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The Functional Variable Algorithm (FVA) is a new approach to solving nonlinear 

partial differential equations. Benjamin-Bona-Mahony (BBM) equation addresses a 

fundamental model for long-wave propagation in nonlinear dispersive systems. Explicit 

traveling wave solutions comprising solitary waves and periodic groups can be derived 

using methodical mathematical techniques and symbolic computation. Unlike other 

techniques, such as the inverse scattering transform or tanh–coth methods, the FVA 

depends on transforming the functional variable, i.e., simplifying the functions' 

derivatives. It made it easier for us to find the solution, as we obtained eight solutions 

for each equation in two uniform forms, periodic and solitary wave solutions, unlike 

tanh–coth methods, which obtained a small number of non-uniform solutions: periodic 

and solitary and compaction solutions; This means this method has greater 

computational efficiency and freedom than other methods. Designed to unite the 

answers obtained, the General Mathematical Model of Waveforms (GMMW) offer a 

framework for analyzing nonlinear wave events. The results show that the FVA 

technique is quite efficient and generally applicable in different fields, including optical 

communications, nonlinear physics, and fluid dynamics. 
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Algorithm, traveling wave solutions, Benjamin-

Bona-Mahony equation, analytical methods  

1. INTRODUCTION

Nonlinear partial differential equations (NPDEs) commonly 

model complex behavior in optical communications and fluid 

mechanics fields [1-3]. It is essential to look at traveling wave 

solutions when studying things like dispersion, the behavior of 

soliton particles, and periodic events in nonlinear media [4]. 

Despite the significant advancements in numerical 

simulations, obtaining a robust analytical solution remains 

challenging due to the numerous nonlinearities and the 

dependence of iterative numerical methods on the initial 

conditions [5]. In the past decades, many analytical techniques 

have been devised to solve NPDEs. Traditional methods like 

the inverse scattering transform, tanh–coth methods, extended 

tanh-function methods, sine–cosine methods, and 

homogeneous balance techniques have helped us learn much 

about these systems [6-8]. However, many of these approaches 

either suffer from limitations regarding their range or in their 

representation of the complete solution space, especially when 

it comes to complicated, nonlinear equations [9]. In this 

context, we present the Functional Variable Algorithm (FVA), 

a new methodology we have developed and optimized. Using 

a new set of theoretical insights, the FVA provides a 

systematic mathematical series of transformations that put 

NPDEs into forms that are easier to work [10-12]. The FVA 

allows symbolic computation tools like Mathematica to build 

explicit forms for solitary and periodic traveling wave 

solutions [13-15]. We use the standard FVA to solve the 

Benjamin-Bona-Mahony (BBM) equation for long-wave 

propagation in media that scatters them [16]. We provide new 

theoretical results that give the basis for the method and offer 

a full-fledged mathematical model General Mathematical 

Model of Waveforms (GMMW) for both solutions found [17, 

18]. Besides broadening the NPDE analytical toolbox, this 

work paves the way for future investigations of intricate 

nonlinear processes across various scientific fields [19, 20]. 

2. METHODOLOGY

2.1 An exposition of the FVA 

An exposition of the FVA: 

This section provides a detailed presentation of the FVA 

used to obtain analytical solutions for nonlinear equations. Our 

approach is organized into several identified steps, ranging 

from the transformation of the original equation to its final 

integration. This formulation ensures reproducibility by other 

researchers. It is important to recall that the primary objective 

is to derive precise solutions for equations such as BBM 

equation. 

Step 1: We introduce the ordinary differential equation 

(ODE), which can be stated as multiple independent variables. 

ϒ(𝑈, 𝑈𝜉 , 𝑈𝜉𝜉 , 𝑈𝜉𝜉𝜉 , 𝑈𝜉𝜉𝜉𝜉 , . . . . . ) (1) 
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ϒ  represents a set of functions, 𝑈(𝜉)  denotes a traveling 

wave function that needs to be ascertained, and 𝜉 represents a 

wave variable: 

 

𝜉𝑛 = 𝑛𝑑 + 𝐶𝑡 + 𝛿 (2) 

 

In this context, 𝑛 represents the discrete variable, while 𝐶 

denotes the velocity. The constants 𝑑 and 𝛿 are arbitrary.  

 

𝑢(𝑥, 𝑡)  = 𝑈 (𝜉) (3) 

 

𝑈′ (𝜉)  = 𝑈 𝜉 =  𝑓(𝜉) (4) 

 

Step 2: Transformation via the functional variable 

Next, we express f(ξ) in terms of a functional variable using 

an appropriate transformation: 

 

f(ξ) = h(φ(ξ)) (5) 

 

where, φ(ξ) is the new functional variable, h is a function that 

simplifies the equation. 

Step 3: Calculation of derivatives and substitutions 

The successive derivatives of f(ξ) concerning ξ are 

computed using the chain rule. For instance, the first derivative 

is given by: 

 

𝑈″(𝜉)  = 𝑈 𝜉 𝜉 =  𝑓′ (𝜉)  =  ℎ′(𝜑(𝜉))  ·  𝜑′(𝜉) (6) 

 

And similarly for higher-order derivatives. These 

expressions are then substituted back into the ODE (1), 

reducing the equation to a form involving only φ(ξ) and its 

derivatives. 

Step 4: Reduction and integration process 

After substitution and algebraic manipulation, the equation 

is simplified to a new expression: 

 

ℰ(𝜑, 𝜑′, 𝜑″)  =  0 (7) 

 

In many cases, Eq. (7) is integrable using standard methods 

(e.g., separation of variables or by finding an integrating 

factor). By integrating Eq. (7) with a clear justification for any 

constant(s) of integration (often set to zero as an initial 

simplifying assumption), the desired analytical solution for 

f(ξ) is ultimately obtained. 

 

2.2 Reproducibility of the methodology 

 

To ensure that other researchers can replicate our results, we 

provide the following pseudo-code outlining the steps of the 

FVA: 

1. Define the initial ODE: 

Input the general Eq. (1) and apply the transformation u(x, 

t) = u(ξ) with ξ = x − ct. 

2. Perform the variable transformation: 

Set f(ξ) = h(φ(ξ)) and calculate the derivatives using the 

chain rule. 

3. Substitute and simplify: 

Replace f(ξ) and its derivatives in (1) to obtain the 

transformed Eq. (7). 

4. Integrate: 

Integrate Eq. (7) while justifying the choice of integration 

constants (setting them to zero initially). 

5. Verify and validate: 

Compare the obtained solution with a known test case or 

analytical solution to ensure the method’s correctness. 
 

2.3 Illustrative example on a simple case 
 

Before applying the FVA to the complete BBM model, we 

provide a brief illustration using a simplified nonlinear ODE, 

such as: 

 

𝑈″(𝜉)  +  𝑘 · [𝑈(𝜉)]² =  0 (8) 

 

For this example, the same steps described above are 

followed: 

1. Adopt the transformation 𝑈𝜉 =  𝑓(𝜉)  =  ℎ(𝜑(𝜉)). 
2. Compute the derivatives and substitute into the ODE. 

3. Integrate and simplify. 

 

𝑓′ (𝜉)  + 𝑘 · [∫𝑓(𝜉)]² =  0 (9) 

 

ℎ′(𝜑(𝜉)). 𝜑′(𝜉) + 𝑘 · [∫ ℎ(𝜑(𝜉))]² =  0 (10) 

 

This example demonstrates the FVA's clarity and 

robustness before it is applied to more complex systems. 

 

 

3. APPLICATIONS  
 

The findings above were previously acquired using the 

BBM equation. The equation presented here is a mathematical 

model that describes the behavior of long waves in nonlinear 

dispersive systems. 

So, the form of the BBM for every order is Eq. (11) and Eq. 

(37) 

Example 1: 

According to BBM equation, 
 

(𝑈𝑛)𝑡 − (𝑈
𝑛)𝑋𝑋𝑋 + 𝐵(𝑈

𝑚)𝑋 = 0, 𝑛 > 𝑚 > 1 (11) 
 

Case 1: If 𝜉 = 𝑋 − 𝐶𝑡 + 𝜉0 and 𝑉 = 𝑈𝑚, we achieve 
 

−𝐶(𝑉
𝑛
𝑚)𝜉 − (𝑉

𝑛
𝑚)𝜉𝜉𝜉 + 𝛽(𝑉)𝜉 = 0 (12) 

 

𝛽 and 𝐶 are the constant and the velocity, after integrating 

Eq. (12) once concerning ξ, set the integration constants to 

zero and combining both equations yields the simplified form 
 

ξ

1 2 21
( ) (( ) ) ( ) 0

2 2

n n

m m
cm

v v v
n m  

(13) 

 

According to Eq. (3) and Eq. (4), and after simplifying Eq. 

(13), the expression becomes: 

 

f(ξ) =  (𝑉
𝑛
𝑚)𝜉 = 𝑉√𝛼√1 −

2𝑐𝑉−1+
𝑛
𝑚

𝛼(1 +
𝑛
𝑚
)
 (14) 

 

Depending on the Eq. (12), the differential Eq. (7) was 

completely integrable since its solutions were deduced from 

the integral: 
 

∫
𝑑𝑠

𝑠√1 − 𝑠
= 𝑙𝑛 |

1 − √1 − 𝑠

1 + √1 − 𝑠
| (15) 
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So that  

 

∫𝑓(ξ) =∫
(𝑉

𝑛
𝑚)𝜉

𝑉√𝛼√1 −
2𝑐𝑉−1+

𝑛
𝑚

𝛼(1 +
𝑛
𝑚
)

 

(16) 

 

By looking at Eq. (4) and the relation Eq. (16), the following 

quadratic equation is obtained as follows: 

 

𝑊2𝑍2 + 4(1 −𝑊2)𝑍 − 4(1 −𝑊2) = 0 (17) 

 

where, 

 

𝑊 =
2𝑡𝑎𝑛²[

1
2
(−1 +

𝑛
𝑚
)√𝛽𝜉]

1 + 𝑡𝑎𝑛²[
1
2
(−1 +

𝑛
𝑚
)√𝛽𝜉]

 (18) 

 

And 

 

𝑍 =
2𝐶𝑉−1+

𝑛
𝑚

(1 +
𝑛
𝑚
)𝛽

 (19) 

 

After performing a basic algebraic manipulation, the two 

solutions of Eq. (12) can be obtained. 

For 𝛽 > 0: 
 

n

mn

m

n n

m mV
C

1

1 1

1

1

1
(1 ) sech ( 1 ) ]

2[ ] 2

 

(20) 

 

n

mn

m

n n

m mV
C

1

1 1

1

2

1
(1 ) csch ( 1 ) ]

2[ ] 2

 

(21) 

 

For 𝛽 < 0: 
 

n

mn

m

n n

m mV
C

1

1 1

1

1

1
(1 ) sec ( 1 ) ]

2[ ] 2

 
(22) 

 

n

mn

m

n n
c

m mV
C

1

1 1

1

2

1
(1 ) sc ( 1 ) ]

2[ ] 2
 

(23) 

 

We have U[x]=𝑉
1

𝑚[𝑥], so: 

For 𝛽 > 0: We obtain the following solitary wave solutions 

 

n n

m mU
C

1

n m

1

n m
1

1
(1 ) sech ( 1 ) ]

2[ ] 2
 

(24) 

n n

m mU
C

1

n m

1

n m
2

1
(1 ) csch ( 1 ) ]

2[ ] 2
 

(25) 

 

For 𝛽 < 0:We obtain the following the periodic wave 

solutions 
 

n n

m mU
C

1

n m

1

n m
1

1
(1 ) sec ( 1 ) ]

2[ ] 2
 

(26) 

 

n n

m mU
C

1

n m

1

n m
2

1
(1 ) csc ( 1 ) ]

2[ ] 2
 

(27) 

 

Case 2: If 𝜉 = 𝑋 − 𝐶𝑡 + 𝜉0 and 𝑉 = 𝑈𝑛 Eq. (11) becomes 

the ODE: 

 

−𝐶(𝑉)𝜉 − (𝑉)𝜉𝜉𝜉 + 𝛼(𝑉)𝜉 = 0 (28) 

 

Two solutions are obtained through straightforward 

algebraic manipulation: 

For 𝐶 > 0 
 

m n

m n

n

n

m m
C

n nV

C

1

1
(1 )sech ( 1 ) ]

[ ] 22
 (29) 

 

m n

m n

n

n

m m
C

n nV

C

2

1
(1 )csch ( 1 ) ]

[ ] 2 2  (30) 

 

For 𝐶 < 0: 
 

m n

m n

n

n

m m
C C

n nV1

1
(1 )sec ( 1 ) ]

2[ ] 2
 

(31) 

 

m n

m n

n

n

m m
C C

n nV2

1
(1 )csc ( 1 ) ]

[ ] 2 2  
(32) 

 

We have 𝑈[𝜉] = 𝑉[𝜉]
1

𝑛, so: 

For 𝐶 > 0: 
 

m n

m n

m m
C

n nU

C

1

1

1

1
(1 )sech ( 1 ) ]

[ ] 2 2  
(33) 
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m n

m n

m m
C

n nU

C

1

1

2

1
(1 )csch ( 1 ) ]

[ 2] 2
 

(34) 

 

For 𝐶 < 0: 
 

m n

m n

m m
C C

n nU

1

1

1

1
(1 )sec ( 1 ) ]

[ ] 2 2
 

(35) 

 

m n

m n

m m
C C

n nU
1

2

1

1
(1 )csc ( 1 ) ]

2[ ] 2
 

(36) 

 

Example 2: 

the complexity of BBM equations to analyze and 

numerically work on motivation; we employ our technique on 

the complexity of BBM equation. It involves balancing the 

expression convection 𝑈𝑚𝑈𝑋  and the expression dispersion 

(𝑈𝑛)𝑋𝑋𝑋, as described in reference. 

According to the generalized BBM equation 

 
(𝑈𝑛)𝑡 + (𝑈

𝑛)𝑋 − (𝑈
𝑛)𝑋𝑋𝑋 + 𝑎(𝑚 + 1)𝑈

𝑚(𝑈)𝑋 = 0, 
𝑛 > 𝑚 > 1 

(37) 

 

Case 1: If 𝜉 = 𝑋 − 𝐶𝑡 + 𝜉0 and V=𝑈𝑚+1, we obtain 
 

(−𝐶 + 1)(𝑉
𝑛

𝑚+1)𝜉 − (𝑉
𝑛

𝑚+1)𝜉𝜉𝜉 + 𝛽(𝑉)𝜉 = 0 (38) 

 

Following the same procedure and some straightforward 

algebraic manipulations, the following solutions are obtained: 

For 𝛽 > 0: 
 

n

m
n n

m mV
C

( 1)

1

1

1

1
( 1)sech ( 1 ) ]

1 1[ ]
2(1 )
2

 
(39) 

 

n

m
n n

m mV
C

( 1)

1

1

2

1
( 1)csch ( 1 ) ]

1 1[ ]
2(1
2
)

 
(40) 

 

n

m
n n

m mV
C

( 1)

1

1

1

1
( 1)sec ( 1 ) ]

1 1[ ]
2(1
2
)

 
(41) 

 

n

m
n n

m mV
C

( 1)

1

1

2

1
( 1)csc ( 1 ) ]

1 1[ ]
2(1 )
2

 
(42) 

 

We have 𝑈[𝜉] = 𝑉
1

𝑚+1[𝜉], so: 

For 𝛽 > 0, we obtain the following solitary solutions: 

n mn n

m mU
C

( 1)

1

1

1
( 1)sech ( 1 ) ]

1 1[ ]
2(1 )
2

 
(43) 

 

n mn n

m mU
C

( 1)

1

2

1
( 1)csch ( 1 ) ]

1 1[ ]
2(1 )
2

 
(44) 

 

For 𝛽 < 0: 

 

n mn n

m mU
C

( 1)

1

1

1
( 1)sec ( 1 ) ]

1 1[ ]
2(
2
1 )

 
(45) 

 

n mn n

m mU
C

( 1)

1

2

1
( 1)csc ( 1 ) ]

1 1[ ]
2(1
2

)

 
(46) 

 

Case 2: If 𝜉 = 𝑋 − 𝐶𝑡 + 𝜉0 and 𝑉 = 𝑈𝑛, Eq. (37) becomes 

the ODE: 

 

(−𝐶 + 1)(𝑉)𝜉 − (𝑉)𝜉𝜉𝜉 + 𝛽(𝑉
𝑚+1
𝑛 )𝜉 = 0 (47) 

 

We obtain two solutions after some simple algebraic 

manipulation: 

For 1 − 𝐶 > 0: 
 

n

m nCm m
C

n nV

( 1 )

1

( (1 )1 1
(1 )( 1)sech ( 1

[ 2
) ]

]
2

 
(48) 

 
n

m nCm m
C

n nV

( 1 )

2

( (1 )1 1
(1 )( 1)csch ( 1) ]

[ ]
2

2
 

(49) 

 

For 1 − 𝐶 < 0: 
 

n

m nCm m
C

n nV

( 1 )

1

( (1 )1 1
(1 )( 1)sec ( 1

[ 2
) ]

]
2

 
(50) 

 
n

m nCm m
C

n nV

( 1 )

2

( (1 )1 1
(1 )( 1)csc ( 1) ]

[
2

2]
 

(51) 

 

We have 𝑈[𝜉] = 𝑉
1

𝑛[𝜉], so: 

For 1 − 𝐶 > 0: 
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m n

m n

Cm m
C

n nU

( 1 )

1

1

1

1

( (1 )1 1
(1 )( 1)sech ( 1) ]

[ 2] 2
 

(52) 

 

m n

m n

Cm m
C

n nU

( 1 )

1

1
2

1

( (1 )1 1
(1 )( 1)csch ( 1) ]

2[ ] 2
 

(53) 

 

For 1 − 𝐶 < 0: 
 

m n

m n

Cm m
C

n nU

( 1 )

1

1

1

1

( (1 )1 1
(1 )( 1)sec ( 1) ]

2 2[ ]

 
(54) 

 

𝑈2[𝜉] = 2
−1

1+𝑚−𝑛

(

 
 
 
 
 

(1 − 𝐶) (
𝑚 + 1
𝑛

+ 1)

csc²[
(√−(1 − 𝐶)

2
(
𝑚 + 1
𝑛

− 1)𝜉]

𝛽

)

 
 
 
 
 

1
(𝑚+1−𝑛)

 (55) 

 

Two principal notes emerge from these transformation 

schemes: 

Note 1: delineates the conditions required to obtain solitary 

wave solutions. The subsequent algebraic manipulations and 

integration steps lead to quadratic equations whose solutions 

(as represented in Eqs. (24), (25), (33), (34), (43), (44), (52), 

(53) correspond to distinct branches of solitary wave profiles. 

Note 2: addresses the derivation of periodic wave solutions. 

Through similar algebraic procedures and integration 

(illustrated by Eqs. (26), (27), (35), (36), (45), (46), (54), (55), 

periodic solutions are derived, offering an alternative 

analytical description of the nonlinear dynamics. 

These derivations confirm that the FVA simplifies the 

solution process and clearly distinguishes between solitary and 

periodic wave systems.  

 
 

4. GRAPHICAL VALIDATION AND 

COMPUTATIONAL REPRESENTATION  
 

Symbolic computation was performed using Mathematica 

to validate the analytical results. For example, Figures 1-3 

illustrate the solitary wave profile obtained from the derived 

Eq. (24). In this graphical representation, specific parameter 

values (𝛽 > 0, 𝑛 = 4,𝑚 = 2, 𝛽 = 1, 𝐶 = 1) were chosen to 

depict the solitary structure accurately. The smooth transition 

in numerical plots further substantiates the integration 

process's robustness and confirms the derived solutions' 

internal consistency. 

After substituting the specific parameter values into Eq. 

(24), the simplified form is as follows: 
 

𝑈1[𝜉] = 𝑈1[𝑥 − 𝑡] = 2
−
1
2 (
3sech²[

1
2
(𝑥 − 𝑡)]

1
)

1
2

 (56) 

 
 

Figure 1. Plot 3D representation of Eq. (24) 

 

 
 

Figure 2. Plot 2D representation of Eq. (24) for t =0 

 

 
 

Figure 3. Plot 2D representation of Eq. (24) for x=0 

 

 

5. THE GENERAL MATHEMATICAL MODEL OF 

SOLUTIONS  

 

The GMMW, an innovative class of explicit exact solutions 

to BBM equations, is obtained through the FVA via a non-

singular combination of the functioning described by: 

 

𝑈[𝜉] = (
𝐴𝐹2[𝐵𝜉]

𝑀
)

𝑁

 (57) 

 

In which 𝐹  denotes a widely recognized and suitable 
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function. 

A is a specific parameter in this article that is related to: C, 

n,m, 𝛽. 

M is a specific parameter in this article that is related to: C, 

𝛽. 

B is a specific parameter in this article that is related to: C, 

n,m, 𝛽. 
N is specifically the exponent in this article that is related 

to: n,m. 
 

 

6. COMPARISON WITH ALTERNATIVE METHODS 

AND DISCUSSION  

 

Compared to conventional analytical techniques—such as 

the inverse scattering transform, the tanh–coth method [21-

23], and the homogeneous balance method. 

We notice they studied the same types of nonlinear 

equations of BBM, which gave non-uniform solutions, 

compaction, and solitary solutions, using the unified algebraic 

method with symbolic computation in each BBM equation 

(11) and (37). However, we find eight  types of exact traveling 

wave solutions in two uniform forms: four periodic solutions 

and four solitary wave solutions that prove the effectiveness 

and strength of the function variable method.   

The FVA offers distinct advantages. Notably: 

- The FVA provides a unified framework for obtaining 

solitary and periodic wave solutions in closed form, whereas 

traditional methods often focus exclusively on one type. 

- Our method saves time in finding solutions, unlike other 

analytical methods. 

- Unlike iterative numerical techniques, which are highly 

sensitive to initial conditions, the FVA presents analytical 

solutions derived directly from the governing equations.  

- The method’s ability to generate a general mathematical 

model (GMMW) enhances its potential for application across 

a wide range of nonlinear systems. 

These comparative advantages highlight the FVA as a 

robust alternative for researchers seeking precise analytical 

characterizations of nonlinear wave phenomena. 

 

 

7. CONCLUSION 

 

This work presents and extensively validates a new FVA to 

find explicit traveling wave solutions for the BBM equation. 

Four separate analytical solutions, including solitary and 

periodic waves, have been derived using a methodical 

procedure of mathematical transformations, derivative 

computations via the chain rule, and strategic integration. 

A significant contribution of this study is the formulation of 

a GMMW, which captures the whole set of solutions obtained 

with the FVA. This unified framework is more practical than 

previous methods, such as the inverse scattering transform and 

the tanh–coth approach since it simplifies the analysis of 

nonlinear dispersive systems. Specifically, the FVA's 

methodical approach and simplicity of use produce exact and 

repeatable closed-form answers. 

Moreover, the method's generality suggests that it could be 

extended to other complex nonlinear evolution equations 

encountered in fluid dynamics, optical communications, and 

climate modeling. 

While the current study demonstrates the efficacy of the 

FVA in deriving exact traveling wave solutions for the BBM 

equation, several avenues remain for future exploration: 

• A detailed parametric study could optimize the choice of 

functional transformations, enhancing the solutions' physical 

fidelity. 

• Integrating of the FVA with numerical simulations may 

provide a hybrid framework, combining the precision of 

analytical methods with the flexibility of computational 

approaches. 

• Extending the methodology to address higher-dimensional 

or more complex nonlinear systems could broaden its 

application scope. 

In summary, the FVA successfully produces analytical 

solutions and offers a clear pathway for future advancements 

in the mathematical modeling of nonlinear phenomena. 
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NOMENCLATURE 

 

f(ξ) Terms of a functional variable 

φ(ξ) The new functional variable 

h Function is chosen to simplify the equation 

A 
The set of functions considered in the analytical 

model. 

BBM 

Abbreviation for the Benjamin–Bona–Mahony 

equation, a mathematical model that delineates 

the propagation of long waves in nonlinear 

dispersive systems. 

c 

The wave propagation speed is determined by 

the characteristics of the medium and the 

phenomenon under investigation. 

FVA 

Functional Variable Algorithm is a method 

employed to transform certain nonlinear partial 

differential equations into analytically 

manageable ordinary differential equations. 

f 
A generic function that represents specific 

behaviors within the model. 

GMMW 

General Mathematical Model of Waveforms, a 

unified framework encompassing all analytical 

solutions obtained using the FVA. 

NPDE(s) 

Nonlinear partial differential equations that 

model complex phenomena across various 

fields. 

n 

A discrete variable (or index) appears in the 

model expression or the numerical discretization 

process. 

u 

The traveling wave function to be determined, 

e.g., representing the profile of a disturbance in 

the system. 

 

Greek symbols 

 

 
An arbitrary constant is introduced during 

transformations or integrations. 

 
An arbitrary constant is introduced during 

transformations or integrations. 

ξ 

The wave variable (often defined as ξ = x – c·t) 

transforms the equation into an autonomous 

form by grouping spatial and temporal 

dependencies. 
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