: 

If the NAGARCH(1,1) model possesses a limit cycle of 

period 𝑘 > 0 then this limit cycle is orbitally stable if: 

|∏ [
1𝜓𝑡+𝑗−1

𝜓𝑡+𝑗

]

𝑘

𝑗=1

| <
1

|𝜂1(1 + 𝛾1
2) + 𝛿1|𝑘

 

 

Proof: 

Assume the model has a limit cycle with period k, i.e., 

 

𝜓𝑡
2, 𝜓𝑡+1

2 , 𝜓𝑡+2
2 , … , 𝜓𝑡+𝑘

2 = 𝜓𝑡
2 

 

Each point in a limit cycle is in the neighborhood of another 

with small radius enough 𝜁𝑡  such that 𝜁𝑡
𝑛 → 0  for 𝑛 ≥ 2 

placed 𝜓𝑡 = 𝜓𝑡 + 𝜁𝑡, 𝜓𝑡−1 = 𝜓𝑡−1 + 𝜁𝑡−1. 

The NAGARCH’s model is given by: 

 

𝜓𝑡
2 = 𝑤 + 𝜂1(𝑥𝑡−1

2 − 2 𝛾1 𝜓𝑡−1
2  𝑒𝑡−1 + 𝛾1

2 𝜓𝑡−1
2 ) + 𝛿1 𝜓𝑡−1

2  

 

By combining the conditional expectations of both parties 

in terms of filters 𝛶𝑡 , 𝛶𝑡−1, we get: 

 

𝜓𝑡
2 = 𝑤 + 𝜂1(1 + 𝛾1

2)𝜓𝑡−1
2 + 𝛿1 𝜓𝑡−1

2  

 

𝜓𝑡
2 = 𝑤 + (𝜂1(1 + 𝛾1

2) + 𝛿1) 𝜓𝑡−1
2  

 

(𝜓𝑡 + 𝜁𝑡)2 = 𝑤 + (𝜂1(1 + 𝛾1
2) + 𝛿1)(𝜓𝑡−1 + 𝜁𝑡−1)2 

 

𝜓𝑡
2 + 𝜁𝑡

2 + 2𝜓𝑡𝜁𝑡 = 𝑤 + (𝜂1(1 + 𝛾1
2) + 𝛿1)(𝜓𝑡−1

2 + 𝜁𝑡−1
2

+ 2𝜓𝑡−1𝜁𝑡−1) 

 

By our assuming 𝜁𝑡
2, 𝜁𝑡−1

2 → 0 

 

𝜓𝑡
2 + 2𝜓𝑡𝜁𝑡 = 𝑤 + (𝜂1(1 + 𝛾1

2) + 𝛿1)(𝜓𝑡−1
2 + 2𝜓𝑡−1𝜁𝑡−1) 

 

𝜓𝑡
2 + 2𝜓𝑡𝜁𝑡 = 𝑤 + (𝜂1(1 + 𝛾1

2) + 𝛿1)(𝜓𝑡
2 + 2𝜓𝑡−1𝜁𝑡−1) 

 

𝜓𝑡
2 + 2𝜓𝑡𝜁𝑡 = 𝑤 + (𝜂1(1 + 𝛾1

2) + 𝛿1)𝜓𝑡
2

+ (𝜂1(1 + 𝛾1
2) + 𝛿1)2𝜓𝑡−1𝜁𝑡−1 

 

𝜓𝑡
2[1 − (𝜂1(1 + 𝛾1

2) + 𝛿1)] − 𝑤 + 2𝜓𝑡𝜁𝑡

= (𝜂1(1 + 𝛾1
2) + 𝛿1)2𝜓𝑡−1𝜁𝑡−1 

 

But, 𝑤 = 𝜓𝑡
2[1 − (𝜂1(1 + 𝛾1

2) + 𝛿1)] we get: 

 

2𝜓𝑡𝜁𝑡 = (𝜂1(1 + 𝛾1
2) + 𝛿1)2𝜓𝑡−1𝜁𝑡−1 

 

𝜁𝑡 =
(𝜂1(1 + 𝛾1

2) + 𝛿1)

𝜓𝑡

𝜓𝑡−1𝜁𝑡−1 (19) 

 

From Eq. (19) and after 𝑘 times, we get: 

 

𝜁𝑡 = [
(𝜂1(1 + 𝛾1

2) + 𝛿1)

𝜓𝑡−𝑘

1𝜓𝑡−𝑘−1] 𝜁𝑡−𝑘 

But 

 

𝜁𝑡−𝑘 = [
(𝜂1(1 + 𝛾1

2) + 𝛿1)

𝜓𝑡−𝑘

1𝜓𝑡−(𝑘+1)] 𝜁𝑡−(𝑘+1) 

𝜁𝑡+𝑘 = ∏ [
(𝜂1(1 + 𝛾1

2) + 𝛿1)

𝜓𝑡+𝑗

𝜓𝑡+𝑗−11] 𝜁𝑡

𝑘

𝑗=1
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∴  
𝜁𝑡+𝑘

𝜁𝑡

= ∏ [
(𝜂1(1 + 𝛾1

2) + 𝛿1)

𝜓𝑡+𝑗

𝜓𝑡+𝑗−11]

𝑘

𝑗=1

 

 

The Eq. (19) is a linear difference equation with a variable 

coefficient of the first order and its solution is a very difficult 

process but what interests us is that solution to the difference 

equation converge to zero as 𝑡 gets larger 𝑡 → ∞, this solution 

is convergence, then this limit cycle is orbitally stable. This 

convergence only takes place if and only if the following 

condition is holding: 

 

|
𝜁𝑡+𝑘

𝜁𝑡

| < 1 (20) 

 

From condition (20) and Eq. (19) the NAGARCH (1,1) is 

orbitally stable if: 

 

|
𝜁𝑡+𝑘

𝜁𝑡

| = |∏ [
(𝜂1(1 + 𝛾1

2) + 𝛿1)

𝜓𝑡+𝑗

𝜓𝑡+𝑗−11]

𝑘

𝑗=1

| < 1 

 

|𝜂1(1 + 𝛾1
2) + 𝛿1|𝑘 |∏ [

𝜓𝑡+𝑗−11

𝜓𝑡+𝑗1

]

𝑘

𝑗=1

| < 1 

 

|∏ [
𝜓𝑡+𝑗−1

𝜓𝑡+𝑗

]

𝑘

𝑗=1

| <
1

|𝜂1(1 + 𝛾1
2) + 𝛿1|𝑘

. ∎ 

 

The NAGARCH model has no limit cycle. 

 

 

3. APPLICATION 

 

3.1 Data descriptions 

 

The data used in our study represents monthly mean of 

historical data natural gas contracts from: MAY.1990-

FEB.2022 by 381 views. Data availability the data used to 

support the finding of this study is available on the following 

website https://sa.investing.com/commodities/natural-gas-

historical-data. 

 

3.2 Modeling and building the NAGARCH model 

 

The modeling and programming process NAGARCH’s 

model is applied to the data series. We note and verify that the 

predicted conditional variance value approaches the value of 

the unconditional variance. Parameters estimation by AIC, and 

BIC criteria, and then predict the value of the conditional 

variance, it is worth noting that to study the GARCH family 

models, we will follow the Box-Jenkins methodology, 

provided that the heterogeneity is detected; Because the 

architecture of GARCH models is very close in syntax to 

ARMA models. 

Analysis Steps: 

• Identify the NAGARCH model, which including some 

stages firstly using Box-Jenkins Methodology, secondly 

examine the time series and its properties using ACF and 

PACF, third determine the best model order using AIC 

and BIC [19, 20], forth test the fit model using series 

residual analysis. 

• Build the hybrid model (ARIMA-NAGARCH): use 

stage-1 with the ARIMA model to capture seasonal and 

stochastic trends, and stage-2 apply the NAGARCH 

model to the ARIMA residuals to analyze conditional 

variance, finally combine the results of two models to 

predict future values. 

• Test stability: apply the local linear approximation to 

analyze the stability of fixed points in the model, or test 

for the presence of stationary limit cycle and confirm their 

stability. 

• Evaluate the performance of models: compare the 

performance using AIC and BIC, with test the forecasts 

accuracy using the validation set (12 months of excluded 

data), and measure MSE [21-23], to compare actual 

values to predictions. 

• Use the selection models to predict 250 future time steps, 

and verify the predicts values are within the confidence 

interval (±1.96√𝑀𝑆𝐸). 

(1) We enter the data into the program used to create 

the data sequence, where the Figure 2 is represented 

by monthly mean of historical data natural gas 

contracts. 

 

 
 

Figure 2. Represented monthly mean of historical data natural gas contracts 
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It is noticeable when the time series is drawn that it follows 

irregular components, that is, the series of result of unexpected 

and irregular effects, and also does not repeat a specific 

pattern, the diagram helps visualize the process of identifying 

fixed points and checking their stability. Then follows the step 

of drawing the time series to convert the series to a return 

series and we do this conversion by using the mathematical 

formula. 

 

𝑟𝑡 = log (
𝑥𝑡

𝑥𝑡−1

) = log 𝑥𝑡 − log 𝑥𝑡−1 

 

where, 𝑟𝑡 is returns series and 𝑥𝑡 , 𝑥𝑡−1 are observation at 𝑡, 𝑡 −
1 respectively. Figure 3 expresses the series of returns. 

 

 
 

Figure 3. The series of returns 

 

Figure 3 shows the general trends and fluctuations in natural 

gas prices over the study period. The series shows random 

fluctuations and no clear seasonal pattern. 

Although the time series possessed stability, it still suffers 

from some correlations that we have to remove. This is evident 

by drawing the ACF and PACF functions as in Figure 4 where, 

the correlations appear outside the confidence intervals 

specified ±
1.96

√𝑛
 where 𝑛 is the sample size [24]. 

 

 
(a) 

 
(b) 

 

Figure 4. ACF and PACF functions for the time series 

 

We can notice from the previous figure that there are a 

number of lags outside the boundaries of the confidence 

interval that need to be addressed before starting the modeling 

and forecasting process [25]. 

(2) To find out whether there is an effect of variance 

heterogeneity by finding the error-squared series of a 

return’s series out of the rapport 𝑒𝑡 = (𝑟𝑡 − �̅�𝑡)2, where 

�̅�𝑡 is the mean of the returns. 

 

 
 

Figure 5. The error-squared series of the return’s series 

 

 
(a) 

 
(b) 

 

Figure 6. ACF and PACF functions for the error-squared 

series of the return’s series 

 

Figure 5 shows the squared errors of the time series of 

returns. The series exhibits non-stationary variance, indicating 

heteroscedasticity, Figure 6 shows values outside the 

confidence intervals, indicating conditional heteroscedasticity, 

we notice that some values still fall outside the confidence 

interval in the ACF and PACF functions at the time differences 

(Lags) for 𝑘 = 1,2. 

(3) To detect attacks in return series, we use the Ljung-

Box test to measure the effect of heteroscedasticity  

where the “Table 1” represents the test results. 

From Table 1, it is noted that at most lags, the p-value is less 

than 0.05, indicating that there is autocorrelation in the series. 

This means that the data needs further processing to remove 

autocorrelation before modeling. 
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Table 1. Results of the Ljung-Box test for return series 
 

Lags 
h-

value 
p-value Q-Test 

Critical 

Value 

Lag1 0 0.3189 0.9936 3.8415 
Lag2 1 0.0037 11.2222 5.9915 
Lag3 1 0.0092 11.5264 7.8147 
Lag4 1 0.0189 11.8049 9.4877 
Lag5 1 0.0376 12.6394 11.0705 
Lag6 1 0.0491 12.6522 12.5916 
Lag7 0 0.0810 13.6109 14.0671 
Lag8 0 0.0925 17.5530 15.5073 
Lag9 1 0.0407 17.9364 16.9190 

Lag10 0 0.0560 20.9780 18.3070 
Lag11 1 0.0336 21.1155 19.6751 
Lag12 1 0.0487 21.1380 21.0261 
Lag13 0 0.0702 23.0555 22.3620 
Lag14 0 0.0594 24.8331 23.6848 
Lag15 0 0.0522 24.8334 24.9958 
Lag16 0 0.0728 24.8335 26.2962 
Lag17 0 0.0985 25.3659 27.5871 
Lag18 0 0.1152 26.7629 28.8693 
Lag19 0 0.1103 27.3684 30.1435 
Lag20 0 0.1252 24.7535 31.4104 

 

(4) Now we fit parameters estimation for the model in 

order to choose the best rank for the model, we will use 

AIC, CAIC and BIC information criteria and calculate 

the values. Where Table 2 gives the values of AIC, and 

BIC criteria for different ranks of the NAGARCH’s 

model. 

Table 2 shows a comparison between the performance of 

different NAGARCH models based on AIC and BIC criteria. 

From this, we get that the best model is NAGARCH(1,1), as it 

achieved the lowest value for both AIC and BIC. Also, 

increasing the model order (P,Q) led to a decrease in the 

quality of the model due to the increase in complexity, so the 

model formula is 𝑥𝑡 = 𝜓𝑡𝑒𝑡 where 𝑒𝑡~𝑖𝑖𝑑 𝑁(0,1). 

 

𝜓𝑡
2 = 0.016519 

+0.043359(𝑥𝑡−𝑖 − 0.37924𝜓𝑡−𝑖)
2 − 0.18201𝜓𝑡−𝑗

2  
(21) 

 

And by implementation When we examine the model's 

stability conditions, we see that it is stable according to the 

condition in Eq. (10), then: 

 

𝜂1(1 + 𝛾1
2) + 𝛿1 = 0.043359[1 + (0.37924)2] − 0.18201 

                           = −0.1324149795 < 1 

 

The value of the NAGARCH model's unconditional 

variance is given in Eq. (15) as follows: 

 

𝜓2 = 0.0247 

 

(5) Now checking the adequacy of the model this stage 

is to check the suitability of the chosen model in order to 

verify the adequacy of the NAGARCH(1,1) model in 

interpreting the data used in calculating future 

predictions, but the standard series must be checked. 

Perform a Ljung-Box test and plot the ACF and PACF 

functions, but on the residual series. 

From the Table 3, it’s noted that most of the p-values are 

high 0.05, indicating that the model explains the time series 

well and there is no longer autocorrelation. 

 

 

Table 2. The values of AIC, CAIC and BIC criteria for 

different ranks of the NAGARCH 
 

NAGARCH(P,Q) AIC BIC 

NAGARCH(1,1) -340.9731 -325.3299 

NAGARCH(1,2) -340.1856 -316.7208 

NAGARCH(1,3) -337.7223 -306.4359 

NAGARCH(1,4) -333.7223 -294.6144 

NAGARCH(2,1) -338.9731 -319.4191 

NAGARCH(2,2) -338.1856 -310.8100 

NAGARCH(2,3) -335.7223 -300.5251 

NAGARCH(2,4) -331.7223 -288.7036 

NAGARCH(3,1) -336.9731 -313.5083 

NAGARCH(3,2) -336.1856 -304.8992 

NAGARCH(3,3) -333.7223 -294.6144 

NAGARCH(3,4) -329.7223 -282.7928 

 

Table 3. Results of the Ljung-Box test for the standard 

residuals series 
 

Lags h-value p-value Q-Test Critical Value 

Lag1 0 0.7523 0.0996 3.8415 
Lag2 0 0.5172 1.3186 5.9915 
Lag3 0 0.5779 1.9736 7.8147 
Lag4 0 0.6487 2.4776 9.4877 
Lag5 0 0.6691 3.2009 11.0705 
Lag6 0 0.7081 3.7676 12.5916 
Lag7 0 0.7442 4.3036 14.0671 
Lag8 0 0.7613 4.9647 15.5073 
Lag9 0 0.8173 5.1912 16.9190 

Lag10 0 0.8730 5.2621 18.3070 
Lag11 0 0.4698 10.6879 19.6751 
Lag12 0 0.4871 11.4937 21.0261 
Lag13 0 0.4973 12.3728 22.3620 
Lag14 0 0.5001 13.3377 23.6848 
Lag15 0 0.5604 13.5437 24.9958 
Lag16 0 0.6010 13.9689 26.2962 
Lag17 0 0.6648 14.0326 27.5871 
Lag18 0 0.7062 14.3471 28.8693 
Lag19 0 0.7622 14.3611 30.1435 
Lag20 0 0.8103 14.3885 31.4104 
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 

Figure 7. Standard residuals series, distribution curves, ACF and PACF for squared standard residuals series 

 

 
 

Figure 8. Model-output conditional variance series and conditional variance forecasting 
 

 
 

Figure 9. Conditional variance, its stability, and its approach 

to unconditional variance 
 

Figure 7 shows the distribution of the standardized residuals 

and the test for autocorrelation. It's clear that the series is 

stationary and does not suffer from signification 

autocorrelation. 

Figure 8 shows the conditional variance of the model and 

how it approaches the unconditional variance as the model 

shows stability over time. Figure 9 shows how closely the 

conditional variance approaches the unconditional variance 

indicating that the model has reached good stability. 
(6) After verifying the readiness of the NAGARCH(1,1) 

model in the previous five stages, we will perform in this 

last stage the forecasting and plot the resulting 

conditional variance series from the NAGARCH(1,1) 

model and the forecasting conditions in Figure 8 and 

Figure 9. The conditional variance and its stability and 

its approach to the unconditional variance. 
 

3.3 Analysis using the ARIMA-NAGARCH hybrid model 

 

1) The data is entered and the original series is 

converted into a return series. As mentioned 

previously, the ARMA-NAGARCH mixture is 

modeled, and verify the stability of the mixture by 

dividing and testing the NAGARCH models and the 

stability of the ARMA models separately. 

From Table 4, the best hybrid model is ARIMA(1,0,1)-

NAGARCH(1,1), which achieves the lowest AIC and BIC 

values with data stability. 

2) After we have chosen the best order for the model and 

verified its stability, we find the standard remainder 

series of using the infer command in MATLAB and 

we draw the quantum function, which is a visual 

examination of whether the series has a normal 

distribution or not. 
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Table 4. Stability test and values of AIC and BIC 

 
ARMA(R,M,D)-NAGARCH(1,1) Stationary AIC BIC 

ARMA(1,0,0)-NAGARCH(1,1) Yes -337.4763 -314.0116 

ARMA(1,0,1)-NAGARCH(1,1) Yes -347.7171 -320.3415 

ARMA(1,0,2)-NAGARCH(1,1) Yes -347.3195 -316.0332 

ARMA(1,0,3)-NAGARCH(1,1) Yes -346.8289 -311.6317 

ARMA(1,0,4)-NAGARCH(1,1) Yes -345.0320 -305.9240 

ARMA(2,0,0)-NAGARCH(1,1) Yes -342.0048 -314.6293 

ARMA(2,0,1)-NAGARCH(1,1) Yes -347.0075 -315.7212 

ARMA(2,0,2)-NAGARCH(1,1) Yes -346.8788 -311.6816 

ARMA(2,0,3)-NAGARCH(1,1) Yes -345.0282 -305.9202 

ARMA(2,0,4)-NAGARCH(1,1) Yes -343.1528 -300.1341 

ARMA(3,0,0)-NAGARCH(1,1) Yes -340.5263 -309.2399 

ARMA(3,0,1)-NAGARCH(1,1) Yes -346.7851 -311.5879 

ARMA(3,0,2)-NAGARCH(1,1) Yes -345.0370 -305.9290 

ARMA(3,0,3)-NAGARCH(1,1) Yes -343.0370 -300.0182 

ARMA(3,0,4)-NAGARCH(1,1) Yes -341.7333 -294.8038 

ARMA(4,0,0)-NAGARCH(1,1) Yes -339.4921 -304.2949 

ARMA(4,0,1)-NAGARCH(1,1) Yes -343.3681 -300.3493 

ARMA(4,0,2)-NAGARCH(1,1) Yes  -341.8825 -294.9530 

ARMA(4,0,3)-NAGARCH(1,1) Yes -322.1394 -304.2991 

ARMA(4,0,4)-NAGARCH(1,1) No -319.9374 -304.3141 

Figure 10 refers to plot standard remainder series and plot 

quantum function. 

It becomes clear that the series forms a straight line next to 

the normal distribution line, and this confirms that the series is 

normally distributed. Figure 11 shows the distribution plot of 

the standard residual series compared to the plot of the normal 

distribution curve and the shape of the frequency distribution 

of the residual series as follows: 

3) Make a prediction for the chosen model with 250 

future steps, and the value of the unconditional mean 

is proved and fallen within the confines of the 

confidence interval which is specified by 

y±1.96/√MSE, where the MSE is the values of the 

mean squares of the predicted errors, which are 

observed to get closer to zero as the prediction steps 

increase. Figure 11 shows the mean least square 

errors for predictions on the return series as well as 

the conditional standard deviation predictions. 

 

 
(a) 

 

 
(b) 

 

Figure 10. The standard residual series and the quantum 

function of the normal distribution 
 

 
(a) 
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(b) 

 

Figure 11. The normal distribution curve for the standard 

remainder series and the frequency distribution curve for the 

series 

 

 
(a) 

 
(b) 

 

Figure 12. The series of original and predicted returns and 

the series of calculated and predicted variances 

 

From Figure 12, the model shows acceptable performance 

in short-term forecasting, but may need improvement to 

accommodate dynamic changes in the long-term. Also, the 

conditional variance matches the actual behavior, which 

enhances the stability of the model. 

4) The final stage of our modeling examined the 

predictive performance of the model used as we left 

out a calendar period of 12 months by using MSE. 

The model was used to predict return values for 11 

future months and then return the return forecast 

values to their original values using the directive 

𝑑𝑡 = 𝑟𝑒𝑡2𝑝𝑟𝑖𝑐𝑒(𝑟𝑡 ,2.771) , where 2.771  represents 

the last value of the training set. 

Table 5 compares the actual and forecast values for natural 

gas returns over the 12 months. The forecasts are relatively 

close to actual values, but there are some differences that 

indicate poor model performance in predicating accurately. 

Figure 13 shows that the squared errors gradually approach 

zero in the long run, indicating that the model is trying to 

stabilize but may face challenges with high volatility. Low 

errors in the short run enhance the efficiency of hybrid 

ARIMA-NAGARCH model for near-term forecasts. 

However, there is a need to improve model strategies to 

address errors that appear in long- term forecasts. 

 

Table 5. Monthly rate forecasts 

 
No. Months Real Value Forecasting Value 

1 March 2.608 2.7470 

2 April 2.931 2.7284 

3 May 3.055 2.7141 

4 June 3.650 2.7034 

5 July 3.914 2.6956 

6 August 4.377 2.6901 

7 September 5.867 2.6866 

8 October 5.426 2.6847 

9 November 4.567 2.6841 

10 December 3.730 2.6846 

11 January  4.874 2.6860 

12 February 4.406 2.6882 

MSE 2.7238 

 

 
 

Figure 13. Prediction errors of the model ARMA(1,0,1)-

NAGARCH(1,1) 

 

 

4. CONCLUSION 

 

The results showed that the NAGARCH(1,1) model is the 

most stable and efficient among the other models based on the 

selection criteria (AIC and BIC). The model captures well the 

dynamics of natural gas price fluctuations and handles the 

asymmetric variance that characterizes these data. The results 

showed that the hybrid ARIMA(1,0,1)-NAGARCH(1,1) 

model performed better than the individual models when 

combining time trend analysis and conditional variance. The 

model performed well in short-term forecasting, with the 

forecast values being close to the true values. In the long run, 

the forecast errors (MSE) increased, indicating challenges in 

dealing with long-term dynamic fluctuations. The results of 

the model also showed that the conditional variance gradually 

approaches the unconditional variance, confirming the 

stability of the model and its ability to accommodate market 

fluctuations. The use of the local linear approximation (LLA) 

technique proved effective in analyzing the stability of the 
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fixed points of the model. The research provides effective 

tools for analyzing natural gas price fluctuations, enabling 

decision makers in the energy and finance sectors to predict 

fluctuations and make informed decisions. The model can be 

extended to study other commodities and markets with similar 

dynamics. 
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