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Flooding caused by the Senegal River during the 2024 rainy season has severely 

impacted several regions, particularly Saint-Louis, Matam, and their surrounding areas, 

disrupting infrastructure and livelihoods. In light of this growing vulnerability, 

anticipating climatic hazards has become essential. This article presents an innovative 

approach combining precipitation data from the UCSB-CHG/CHIRPS/DAILY 

collection and Sentinel-2 imagery to analyze and predict the Standardized Precipitation 

Index (SPI), with a focus on excessive moisture and flood risks. Although the SPI has 

historically been used for drought monitoring, it also proves relevant for detecting short-

term precipitation excesses (SPI-1, SPI-3), which are potential indicators of flash 

floods. To enhance early detection of these extreme events, we developed a machine 

learning model based on Random Forest, optimized using the RandomizedSearchCV 

method. The results are promising: the model demonstrates excellent predictive power, 

with a Mean Squared Error (MSE) of 0.00072, a Root Mean Squared Error (RMSE) of 

0.0268, a Mean Absolute Error (MAE) of 0.0184, and a coefficient of determination R² 

= 0.9991. These performances confirm the model's ability to anticipate risk zones, 

particularly in the agricultural lands along the Senegal River. This approach could be 

generalized to other watersheds vulnerable to extreme climatic events. 
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1. INTRODUCTION

Flooding caused by the Senegal River has had a significant 

impact on several regions of Senegal, particularly in the Saint 

Louis region and its surroundings, during the 2024 rainy sea 

son. These floods have severely disrupted the lives of 

residents, particularly in cities such as Matam and Saint-Louis, 

where many homes, roads, and agricultural lands were 

submerged. For example, in Bélli Diallo, victims often seek 

shelter outdoors, awaiting aid from local authorities, such as 

tents and temporary housing. These recurrent events highlight 

the vulnerability of these regions and the need to strengthen 

infrastructure and preventive measures against seasonal 

floods. 

In this context, the combined use of satellite data (CHIRPS, 

Sentinel-2) and machine learning algorithms paves the way for 

proactive monitoring. Platforms such as NASA's Giovanni and 

EarthData provide access to time series of precipitation data 

that are well-suited for calculating the Standardized 

Precipitation Index (SPI). The paper by McKee et al. [1] 

introduced the Standardized Precipitation Index (SPI), a key 

tool for assessing drought and excessive moisture. SPI values 

help detect moisture anomalies: positive values indicate high 

moisture, while negative values signal drought. 

Although SPI has traditionally been used to identify drought 

conditions, recent studies demonstrate its effectiveness in 

detecting excessive moisture, particularly over short temporal 

scales (SPI-1, SPI-3). Values exceeding +2.0 often indicate 

conditions conducive to flooding, especially when soils are 

already saturated. 

In this study, we propose a flood risk forecasting model 

based on the Random Forest algorithm, applied to the Senegal 

River region. This model has been rigorously optimized using 

the RandomizedSearchCV method, resulting in a significant 

enhancement of its predictive performance. The results, 

notably a coefficient of determination R² = 0.9991, reveal an 

excellent agreement between predicted and observed values, 

confirming the relevance of this approach. 

The remainder of this article is structured as follows: 

Section 2 reviews existing research on the use of AI and 

machine learning in climate risk forecasting; Section 3 

presents the machine learning models employed and describes 

the study area; Section 4 details the methodology; Section 5 

presents the results; Section 6 offers a thorough discussion; 

and finally, the conclusion and future perspectives are 

addressed in the Sections 7 and 8. 

2. STATE-OF-THE-ART ON THE USE OF AI AND

MACHINE LEARNING IN CLIMATE RISK

FORECASTING

The study of climate risk forecasting increasingly relies on 

advanced artificial intelligence (AI) and machine learning 
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(ML) models to improve the anticipation of extreme climate 

events. Numerous research efforts have explored diverse 

approaches, including machine learning algorithms, deep 

neural networks, hybrid models, and remote sensing 

techniques to enhance the prediction of climate risks such as 

droughts and floods, using indicators like the SPI. 

This section highlights the strengths and limitations of each 

reviewed method: 

To begin with, Türkeş et al. [2] presented a combined 

approach using statistical analysis and machine learning for 

drought forecasting in Central Anatolia, Turkey. The study 

shows that supervised learning models (e.g., neural networks, 

Random Forests) outperform traditional statistical models in 

accuracy. However, the reliance on localized historical climate 

data limits applicability to other regions. 

In a similar effort, Abdullahi et al. [3] explored models like 

Extreme Learning Machine (ELM), Random Forest (RF), and 

Support Vector Regression (SVR) for drought prediction in 

Somalia. SVR outperforms others in accuracy and reliability 

but poses challenges due to data length requirements and 

model complexity. 

Building on hybrid strategies, Oyounalsoud et al. [4] 

proposed a hybrid AI-based approach combining decision 

trees, SVMs, and neural networks using climate and soil 

moisture data. AI models generally outperform traditional 

indices, with decision trees showing strong drought 

correlation. The study's scope is limited to Australian data, 

restricting generalization. 

Turning to flood forecasting, Zhang [5] introduced a flood 

risk prediction model based on logistic regression, k-means 

clustering, and Random Forests. It enhances accuracy by 

optimizing key indicators and risk classification but requires 

large datasets, limiting use in data-scarce regions. 

Interpretability remains an issue. 

Earlier work by Deo and Şahin [6] applies Artificial Neural 

Networks (ANN) to forecast monthly SPI in Eastern Australia, 

outperforming traditional models by capturing nonlinear 

patterns. Yet, ANN models demand large datasets and are 

prone to overfitting if not properly tuned. 

Expanding on neural approaches, Belayneh and 

Adamowski [7] developed hybrid models combining ANN 

with wavelet transforms for long-term drought prediction in 

the Awash River basin, Ethiopia. These hybrids surpass 

traditional models like ARIMA. However, parameter selection 

is complex, and models are data-intensive and 

computationally expensive. 

Complementary to these studies, Choubin et al. [8] assessed 

AI techniques (ANFIS, M5P, MLP) using large-scale climate 

indices in an arid region of Iran. MLP performs best, 

especially with previous-month data. However, the study is 

geographically limited and lacks detailed analysis of specific 

indices. 

Anshuka et al. [9] conducted a meta-analysis of statistical 

drought forecasting models based on the SPI, identifying that 

wavelet-based neural networks (WANN) provide the best 

performance with optimal accuracy at 12-month and 24-month 

timescales. The study highlights the importance of data 

preprocessing to improve prediction stability. However, 

results vary depending on geographic location and seasonal 

influences, limiting the universal generalizability of the mode. 

A more integrative approach is seen in Masinde and Bagula 

[10], who presented a drought prediction and monitoring 

system for African smallholder farmers integrating seasonal 

forecasts and indigenous knowledge via ICT (e.g., sensors, 

mobile apps). Despite its high satisfaction rate in Kenya, it’s 

complex to maintain and deploy broadly. 

Meanwhile, Danandeh Mehr et al. [11] proposed a CNN-

LSTM hybrid for short-term drought forecasting, applied in 

Ankara. It outperforms benchmarks but was tested on only two 

stations, limiting generalization. Handling extreme events and 

spatial variability remains a challenge. 

Addressing flood prediction challenges, Gyang et al. [12] 

explored integrating ML, GIS, and remote sensing for flood 

and rainfall forecasting in the U.S. The synergy enhances risk 

management but faces challenges in data heterogeneity, 

computational demands, and regulatory integration. 

Along similar lines, Akinsoji et al. [13] presented a model 

combining ML and deep neural networks to predict water 

levels in agriculture. While precise, it demands extensive data 

and suffers from interpretability issues for non-experts. 

From a river discharge perspective, Yaseen et al. [14] 

introduced an enhanced ELM model using Complete 

Orthogonal Decomposition (COD) for river discharge 

forecasting. It’s more accurate and robust than standard 

ELM/SVR models but requires large datasets and is hard to 

interpret. 

Wavelet-based AI techniques are also explored by Soh et al. 

[15], who investigated WAANN and WANFIS models for 

SPEI prediction, showing improved accuracy via wavelet 

decomposition and AI. However, short-term predictions 

remain error-prone, and models are complex. 

For satellite-based monitoring, Siddique and Ahmed [16] 

proposed CCD-3-CONV1D, a deep learning model for flood 

monitoring using Sentinel-1 SAR imagery. It improves change 

detection and flood prediction accuracy, but depends on high-

quality data and complex image processing. 

Shifting to a multidisciplinary approach, Onsay et al. [17] 

combined ML/econometrics and hermeneutic analysis to 

predict flood risks and assess disaster preparedness in the 

Bicol region. Socioeconomic vulnerability is emphasized, but 

the need for high-quality data and methodological integration 

of indigenous knowledge poses challenges. 

Additionally, Naibi et al. [18] developed a hybrid LSSVM-

SVCLR model to analyze drought-flood transitions in arid 

regions. Combining least squares SVM with spatially varying 

logistic regression, it improves robustness and captures spatial 

non-stationarity. However, its complexity and data demands 

hinder large-scale deployment. 

On the time series side, Ding et al. [19] proposed a hybrid 

CEEMD-LSTM model that stabilizes time series and 

improves SPI forecasting across time scales, peaking at 24 

months. Computational complexity and data quality remain 

hurdles. 

A more architecture-focused solution is presented by Li et 

al. [20], who introduces the AGRS-LSTM-TRANSFORMER 

model combining attention-based graph structures, LSTM, 

and Transformer networks for flood prediction in the JINGLE 

watershed. It achieves high NSE scores (>0.905) but suffers 

from complexity, sensitivity to input data, and interpretability 

issues. 

Furthermore, Farahmand et al. [21] created a spatio-

temporal graph deep learning model for real-time urban flood 

prediction. Integrating physical and social data improves 

accuracy, but its complexity and data heterogeneity limit 

scalability. 

In a complementary study, Roudbari et al. [22] developed a 

graph neural network (LocalFloodNet) and a digital twin 

prototype for urban flood forecasting in Terrebonne, Québec. 
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It supports scenario simulation and decision-making, but 

requires precise data and is computationally demanding. 

Likewise, Situ et al. [23] integrated LSTM-SEGNET-MSA 

and ES-Deeplab in a deep learning model for urban flood risk 

assessment. It effectively merges spatial and temporal 

features, improving prediction and economic loss estimation, 

yet still faces computational and data challenges. 

To push prediction accuracy further, Wang et al. [24] 

combined STGCN and Graph WaveNet with attention 

mechanisms for flood prediction, reducing peak error by 

0.26%. Though highly precise, it demands detailed 

hydrological data and is computationally intensive. 

Lastly, Bouaziz et al. [25] highlighted the efficiency of 

ELM in SPI prediction using remote sensing in arid regions. 

While performance is promising (R² between 0.7-0.8), it 

struggles with low-quality or noisy remote sensing data and 

lacks robustness in handling complex variable interactions. 

Given these observations and the inherent complexity of 

predicting climate risks from multiple environmental 

variables, we developed a machine learning-based solution 

that integrates several powerful algorithms (Random Forest, 

XGBoost, SVR, ELM) to enhance the accuracy and robustness 

of forecasts. 

This approach is further strengthened by data augmentation 

techniques and feature importance analysis, providing a 

reliable and interpretable predictive framework to support the 

sustainable management of water resources in the Senegal 

River Basin. 

 

 

3. NEURAL MODELS USED 

 

In this work we use supervised learning models: XGBoost, 

Random Forest and SVR and an ELM model. Random Forest 

and XGBoost are ensemble tree models used for complex 

regression and classification tasks, while SVR is distinguished 

by its geometric approach and is often more widely used when 

the data is smaller or better structured. ELM is a single-hidden-

layer neural network that is fast to train thanks to random 

initialization of internal weights and analytical learning of 

output weights. It is suitable for regression and classification 

tasks, particularly where speed of learning and low 

computational complexity are priorities. 

 

3.1 XGBoost 

 

XGBoost [26] is a boosting algorithm that optimises the 

performance of decision tree models. It is a supervised 

learning method that builds models by adding several weaker 

models (decision trees). XGBoost uses regularisation to avoid 

overlearning and offers very accurate predictions. This model 

is extremely popular due to its speed of execution and 

exceptional performance on tabular datasets. XGBoost is 

particularly effective for classification and regression 

problems, especially where there are complex interactions 

between features. 

The objective of XGBoost is to minimise the following loss 

function: 

 

𝐿(𝜃) = ∑ℓ(yᵢ, ŷᵢ)

𝑛

𝑖=1

+∑Ω(𝑓𝑘)

𝑛

𝑖=1

 (1) 

 

where, 

ℓ(yᵢ, ŷᵢ) is the loss function (e.g., squared error or logistic 

loss) between the true value yi and the predicted value ŷᵢ. 
Ω(fk) is the regularization term applied to the complexity of 

the model. 

fk is a decision tree. 

K is the number of trees in the model. 

θ are the model parameters. 

The training process of XGBoost focuses on minimizing 

this objective function using gradient descent techniques. 
 

3.2 Random Forest 

 

Random Forest [27] is a supervised learning algorithm 

based on the decision tree method. It is a set model that 

constructs multiple decision trees during training and 

combines them to produce a more robust prediction that is less 

likely to overlearn the training data. Each tree in the forest is 

built using a random subset of the features and training data. 

This diversity of trees improves performance and reduces the 

risk of overlearning, making the Random Forest a particularly 

powerful model for regression and classification problems. 

The objective of a decision tree in the forest is to minimise the 

loss function L, such that: 
 

𝑓(𝑥) =
1

𝑇
∑𝑓𝑡

𝑇

𝑡=1

(𝑥) (2) 

 

where, 

ft(x) is the prediction made by the t-th decision tree, 

T is the total number of trees in the forest. 

For a single decision tree ft(x), the training process 

minimises the following loss function: 
 

𝐿 =∑(𝑦𝑖 − 𝑓𝑡(𝑥𝑖))
2
+ 𝜆

𝑛

𝑖=1

∑||𝜃𝑗
𝑗

||2
2 (3) 

 

where: 

yi are the true values, 

xi are the feature vectors, 

θj are the model parameters. 
 

3.3 SVR 

 

SVR [28] is a regression model based on support vector 

machines. 

The goal of SVR is to find a function f(x) that predicts the 

values of the data while maintaining a certain tolerance for 

error. 

The objective is to maximize the margin around the 

prediction function while limiting the errors. SVR is 

particularly useful, when the relationship between the input 

variables and the output is nonlinear, and is therefore often 

used for complex time series where the relationships between 

the variables are subtle and not obvious. 

The goal of SVR is to minimize the following function, 

which incorporates both error tolerance and model complexity 
 

𝑚𝑖𝑛𝜃 (
1

2
‖𝑤‖2 + 𝐶∑𝜉𝑖

𝑛

𝑖=1

) (4) 

 

Under constraints: 
 

𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀 + 𝜉𝑖 (5) 
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𝑓(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 (6) 

 

𝜉𝑖 ≥ 0, 𝑖 = 1,2, . . . , 𝑛 (7) 

 

where: 

yi is the true value of the i-th drive point, 

f(xi) is the prediction for the i-th training point, 

w is the weight vector, and  

C is a regularisation parameter,  

ξi are the release variables, which allow a certain degree of 

flexibility in the model to manage errors. The function f(x) is 

generally defined as a linear combination of the kernel 

functions in the case of a non-linear SVR. In the case of 

language models, this loss is often the loss of cross-entropy 

between the predicted sequence and the true sequence. 

 

3.4 ELM 

 

ELMs [29] are single hidden layer neural networks (SLFNs) 

in which the weights between the input and the hidden layer 

are randomly initialised and not adjusted during learning. Only 

the weights between the hidden layer and the output are 

learned, which allows extremely fast training by solving a 

linear problem. 

Given a training set {(𝑥𝑖 , 𝑡𝑖)}𝑖=1
𝑁  with 𝑥𝑖 ∈ ℝ𝑛  the inputs 

and 𝑡𝑖 ∈ ℝ𝑚 target outputs.  

An ELM with L hidden neurons performs the following 

modelling: 

 

𝑓(𝑥) =∑βjg(𝑤𝑗
𝑇x + b𝑗)

𝐿

𝑗=1

 (8) 

 

where: 

g(·) is the activation function (ex.sigmoïde, ReLU, sinus). 

𝑤𝑗 ∈ ℝ𝑛 is the input weight vector of the j-th hidden neuron. 

bj∈ ℝ is the bias of the j-th hidden neuron. 

βj∈ ℝ𝑚 is the vector of output weights associated with the 

jth neuron. In matrix notation, we give 

 

𝐻 = (

𝑔(𝑤1
𝑇𝑥1 + b1) ⋯ 𝑔(𝑤𝐿

𝑇𝑥1 + b𝐿)
⋮ ⋱ ⋮

𝑔(𝑤1
𝑇𝑥𝑁 + b1) ⋯ 𝑔(𝑤𝑗

𝑇𝑥𝑁 + 𝑏𝐿)
) ∈ ℝ𝑁×𝐿 (9) 

 

And we're looking to solve 

 

Hβ=T (10) 

 

where: 

β∈ ℝ𝐿×𝑚 is the output weight matrix to be estimated. 

T∈ ℝ𝑁×𝑚 is the target matrix. 

The optimal solution (in the least squares sense) is obtained 

by pseudo-inverse: 

 

β=𝐻†T (11) 

 

where, 𝐻†  is the Moore-Penrose pseudo-inverse of the H 

matrix. This formalism enables extremely fast learning 

without iterations, while maintaining good performance for 

many classification and regression tasks. 

The Senegal River, 1800 km long, is the second largest river 

in West Africa. Its basin, covering 300,000 km², stretches from 

the Fouta Djallon mountains to the north of Senegal as shown 

in Figure 1. Born of the confluence of the Bafing and Bakoye 

rivers in Mali, the river is of ecological and economic 

importance to the countries it flows through. Its main 

component, the Bafing, rises near Mamou in Guinea and flows 

through fertile plains before reaching the Atlantic Ocean. 

 

 
 

Figure 1. Senegal River (www.google.com) 

 

 

4. METHODOLOGY 

 

4.1 Analysis of precipitation variability in Senegal using 

the SPI index 

 

In this study, we use data from the UCSB-

CHG/CHIRPS/DAILY (Climate Hazards Group InfraRed 

Precipitation with Station Data) collection, which provides 

daily rainfall estimates on a global scale. These data are 

obtained by combining satellite observations and 

measurements from weather stations, thereby improving 

coverage and accuracy, particularly in areas where there are 

few stations. In addition, this collection offers a long time 

series, going back to 1981, which is essential for analysing 

climate trends and extreme events. We have calculated the SPI 

from this collection to assess the variability of rainfall around 

the Senegal River over the period from June 1990 to October 

2024. 

 

4.1.1 Data collection 

The objective of CHIRPS is to provide precipitation data at 

a spatial resolution of 0.05° (≈ 5 km) and on a daily scale. This 

data is used to analyse precipitation trends and to study 

climatic phenomena such as droughts and floods. The study 

area covers approximately 300,000 km2, divided into 25 km2 

zones, each zone corresponding to a raster pixel. For each 

pixel, we extract: 

-Latitude and longitude, 

-The calculated SPI value. 

 

4.1.2 Data preparation 

The precipitation data, extracted from the CHIRPS 

collection, cover the period from 1990 to 2024. For the 

analysis, we focus on the rainy season, from June to October. 

The calculation of the Standardized Precipitation Index (SPI) 

is used to assess the climatic conditions associated with 

drought and excess precipitation. 

 

4.1.3 Calculation of the SPI (standard method) 

The calculation of the SPI follows the standard method 

proposed by McKee et al. [1], which involves the following 
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steps: 

-Calculation of mean and standard deviation: For each 

month, historical rainfall data are used to calculate: 

-The average precipitation, noted as: µ 

-The standard deviation of precipitation, denoted σ 

•Standardisation: 

The SPI is obtained from the following formula: 

 

SPI =
(𝑋 − µ)

𝜎
 (12) 

 

where: 

X is the observed precipitation for a given month. 

µ is the historical average rainfall for the month. 

σ is the corresponding standard deviation.  

• Interpretation: 

SPI =0: normal conditions, 

SPI >0: excess rainfall, 

SPI < 0: drought conditions, the severity of which increases 

with more negative values. 

 

4.1.4 Our method of calculating the SPI 

Unlike the conventional monthly method, we calculated the 

SPI on a daily basis, for each com day taken between June and 

October (the rainy season in Senegal), by comparing the daily 

rainfall value with the average rainfall for the same period over 

the previous years. 

 

4.1.5 Visualisation and analysis of SPI calculation results 

The results of the SPI calculation are analysed and displayed 

in several ways: 

-Histogram of SPI values: shows the distribution of SPI 

indices over the entire study area. 

Figure 2 shows that the most frequent SPI values are 

between -0.7 and +0.7, indicating near-normal conditions. The 

maximum value observed is +1.88, and the minimum is -1.46. 

According to Table 1, extreme conditions (drought or 

humidity) occurred in less than 5% of cases. 

 

 
 

Figure 2. Histogram of SPI values extracted from .tif images 

 

Table 1. Classification of climatic sequences according to the 

SPI index [1] 

 
SPI Values Category 

2 and above Extremely wet 

1.5 to 1.99 Very wet 

1 to 1.49 Moderately wet 

-0.99 to 0.99 Near normal 

-1 to -1.49 Moderately dry 

-1.5 to -1.99 Very dry 

-2 and below Extremely dry 

 

-SPI pixel map: represents the spatial variability of rainfall 

in the Senegal River basin. 

 

 
 

Figure 3. Map of pixels in the Senegal river basin with 

associated SPI values 

 

Figure 3 illustrates the spatial distribution of SPI values, 

making it possible to identify drier or wetter areas. These 

results are used as input variables in prediction models, in 

particular the Random Forest model, to assess climate risks. 

 

4.2 Obtaining the dataset 

 

The analysis is based on the use of Google Earth Engine 

(GEE) to extract and process satellite data covering the 

Senegal River valley from June 1990 to October 2024. After 

initializing GEE (ee.Initialize()), a study area is defined as a 

polygon encompassing the region of interest. Sentinel-2 

images are loaded, retaining only the essential spectral bands: 

B2 (blue), B3 (green), B4 (red), and B8 (near-infrared - NIR). 

At the same time, precipitation data are extracted from the 

CHIRPS dataset, and the total sum of precipitation over the 

period is calculated. Vegetation indices (NDVI, NDWI, 

MSAVI) and spectral bands (B2, B3, B4, B8, etc.) are derived 

from Sentinel-2 imagery. The following sub-sections describe 

how temporal and spatial correspondence between these two 

datasets was managed. 

 

4.2.1 Temporal correspondence 

CHIRPS data offer a daily temporal resolution, allowing the 

retrieval of precipitation information for each day in the study 

period (1990-2024). Daily rainfall values were extracted and 

used to compute the SPI, specifically for the months of June to 

October, to better capture the season of high rainfall activity 

in the Senegal River region. Sentinel-2 data are acquired every 

5 to 10 days, depending on weather conditions and cloud 

cover. These images were used to calculate vegetation indices 
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(NDVI, NDWI, MSAVI) and extract specific spectral bands 

(B2, B3, B4, B8), which provide insights into vegetation 

cover, soil moisture, and other environmental variables, albeit 

at a coarser temporal frequency compared to CHIRPS. 

Thus, while CHIRPS provides daily granularity, Sentinel-2 

data are less frequent (5-10 days), requiring temporal 

aggregation of vegetation indices and spectral bands to align 

with the precipitation data. 

 

4.2.2 Spatial correspondence 

CHIRPS data are available at a spatial resolution of 5 km 

per pixel, which is relatively coarse compared to Sentinel-2 

imagery. This resolution allows analysis of precipitation 

trends across larger geographical regions and is suitable for 

regional-scale applications. 

Conversely, Sentinel-2 images offer a much finer spatial 

resolution, ranging from 10 to 60 meters depending on the 

spectral band. For example, the visible bands (B2, B3, B4) 

have a resolution of 10 meters, and the near-infrared bands a 

resolution of 20 meters. This high spatial precision allows for 

detailed analysis of land cover and vegetation indices like 

NDVI, NDWI, and MSAVI. 

Therefore, CHIRPS provides a broader overview at 5 km 

resolution, whereas Sentinel-2 enables detailed landscape-

level observation at pixel resolutions ranging from 10 to 20 

meters. 

 

4.2.3 Management of temporal and spatial correspondence 

Due to the differences in temporal and spatial resolutions, a 

harmonization process was necessary: 

-Daily CHIRPS precipitation data were averaged over time 

intervals corresponding to Sentinel-2 acquisition periods 

(approximately every 5 to 10 days). 

-Vegetation index values from Sentinel-2 were extracted 

over the geographical areas covered by CHIRPS pixels (5 km), 

taking into account the finer spatial resolution of Sentinel-2. 

The two datasets were then merged into a single Excel file, 

enabling a comparative analysis of SPI (from CHIRPS 

precipitation data) and vegetation indices (NDVI, NDWI, 

MSAVI) as well as spectral bands (B2, B3, B4, B8) from 

Sentinel-2. 

This fusion allowed a direct comparison between SPI values 

and vegetation indices, while considering the differences in 

temporal and spatial resolutions between the two sources. 

 

4.2.4 Vegetation indices calculation 

Several vegetation indices were computed from Sentinel-2 

imagery: 

 

NDVI =
NIR − Rouge

NIR + Rouge
 (13) 

NDWI =
Vert − NIR

Vert + NIR
 (14) 

 

𝐸𝑉𝐼 = 2.5 ×
𝑁𝐼𝑅 − 𝑅𝑜𝑢𝑔𝑒

𝑁𝐼𝑅 + 6 × 𝑅𝑜𝑢𝑔𝑒 − 7.5 × 𝐵𝑙𝑒𝑢 + 1
 (15) 

 
𝑀𝑆𝐴𝑉𝐼 = 

2 × 𝑁𝐼𝑅 + 1 − √(2 × 𝑁𝐼𝑅 + 1)2 − 8 × (𝑁𝐼𝑅 − 𝑅𝑜𝑢𝑔𝑒)

2
 

(16) 

 

These indices were averaged over the entire period and then 

merged with precipitation data. A total of 200 random points 

were generated within the study area, and vegetation index 

values were extracted at a spatial resolution of 5 km. 

 

4.2.5 SPI calculation 

The combined dataset was converted into a Pandas 

DataFrame. The SPI was then calculated using the following 

formula: 

 

𝑆𝑃𝐼 =
𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑒𝑐𝑖𝑝 − 𝜇

𝜎
 (17) 

 

where, μ is the mean and σ is the standard deviation of 

precipitation over the entire study period. 

 

4.2.6 Exporting the results 

All results were exported into an Excel file. The data were 

extracted from .tif raster images and organized into a tabular 

format, with each row representing the values for a given 

pixel. The dataset includes 200 records corresponding to the 

sampling points and is intended for use in climate risk 

modeling, including drought monitoring and water resource 

management. 

 

4.3 Training of prediction models 

 

We tested several machine learning models to predict SPI 

values, including Random Forest, XGBoost and Support 

Vector Regression (SVR), and compared our models to an 

Extreme Learning Algorithm (refer to Table 2). 

The process for predicting SPI values with machine learning 

models involves several key steps. First, the data is loaded 

from the source followed by preprocessing, where relevant 

features and the target variable (SPI) are selected. Next, the 

data is split into training 80% and testing sets 20%. Then, 

models Random Forest, XGBoost, and SVR, are optimized 

and trained using cross validation. After training, predictions 

are made on the test data. Finally, model performance is 

evaluated using metrics like MSE, RMSE, MAE, and R2, and 

the results are visualized through graphs. 

 

Table 2. Models, authors, references, strengths and weaknesses 

 
Model Reference Forces Weakness 

XGBoost [26] 
Excellent performance on tabular data, management of 

missing values 
Sensitive to overfitting if incorrectly set 

Random 

Forest 
[27] Robust, reduces overlearning, easy to interpret. Less efficient on very large data sets 

SVR [28] Good for small data sets with a clear structure 
Costly in terms of computing time and memory for 

large datasets 

ELM [29] Very fast in training, good for the time 
Less robust, highly dependent on random 

initialisation 
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5. RESULTS  

 

5.1 Data pre-processing 

 

Data pre-processing is an essential step in ensuring the 

quality and relevance of the results obtained by the regression 

models. 

In this study, the following steps were carried out: 

Data loading:  

The data were extracted from an Excel file containing 

various environmental variables and the SPI used as the target 

variable. 

Variable selection: 

Nine explanatory variables were selected for model 

training:  

B2, B3, B4, B8, EVI, MSAVI, NDVI, NDWI and 

TotalPrecip.  

The variable to be predicted is the SPI. 

Splitting of the dataset: 

The dataset was split into two subsets: 80% of the data for 

model training and 20% for model evaluation. This separation 

was carried out in a random but reproducible manner, by 

setting a random_state of 42. 

Robustness to noise:  

In order to test the resilience of the models, Gaussian noise 

was artificially introduced into the input data (the explanatory 

variables). More specifically, for each level of noise, random 

noise of mean zero and standard deviation proportional to the 

standard deviation of the variables was added to the test set, 

according to the formula: 

 

𝑆𝑃𝐼 = 𝜒𝑏𝑟𝑢𝑖𝑡é = 𝜒𝑡𝑒𝑠𝑡 + ℵ(0, 𝜎2)
𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑒𝑐𝑖𝑝 − 𝜇

𝜎
 (18) 

 

where, σ = α·std(Xtest), with α varying between 0% and 55% 

in 5% steps. This perturbation is applied only to the input 

characteristics, and not to the target variable (SPI), in order to 

assess the robustness of the models to noisy sensors or 

potential measurement errors. 

The aim of this pre-processing is to ensure that the data 

supplied to the models is consistent, relevant and 

representative of the phenomena under study, while enabling 

a rigorous assessment of their stability in real-life conditions. 

 

5.2 Comparative evaluation and optimisation of SPI 

prediction models 

 

 The analysis looked at performance before and after 

hyperparameter optimisation, measuring the classic metrics: 

Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE) and coefficient of 

determination (R2). A significant difference between training 

and test performance would have been an indicator of over-

fitting. The test set was strictly isolated throughout the model 

development process, including hyperparameter fitting. 

Specifically, we adopted a cross-validation (3-folds) only on 

the training set to select the best hyperparameters. The test set 

was used only once, at the very end of the process, to obtain 

an unbiased estimate of the model's final performance. 

 

5.2.1 Optimising models by hyperparameter selection 

Each machine learning model Random Forest, XGBoost, 

SVR has been optimised using RandomizedSearchCV to 

efficiently explore the hyperparameter space. For Random 

Forest, the parameters tested include the number of trees 

(n_estimators), the maximum depth (max_depth) and the 

minimum division sizes. The XGBoost model was refined 

according to parameters such as the learning rate 

(learning_rate), the depth (max_depth) and the subsampling 

(subsample). Finally, for SVR, kernels (kernel), regularisation 

(C) and the gamma parameter were explored in order to 

optimise cross-validation performance (Table 3). 

 

Table 3. Hyperparameters before optimization 

 
Models Hyperparameters 

Random 

Forest 

n_estimators=[50, 100, 200],  

max_depth=[10, 20, 30, None], 

min_samples_split=[2, 5, 10], 

min_samples_leaf=[1, 2, 4] 

XGBoost 

n_estimators=[50, 100, 200],  

learning_rate=[0.01, 0.05, 0.1, 0.2],  

max_depth=[3, 6, 10],  

subsample=[0.7, 0.8, 1.0] 

SVR 

C=[0.1, 1, 10, 100],  

gamma=['scale', 'auto', 0.01, 0.1, 1],  

kernel=['rbf', 'linear'] 

 

Training with RandomizedSearchCV is a loop of random 

tests of hyperparameters, coupled with cross-validation. 

XGBoost is trained by building a sequence of decision trees, 

where each new tree corrects the errors of the previous ones, 

and its hyperparameters are optimised via cross-validation to 

maximise performance. SVR is trained by finding a function 

that predicts target values within a tolerable margin of error, 

possibly transforming the data with a kernel, and its 

parameters are adjusted using random search to improve 

generalisation. After optimisation, we obtain the following 

hyperparameters (Table 4). 

 

Table 4. Hyperparameters after optimisation 

 
Models Best Parameters 

Random 

Forest 

n_estimators=100, max_depth=10, 

min_samples_split=2, min_samples_leaf=2 

XGBoost 
n_estimators=100, learning_rate=0.1, 

max_depth=6, subsample=0.8 

SVR kernel=linear, gamma=1, C=1 

 

We used one hundred fixed neurons and a sigmoid 

activation function for the ELM model. 

 

5.2.2 Comparative evaluation of model performance 

(1) Model performance 

Model performance is compared between training and 

testing according to the following metrics: MSE, RMSE and 

R² (Table 5). 

(2) Analysis and interpretation 

The comparative analysis shows that the Random Forest 

and XGBoost models perform best on test data. Their ability 

to generalise is confirmed by the small difference between 

training and test performance. In particular, Random Forest 

shows great stability and robustness (R2 = 0.99899 in test), 

making it the best candidate for SPI predictions. XGBoost, 

despite an excellent performance in training (R2 = 0.99999), 

shows a slight deviation in testing, suggesting minimal 

overlearning. SVR performed less well overall and showed 

some variability in the error, probably due to sensitivity to the 

choice of kernel. As for the ELM model, it suffers from 

significant numerical problems (overflows in the sigmoid 
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function), making its training unstable. This is reflected in an 

R2 of just 0.938 in test, which is significantly lower than the 

other models. Random Forest is therefore selected as the best 

compromise between accuracy, stability and generalisation 

capacity. 

 

5.3 Importance of selected characteristics 

 

To better understand the influence of explanatory variables 

on the prediction of the SPI index, an interpretability analysis 

based on SHapley Additive exPlanations (SHAP) values was 

conducted. This method allows for both local and global 

attribution of each feature’s contribution to the model’s output. 

 

 
 

Figure 4. SHAP values for the test set (Random Forest 

model) 

 

Figure 4 shows the SHAP values associated with the 

variables in the model. Each point represents an instance of the 

test set. The horizontal position indicates the effect of the 

variable on the prediction (SHAP value), while the colour 

reflects the actual value of the variable (blue for a low value, 

red for a high value). 

-TotalPrecip is by far the most influential characteristic. 

High values of total precipitation (in red) tend to strongly 

increase the SPI (positive SHAP impact), which is consistent 

with the hydrological nature of the SPI index. 

-NDWI and MSAVI come second and third. NDWI 

(moisture index) has a moderate influence, generally negative 

for low values. This reflects the link between surface humidity 

and water stress detected by the SPI. 

-Spectral bands (B4, B8, etc.) and vegetation indices such 

as NDVI or EVI have a weaker, but not negligible effect. Their 

contribution is mainly centred around zero, which suggests 

that they modulate the prediction without dominating it. 

-The fact that several variables have points distributed on 

either side of the zero axis indicates that their effect on the 

prediction varies according to the observations (positive or 

negative impact depending on the situation). 

This analysis confirms the relevance of the choice of 

environmental variables used in the models, in particular the 

crucial importance of the variable TotalPrecip, which acts as 

the main predictor of SPI in this river context. 

 

5.4 Assessment of model robustness 

 

5.4.1 Analysis of model robustness to noise 

The MSE, RMSE, MAE and R² curves in Figure 5 allow us 

to assess the robustness of four models (Random Forest, 

XGBoost, SVM, ELM) to different levels of Gaussian noise. 

Here are the main observations: 

General trends: 

All errors (MSE, RMSE, MAE) increase with noise, while 

the R² decreases, as theoretically expected. The speed of 

degradation varies significantly between models. 

Model comparison: 

-Random Forest & XGBoost: Ensemble models showing 

excellent robustness. The errors increase slowly and the R² 

remains high even at 50% noise (≈ 0.85-0.90). Their ability to 

aggregate several predictions enables them to limit the impact 

of noise. 

 

Table 5. Training vs. test performance 

 
Model MSE (Train) RMSE (Train) R² (Train) MSE (Test) RMSE (Test) R² (Test) 

Random Forest 0.00067 0.02584 0.99936 0.00078 0.02786 0.99899 

XGBoost 0.000007 0.00271 0.99999 0.00124 0.03518 0.99840 

SVR 0.00289 0.05379 0.99724 0.00229 0.04781 0.99704 

ELM - - - 0.04778 0.21859 0.93816 

 

 
 

Figure 5. Evolution of the MSE, RMSE and MAE of the models in the face of Gaussian noise 
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-SVM: Sensitive to noise, especially visible on MAE and 

R². The latter drops to ≈ 0.80 at 50% noise. This sensitivity 

could stem from the rigidity of decision margins. 

-ELM: The most vulnerable, with a sharp increase in errors 

and a significant drop in R² (≈ 0.70 at 50% noise). Its simple 

architecture and lack of explicit regularisation make it more 

prone to overfitting. 

-Consistency of metrics: 

The error and R² curves are consistent: as the error 

increases, the R² decreases. XGBoost systematically maintains 

lower errors and higher R², illustrating a good compromise 

between performance and robustness. 

-Curve stability: 

Random Forest and XGBoost have regular, predictable 

curves. ELM shows more marked fluctuations (especially in 

MAE and R²), reflecting instability in the face of intermediate 

noise (20-40%). 
 

5.4.2 Interpretation of noise robustness results 

Adding Gaussian noise to the data makes it possible to 

simulate a realistic environment where the data is imperfect or 

disturbed. In this context, the performance of the models varies 

according to their ability to manage uncertainty. The error 

metrics (MSE, RMSE, MAE) measure the gap between 

predictions and the ground truth, while the R² assesses the 

proportion of variance explained by the model. 

-Expected behaviour: The increase in errors (MSE, RMSE, 

MAE) and the decrease in R² with the increase in noise is 

theoretically expected. This indicates that the models find it 

more difficult to produce accurate predictions when the data 

becomes less reliable. 

-Ensemble models (Random Forest, XGBoost): Their 

resistance to noise is explained by their architecture. These 

models are based on the combination of many weak learners 

(decision trees) to produce a global prediction. This 

aggregation cushions the effect of noise, because point errors 

are "diluted" in the ensemble. Their error curves progress 

slowly, and the R² remains high, showing that they retain a 

good capacity for generalisation. 

-SVM: SVMs use rigid margins to separate the data. In the 

presence of noise, outliers can have a disproportionate effect 

on these margins. This leads to a rapid degradation in 

performance, particularly in MAE, suggesting that the model 

makes more significant errors on certain perturbed data.  

-ELM: ELM is based on a very simple neural network 

architecture (a single hidden layer with random initial 

weights). It does not incorporate an explicit regularisation 

mechanism, which makes it vulnerable to noise. The fact that 

its curves are unstable and that the R² drops rapidly indicates 

a high variability in performance according to noise levels, 

typical of a model that is too sensitive to variations in the data. 

-R² as an overall indicator of robustness: The progressive 

loss of R² reflects the decreasing ability of the models to 

capture the structure of the data. A robust model is one whose 

R² falls slowly, which is the case for Random Forest and 

XGBoost. This confirms that these models retain a high 

explanatory capacity even when the environment becomes 

noisy. 
 

5.5 Prediction of SPI values with the best models Random 

Forest, SVR, XGBoost 
 

In this section, we present the results obtained by predicting 

the values of the SPI using the three machine learning models: 

Random Forest, XGBoost and SVR. These models were 

evaluated on a test set and compared in terms of several 

evaluation criteria, including MSE, MAE, RMSE and 

coefficient of determination R2. 

 

 
 

Figure 6. Predictions of SPI values 

 

Figure 6 shows the evolution of the SPI indicator as a 

function of the samples in the test dataset. The x-axis 

represents the indices of the samples, while the y-axis shows 

the predicted values of the SPI. The curves of the models 

(Random Forest, XGBoost, SVR) are plotted with a 

transparency of 0.7, allowing their predictions to be compared 

with the actual SPI values (shown as dotted lines). The aim is 

to observe how each model follows the trend of the actual 

values and to assess the quality of the prediction for each 

sample. 

Good performance can be seen when the curves of the 

models are close to the actual values, indicating a low 

prediction error. These visualisations help to understand the 

ability of each model to generalise and correctly predict SPI 

trends over the test set. 

Random Forest proved to be the best model of the three, 

with an R2 of 0.9991, meaning that it explained 99.91% of the 

variance in the data. This model performed exceptionally well 

in terms of accuracy, with low prediction errors, making it a 

robust solution for SPI prediction. On the other hand, although 

XGBoost also performed remarkably well, with an R2 of 

0.9984, it lagged slightly behind the Random Forest model. 

The SVR model, although effective, has a lower R2 of 0.9971, 

indicating that its ability to explain the variance in the data is 

slightly lower than that of the other two models. 

These results show that, although all the models perform at 

a high level, Random Forest is the most suitable for predicting 

the SPI in this context, closely followed by XGBoost. The 

accuracy of the predictions and the low variability of the errors 

in the case of Random Forest make it the optimal choice for 

reliable and robust predictions. However, XGBoost remains 

an interesting alternative, notably because of its ability to 

model complex relationships while being slightly faster to 

train. 

 

 

6. DISCUSSION 

 

The results obtained clearly demonstrate the superiority of 

ensemble models, in particular Random Forest and XGBoost, 

in predicting the SPI from satellite and environmental data. 

These models not only have a very good predictive capacity 

under normal conditions, but are also remarkably robust in the 

face of disturbances simulating instrumental noise or 

measurement inaccuracies. 
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6.1 Predictive performance 

 

Of all the models tested, Random Forest showed the best 

overall performance with an R2 close to 0.999 on the test set. 

This result reflects its exceptional ability to model the 

relationship between the explanatory variables (mainly 

TotalPrecip, NDWI and MSAVI) and the SPI. The XGBoost 

model, while performing slightly less well in test, retains a 

very high level of accuracy, but appears to be slightly more 

prone to overlearning, as indicated by the greater discrepancy 

between training and test scores. 

 

6.2 Interpretability 

 

The SHAP analysis made it possible to clarify the impact of 

the different variables on the predictions. The central role of 

TotalPrecip confirms the validity of the model, as this variable 

is directly linked to the nature of the SPI. Similarly, the water 

(NDWI) and vegetation (MSAVI, NDVI) indices play a 

relevant role, albeit a secondary one. This explanatory stage 

strengthens the credibility of the models used, particularly in 

terms of decision support for hydrological management. 

 

6.3 Robustness to perturbations 

 

Faced with increasing levels of Gaussian noise, the 

ensemble models showed a slow and gradual degradation in 

performance. This confirms their stability and their suitability 

for use in a real environment, where the data is rarely perfect. 

Conversely, the ELM proved to be unstable and unreliable, 

while the SVR, although more robust than the ELM, remains 

more sensitive to noise than RF or XGB. 
 

6.4 Limitations of the ELM model 
 

The ELM, although theoretically attractive for its speed of 

training, was unable to compete with the other algorithms in 

this context. Its numerical instability, linked in particular to the 

sigmoid function and the absence of effective regularisation, 

made it unsuitable for accurate prediction of the SPI on noisy 

data. This suggests that more advanced or hybrid versions of 

ELM could be considered for future experiments. 
 

 

7. CONCLUSION 

 

This study has shown that it is possible to predict the SPI 

index with a high degree of accuracy using machine learning 

models and environmental variables derived from satellite 

data. The Random Forest model emerged as the most robust 

and accurate solution, capable of generalising efficiently while 

maintaining remarkable stability even in the presence of 

significant noise. The results also highlight the crucial 

importance of certain variables, in particular TotalPrecip, 

whose major influence was confirmed by the SHAP analysis. 

The ability of the models to maintain high performance despite 

deliberate degradation of data quality attests to their potential 

in practical scenarios, where measurement errors are common. 

However, some models such as ELM have shown their 

limitations, suggesting the need to continue exploring more 

sophisticated architectures or adapted regularisation 

mechanisms to improve their reliability. Looking ahead, the 

integration of additional spatio-temporal data (such as soil or 

atmospheric humidity data), as well as the generalisation of 

models to other river basins, could pave the way for more 

comprehensive, dynamic and operational hydrological 

forecasting systems. 

 

 

8. OUTLOOK 

 

Although the results obtained in this study are promising, 

several avenues for improvement and future research deserve 

to be explored in order to further optimise SPI prediction and 

gain a better understanding of the underlying climate 

dynamics. 

-Integration of additional data: One of the most interesting 

avenues would be to enrich the models with additional data, 

such as global climate indices (e.g. normalised precipitation 

index, temperature data, soil moisture), as well as socio-

economic data. The integration of multivariate data could 

improve the accuracy of predictions and make it possible to 

extend model applications to wider scales. 

-Improving the generalisability of the models: An important 

prospect would be to work on improving the generalisability 

of Random Forest and XGBoost. Although these models 

performed exceptionally well on training and test data, a slight 

over-fitting was observed. More advanced regularisation 

techniques, such as reducing tree depth, more rigorous feature 

selection or the application of more robust ensemble methods, 

could be explored to avoid this over-fitting. 
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