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Addressing a variety of networking issues, such as distribution optimization and system 

provisioning, requires accurate flow pattern estimation. This activity depends on link 

load proportions in standard IP networks, but the accuracy is frequently harmed since 

the linear equations driving the traffic estimate process are so poorly understood. 

Measurements of various flow types are made possible by software-defined networking 

(SDN), which opens up new alternatives for solving this issue. In order to gather traffic 

statistics, SDN controllers can also dynamically configure flow entries in the routers' 

flow tables. The restricted capacity of flow tables, which are usually constructed using 

expensive ternary content-addressable memory (TCAM) and only provide a certain 

number of entries for traffic measurement, is a significant drawback. In this study, we 

offer a new framework for SDN-based IP networks that uses Flow Volume estimates 

(FVESDN). Our method's capacity to deliberately add flows to the flow tables of SDN 

routers, so raising the rate of the underlying equations governing Flow Volume 

estimates, is one of its most notable features. This greatly improves the effectiveness of 

using TCAMs for traffic measurement. Our thorough performance analysis shows that 

the suggested framework outperforms current techniques by a significant margin, 

providing a more potent response to the difficulties presented by FVESDN situations. 
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1. INTRODUCTION

Flow Volume (FV) is fundamental to addressing numerous 

network challenges, like traffic-engineering (TE), system 

provisioning, and crowding managing. However, accurately 

estimating a network's FV remains a challenging task [1]. The 

FV, denoted as FV=tlfsd, where, tlfsd is the traffic load drift 

from source (s) to destination (d) to estimate the load for each 

pair. In vector v form, this can be expressed as v=[v1, v2, , 

v|z|]FV, where, z is all source-destination (sd) flows, and each 

section vi corresponds to one FVsd. In traditional internet 

protocol (IP) networks, Flow Volume Estimation (FVE) relies 

on link load measurements collected via protocols. Let the 

route of the link load (LL) represent by  𝐿𝐿𝑅𝑉 =

[𝐿𝐿1
𝑅𝑉 , 𝐿𝐿2

𝑅𝑉 , … , 𝐿𝐿|𝑠𝑙|
𝑅𝑉 ], where, (sl) is the established of links,

and LL𝑖
𝑥 indicates the link load on the link i. The relationship 

between the traffic flows v and the link loads LLRV is governed 

by Eq. (1): 

𝑅𝑉´𝑣 = 𝐿𝐿𝑅𝑉 (1) 

where, RV is the routing volume indicating whether a flow 

passes through a particular link [2]. While RV is known and 

LLRV can be measured, solving for v is problematic because the 

system of equations is highly under-determined, leading to 

multiple possible solutions [3]. Although various techniques 

have been proposed to improve FVE, their accuracy remains 

limited [4]. The advent of software-defined networking (SDN) 

introduces new possibilities for addressing this challenge. By 

separating the data plane and control plane, SDN enabled 

routers use flow tables (FT) for forwarding, where each entry 

consists of three parts: A match field (defining the flow), an 

action field (specifying the routing strategy), and a counter 

(measuring traffic statistics) [5]. These counters provide 

additional insights beyond conventional link load 

measurements. Moreover, SDN controllers can dynamically 

install flow rules in FT to collect targeted traffic measurements 

without routing actions. However, this approach faces a key 

limitation: FT, built using expensive ternary content-

addressable memory (TCAM) has limited capacity [6]. 

Efficiently utilizing this limited TCAM space for traffic 

measurements is a significant challenge, as excessive usage 

can impact network resources and operations [7]. 

This paper presents a novel framework for Flow Volume 

Estimation SDN (FVESDN) for programming systems. If a 

flow does not contribute additional information, its inclusion 

is avoided, optimizing TCAM utilization. The suggested 

method is versatile and appropriate to various programming 

system settings. To illustrate its benefits, we evaluate its 

performance in a hybrid network scenario, where SDN routers 

coexist with traditional routers, a setup reflecting the gradual 
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adoption of SDN technology in real-world networks. The key 

contributions of this paper are:  

a) Introduce a new FVESDN for the programming 

networks that maximize the efficiency of TCAM 

utilization by ensuring that each added flow provides 

unique, non-redundant inform for traffic measurement. 

b) Our performance evaluation demonstrates substantial 

gains compared to existing estimation techniques, 

highlighting the framework’s effectiveness in hybrid 

network environments. 

The rest of this paper is structured as follows: Section 2 

reviews associated studies on FVE. Section 3 outlines the 

illustration of the proposed framework and the principles 

behind the proposed framework. Section 4 proposes 

methodology for FVE, while Section 5 introduces heuristic 

algorithms for generating s. Section 6 presents performance 

evaluation results, and Section 7 presents the scalability and 

adaptability to dynamic traffic Conditions. Section 8 

concludes the paper. 
 

 

2. ASSOCIATED STUDIES 
 

Traditional methods for FVE, like those relying on SNMP 

measurements, have primarily focused on link loads. One 

well-known example is the gravity model, as explored in 

previous studies [8-10]. This method estimates FV by using 

the total inbound and outbound traffic for each network node, 

essentially calculating individual flow terms based on the row 

and column sums of the FV. While it provides a good starting 

point, its accuracy is limited because it uses sparse and 

incomplete data. Later, the tomogravity model, introduced in 

the study [11], improved on this by incorporating link load 

data, which resulted in better accuracy. Even though these 

models aren’t perfect, they’ve served as useful tools for 

providing initial estimates of sd flows something we plan to 

build upon in our approach. Now, compared to these 

traditional networks, programmable networks like SDN offer 

far richer measurement capabilities. These go beyond simple 

link loads or node-level ingress and egress traffic. Instead, they 

give much more granular, flow-level insights. This extra 

information significantly improves the accuracy of FVE 

techniques designed specifically for these kinds of networks. 

Broadly speaking, such techniques revolve around three main 

factors:  

a) The type of flows considered for estimation. 

b) how a source-destination (sd) flow is chosen for 

measurement. 

c) The strategy for deciding which SDN node should 

handle the measurement. 

One notable method is OpenFV, proposed in the paper [12], 

which aims to measure all sd flows in the FV. It relies on a 

centralized controller to identify the routing path for each flow 

and selects a node along that path to take the measurement. 

Strategies like round-robin or choosing the least-loaded node 

are often used here. While this approach works, it struggles 

with scalability due to the sheer number of flows and the 

limited size of the TCAM, making it impractical for large-

scale networks. To address this, newer approaches like those 

in these studies [13, 14] have focused on measuring only a 

subset of sd flows. These methods combine these selected flow 

measurements with aggregated flow data and existing link 

load statistics, which are usually gathered using SDN-FT or 

SNMP. Since only a small number of sd flows are measured, 

choosing the right flows becomes crucial. Some strategies, 

such as those discussed in these studies [15, 16], prioritize 

flows based on their size, which typically requires an initial 

size estimation. For example, iSTAMP, introduced in the 

research [15], uses intelligent sampling to estimate flow sizes, 

though this comes at a high cost in terms of resources. The 

study [13] suggests two different approaches: Multi-Level 

Reciprocal Feedback model (MLRF), which breaks down 

aggregated flows into smaller, more manageable flows until 

enough data is available to solve the underlying linear 

equations, which uses preliminary size estimates to prioritize 

flows for measurement. Both rely on integer programming to 

determine which nodes should measure the selected flows. 

OpenMeasure, reported in the research [15], adds a layer of 

sophistication by applying available knowledge procedures to 

classify the major drifts and then optimizing their placement 

using integer programming. 

Another approach introduced in the study [17] uses a metric 

called “flow spread” to prioritize which sd flows to measure. 

Flow spread represents the range of potential solutions for a 

given flow in the FV equations, with larger spreads taking 

priority. However, this method has a key limitation: Selecting 

one sd flow for measurement can alter the flow spreads of 

others, meaning recalibration is needed after each selection. 

One recurring issue in these methods is that they sometimes 

choose sd flows that don’t add any new information about the 

FV. This happens when the traffic load of a selected flow can 

already be inferred from existing measurements. In 

mathematical terms, such flows don’t growth the rate of the 

structure of direct calculations used for FVE. Previous studies, 

like these studies [18, 19], have explored rate-related issues in 

other areas, such as node placement and packet loss estimation 

in cloud networks. In this paper, we extend those insights to 

FVE, ensuring that each selected sd flow contributes 

meaningful new information by increasing the rate of the 

equations. This approach not only improves how efficiently 

the TCAM is used but also boosts the overall accuracy of FVE 

techniques. 

 

 

3. STRUCTURE OF THE PROPOSED MODEL 

 

In this study, we focus on a hybrid network configuration, 

as illustrated in Figure 1, where conventional routers coexist 

with programmable routers (Hybrid-SDN switches) under the 

management of an SDN controller. Conventional routers 

operate using static routing protocols, primarily relying on 

shortest-path routing to determine the most efficient path for 

data transmission [13]. In contrast, Hybrid-SDN switches 

introduce programmability, enabling dynamic traffic 

management and policy-based routing. The SDN controller 

centrally manages the Hybrid-SDN switches by installing 

forwarding rules based on network conditions, security 

policies, or traffic optimization strategies [16]. This 

architecture allows us to analyze how SDN-based routing can 

enhance network performance compared to traditional 

shortest-path routing. By integrating both conventional and 

programmable network elements, we evaluate the impact of 

SDN adoption on key performance metrics such as latency, 

throughput, and security enforcement. Our study explores 

various traffic scenarios within this hybrid framework to 

determine the benefits and challenges associated with SDN 

integration. The results provide insights into how SDN 

enhances network adaptability while coexisting with legacy 

routing mechanisms. 
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Figure 1. Hybrid SDN environment 

 

We analyze three categories of flow sizes in a hybrid system 

setup: 

• Link loads (LLs): These measurements, 

explained in Eq. (1), are collected using SNMP 

method. 

• Dest-Based Drifts (DBFs): With faster route in 

use, each destination in the network has a 

corresponding flow entry in the programable 

node's FT. 

• Source-destination (sd) flows: These flows are 

added to the programable node’s FT specifically 

for traffic measurement purposes, under the 

instructions of the centralized controller.  

These measurements enable the estimation of the network's 

FV. While LL and DBFs measurements are fixed, the sd flow 

measurement requires selection, which forms the core of our 

study. For simplicity, unless stated otherwise, the term, flow, 

refers to a sd flow. Other types, such as DBFs, are mentioned 

explicitly. 

 

3.1 Linear equations underpinning the model 

 

To illustrating, consider the network in Figure 1 with a 

single programable router (RTR-B) while the other devices are 

conventional routers. We use the following notations |Z| = 

|SN|×(|SN|−1), where SN sets of nodes in the network. sl is a 

set of links in the network and Z is a set of all sd flows. Each 

sd flow measurement contributes to a linear equation 

involving the FV(v). Traffic estimation is carried out by 

combining constraints derived from these linear equations: 

a) Link load measurements (LL): These result in the 

equation (RV×v=LLRV), where RV is a |sl|×|Z| binary 

volume, representing how flows traverse each link. For 

instance, if the link (l) is crossed by flows 1 and 2, the 

corresponding row in RV would be ([1, 1, 0, 0, ...0]). 

b) Destination-based flow measurements (d): These 

measurements yield d×v=LLd, where LLd represents the 

measured loads of destination-based flows, and d is a 

(NOd×|Z|) binary volume. Where NOd is the entire 

amount of DBF. Each row in d indicates which sd flows 

form a specific DBF.  

c) SD flow measurements: These result in BV×v=LLsd, 

where, BV is a binary volume and represent by 

NOBV×|Z|. Each row in BV corresponds to one sd flow, 

represented by a single "1".  

By combining these three equations, we form a unified 

model, 

 

𝐿 = [
𝐿𝐿𝑅𝑉

𝐿𝐿𝑑

𝐿𝐿𝐵𝑉

],    𝑀 = [
𝑅𝑉
𝑑

𝐵𝑉
] 

 

When multiple programable nodes are present, d and BV 

include measurements from all nodes, with the controller 

removing redundant rows. However, BV rows remain unique, 

as duplicate sd flow measurements across nodes are 

unnecessary. Two key characteristics of the volume M are: 

• Each row represents an aggregated flow, e.g., [1, 1, 

0, , 0] corresponds to a flow combining sd flows 

1 and 2. 

• Each column represents a sd flow, and the number 

of "1"s indicates how often the flow is part of 

aggregated flows. 

Even with shortest-path forwarding (SPF), multi route can 

be applied using hashing on IP and TCP fields. Traffic is 

distributed across paths according to weights set by TE tools. 

For instance, if 40% of a sd flow takes one path and 60% takes 

another, RV and d entries may be fractional rather than binary. 

However, this adjustment does not change the overall 

framework. 

 

3.2 Selecting s-d flows for accurate estimation 

 

The matrices RV and d are predetermined, but selecting BV 

effectively is key to improving Flow Volume accuracy. Each 

sd flow added corresponds to a row in BV. Two criteria guide 

this selection: 

Flow prioritization (FPR): Different flows contribute 

differently to traffic estimation. FPRs based on size are 

effective, as "elephant flows" (large flows) dominate traffic 

[20]. Geometrically, measuring larger flows reduces 

uncertainty in estimating remaining flows. The gravity model 

[8-10] offers a rough estimate of flow sizes using Eq. (2): 

 

𝐹𝑉𝑠𝑑 =
𝑡𝑜𝑠𝑡𝑜𝑑

𝑛𝑙
 (2) 

 

where, tos and tod are the entire flow from s to d, respectively, 

obtained via SNMP. The normalization (nl) constant is the 

total network load. Improved models, such as the tomogravity 

model [21, 22], refine these estimates using quadratic 

programming. 

Rate-increasing selection principle (RAISPR): Adding a 

flow should provide new information about the FV. For 

example, if flows LL1 and LL2 allow computation of v4, adding 

v4 to sd is redundant. The principle ensures that each added 

flow increases M's rate, guaranteeing its contribution to traffic 

estimation. 

Our suggested approach guarantees that the load of a new 

flow chosen for measurement by the centrally managed CO 

cannot be deduced from the streams already present in the FT. 

Stated otherwise, the newly added stream's corresponding row 

in volume M will be linearly self-determining of the previous 

rows in M. The rate of the volume M must be raised by the 

insertion of a new row in order to do this. In our discussion, 

this tactic is referred to as RAISPR. 
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4. PROPOSED METHODOLOGY FOR FLOW 

VOLUME ESTIMATION 

 

We demonstrate how the two selection criteria outlined in 

Section 3 are applied to construct the volume BV and estimate 

the FV. The estimation process consists of two main phases: 

1) Selecting source-destination (sd) Flows for 

Measurement: Choosing a subset of flows that 

maximizes information gain while minimizing 

TCAM usage. 

2) Flow Volume Estimation (FVE): Using the measured 

values along with link load and destination-based 

flow measurements to reconstruct the Flow Volume. 

 

4.1 Selecting source-destination flows for measurement 

 

The selection of sd flows is crucial for optimizing TCAM 

utilization. As discussed in Section 3, the RAISPR ensures that 

every added flow contributes unique, non-redundant 

information to the Flow Volume. If a flow’s traffic load can 

already be inferred from existing measurements, it is excluded 

from selection. Eq. (3) formalizes this selection, let bj be a 

binary variable, where, 

 

𝑏𝑗 = {
1,    If flow 𝑗 is selected for measurement
0,     Otherwise                                                  

 (3) 

 

The goal is to maximize the total information gain by 

selecting a set of flows while satisfying the following 

constraints: 

1) TCAM Entry Limitation: The total number of sd 

flows added to the flow table must not exceed the 

available TCAM capacity. 

2) Rate Increase (RAISPR Constraint): Individually 

designated drift must increase the rate of volume 𝑀 

ensuring it adds new information. 

The optimization problem can be formulated in formula (4): 

 

∑ 𝑤𝑒𝑗

𝑗∈𝑍

× 𝑏𝑗 (4) 

 

where, wej is the weight of flow, j is defined as 𝑤𝑒𝑗 = 𝑣𝑗
𝑡𝑔

. 𝑣𝑗
𝑡𝑔

 

is wight vector used into tomogravity model. 

 

4.2 FVE 

 

Once the set of flows is selected, the FVE follows these 

steps: 

1) Modeling Traffic Loads and Flow Volume: The 

relationship between the observed traffic loads 

and the unknown Flow Volume (v) is governed by 

Eq. (2), where M is constructed using the selected 

flows. 

 

LL = M × v 

 

2) Initial Weight Estimation: The Tomogravity 

model provides an initial estimate of flow sizes, 

serving as the weight (𝑤𝑒𝑗) for prioritizing flows 

during selection. 

3) Optimizing Flow Selection: To ensure rate 

maximization, Gauss-Jordan elimination is used 

to verify the linear independence of selected flows 

in volume M. 

4) Final Flow Volume Computation: Since (𝐿𝐿 =
 𝑀 ×  𝑣 ) may yield multiple possible solutions 

for (𝑣), the final estimation minimizes the error 

between (𝑣) and the initial guess (𝑣𝑡𝑔). 

 

𝑀𝑖𝑛 ‖𝒗 − 𝒗𝑡𝑔‖ 

 

This process ensures an accurate and computationally 

efficient estimation of the Flow Volume.  

 

 

5. HEURISTIC MODELS FOR SYNTHESIZING 

VOLUME DATA 

 

Solving the optimization problem in Section 4 using 

exhaustive search is computationally infeasible due to the 

large number of possible flow combinations. To address this, 

we propose two heuristic algorithms that efficiently construct 

volume BV while satisfying the RAISPR in Section 3. 

 

5.1 Algorithm 1 (ALO1): Rate-Aware flow selection 

 

This algorithm ensures that each selected sd flow 

contributes new information by increasing the rate of volume 

M. It follows these steps: 

1) Generate Candidate Flows: Construct a set of sd 

flows (Zsd) for potential measurement. 

2) Select Flows for Measurement: Using the 

estimated weights (wej) from the Tomogravity 

model, prioritize the highest-impact flows while 

ensuring they satisfy: 

• TCAM capacity constraints. 

• RAISPR (each new row in BV increases M’s 

rate). 

3) Update Volume BV: Selected flows are installed 

in the flow table, and volume BV is constructed 

accordingly. 

The selection process is formulated in (5): 

 

Max ∑ wej

j∈Z

 

⋅ bj subject to TCAM and RAISPR constraints 

(5) 

 

While this method efficiently selects useful flows, it 

involves solving an integer programming problem, which may 

still be computationally expensive. 

 

5.2 Algorithm 2 (ALO2): Rate-Aware probabilistic 

selection 

 

To further reduce complexity, ALO2 replaces integer 

programming with a probabilistic heuristic. The steps are: 

1) Generate Zsd Using RAISPR: 

• Apply Gauss-Jordan elimination on volume M 

to filter out dependent flows. 

• Retain only flows that increase the volume rate 

(RAISPR enforcement). 

2) Randomized Flow Placement: 

• Randomly generate a sequence of SDN nodes. 

• Assign the largest unmeasured flows to each 

node until its TCAM is full. 

• Repeat the process for all nodes. 
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3) Repeat and Select Best Placement: 

• Run multiple randomized iterations. 

• Choose the placement yielding the best rate 

improvement and traffic estimation accuracy. 

This method significantly reduces computation time while 

maintaining estimation accuracy close to Algorithm 1. 

 

5.3 Complexity analysis 

 

ALO1 requires solving an integer programming problem, 

making it computationally intensive for large networks. ALO2 

simplifies this by eliminating integer programming and using 

randomized flow selection, leading to significantly lower 

execution time. 

• ALO1 Complexity: O(N3) due to Gauss-Jordan 

elimination and integer programming. 

• ALO2 Complexity: O(N2), as randomized selection 

reduces the number of volume operations. 

Experimental results confirm that ALO2 achieves near-

optimal performance while being significantly faster than 

ALO1. This heuristic approach is computationally simpler and 

avoids the complexities of integer programming. To enhance 

its performance, the simulation is run multiple times with 

different random sequences, and the best outcome is selected. 

This method provides a practical and efficient solution for 

flow placement in programable nodes. 

 

 

6. EVALUATION OF EFFICIENCY 

 

This segment assesses the valuation accurateness of the 

projected method using adopted Relative Root Mean Square 

Error (ARRMSER) as the concert metric. The ARRMSE is 

calculated as: 

 

𝐴𝑅𝑅𝑀𝑆𝐸𝑅 = √
∑ (𝑎𝑡𝑖 − 𝑎�̂�𝑖)

2𝑍
𝑗=1

∑ 𝑎𝑡𝑗
2𝑍

𝑗=1

 

 

where, atj represents the real flow and 𝑎�̂�𝑖  denotes the expect 

flow. The proposed method is compared with studies [13, 16]. 

To ensure the validity of our results, the traffic matrices and 

link loads were generated in a way that reflects realistic 

network conditions. The Tomogravity model [11, 21] was 

used for Flow Volume generation, combining node-level 

ingress/egress traffic (collected via SNMP) with link load 

constraints. To emulate realistic traffic patterns, we 

incorporated the following features: 

• Heavy-tailed flow size distributions: 80% of traffic is 

dominated by 20% of "elephant" flows, mimicking 

large, long-lived traffic flows. 

• Temporal variations: Diurnal patterns were modeled 

using sinusoidal functions to simulate daily traffic 

fluctuations 

For link load computation, the RV was applied to the 

generated traffic matrices. Routing paths were determined 

using shortest-path routing with link weights adopted from the 

TopoHub database [23]. Multi-path routing was simulated by 

splitting traffic proportionally across equal-cost paths using 

hashing on IP/TCP fields. The synthetic traffic patterns were 

validated against Abilene and GEANT backbone network 

datasets [24, 25], ensuring that they align with real-world flow 

size distributions and spatiotemporal correlations. To simulate 

burstiness and congestion events, selected source-destination 

flows were randomly scaled by 300-500% over short intervals, 

mimicking flash crowd behaviors seen in operational 

networks. To ensure a fair comparison, all methods are tested 

in the same network environment, constructed using the 

TopoHub representing medium-to-large-scale backbone 

networks. This environment includes multiple flow conditions 

and different system structure: 

 

1) Topology 1 (T1): 30 device and 100 connections. 

2) Topology 2 (T2): 50 device and 150 connections. 

3) Topology 3 (T3): 60 device and 200 connections. 

 

Each topology (T) was tested under 10 distinct traffic 

matrices, each spanning 24-hour cycles to capture time-

dependent behavior. The TCAM configuration was 

dynamically adjusted based on traffic demand, with each node 

reserving accesses for d directing drifts and allocating the 

remaining entries to sd flow measurements. The connection 

metrics for SPF are also implemented from the same 

TopoHub. Simulations were implemented on an Intel Xeon 

E7-3690 processor with 16GB of memory. One key variable 

in this study is the TCAM size at nodes. For simplicity, we 

assume all nodes have identical TCAM sizes and evaluate the 

performance of each FVE method across different TCAM 

sizes. Any additional TCAM passes are allocated to sd flows 

for traffic measurement purposes. This setup ensures a 

comprehensive and consistent evaluation of the proposed 

framework's performance against existing methods. 

 

 
 

Figure 2. Different estimation results from two models in 

network 3 

 

Table 1. Comparison between algorithms 1 and 2 in two 

topologies 

 

TCAM 

Size 

ALO1 

ARRMSE 

(T3) 

ALO2 

ARRMSE 

(T3) 

ALO1 

ARRMSE 

(T2) 

ALO2 

ARRMSE 

(T2) 

22 - - 0.14 0.13 

27 - - 0.12 0.12 

32 - - 0.12 0.12 

37 - - 0.12 0.12 

42 - - 0.12 0.12 

47 - - 0.12 0.12 

52 - - 0.12 0.12 

53 - - 0.12 0.12 

54 - - 0.12 0.12 

50 0.15 0.14 0.35 0.32 

55 0.14 0.13 0.30 0.28 

58 0.13 0.12 0.26 0.24 

62 0.12 0.12 0.23 0.21 

66 0.12 0.12 0.18 0.17 

70 0.12 0.12 0.16 0.15 
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In this study, to estimate the initial size for flow the gravity 

model and the tomogravity model are used. These estimates 

serve as the basis for selecting flows size. Figure 2 illustrates 

the ARRMSER of the last flow environments resulting from 

these both models. The results clearly show that the 

tomogravity model significantly superior on the gravity 

model, with the performance gap reaching up to 35% in some 

scenarios. This highlights the tomogravity model's superior 

accuracy in flow size estimation, making it a more reliable 

choice for Flow Volume computation. 

ALO2 was developed as an enhancement of ALO1 by 

replacing the integer programming approach with a 

probabilistic placement strategy for sd flows. To evaluate the 

two algorithms, we compared their accuracy and 

computational efficiency on T2 and T3. Both networks had 

fixed routing paths and pre-determined router locations. Table 

1 presents the Average Relative Root Mean Square Error 

(ARRMSE) according to the varying size of TCAM for both 

ALO1 and ALO2 across T2 and T3. The results show that for 

most TCAM sizes, the ARRMSE values for both ALO remain 

relatively close, with differences not exceeding 6%. This 

indicates that ALO2, despite simplifying the flow placement 

process, achieves a comparable accuracy to ALO1. One 

notable observation is that for T2, ALO1 generally exhibits 

slightly higher ARRMSE values than ALO2, particularly for 

larger TCAM sizes (e.g., 58 and 66 entries). This suggests that 

ALO2 performs better in terms of maintaining lower relative 

errors in this topology. However, for T3, ALO1 and ALO2 

demonstrate similar performance, with minor variations across 

different TCAM sizes. Additionally, for TCAM sizes of 55 

and above, we observe a general stabilization of ARRMSE 

values, indicating that beyond a certain TCAM threshold, 

increasing the table size does not significantly impact 

accuracy. This suggests that network operators can achieve 

efficient flow management with moderate TCAM sizes, 

reducing hardware overhead while maintaining high accuracy. 

We analyzed the computation time for both ALO on two 

network topologies using an Intel Xeon processor with 16GB 

of memory. To ensure a realistic and practical evaluation in 

SDN, we initially fixed the TCAM size at 50 entries per node. 

This configuration aligns with common TCAM limits in 

medium-scale SDN deployments, where switches typically 

allocate between 32 and 128 TCAM entries for flow table 

management. Choosing 50 entries provides a balanced trade-

off between hardware constraints and resource availability 

while serving as a reference baseline for subsequent scalability 

analysis. The results, summarized in Table 2, demonstrate a 

significant reduction in execution time when using ALO2 

compared to ALO1. For T2, ALO1 takes approximately 

0.2546 s, while ALO2 completes execution in just 0.0998 s, 

representing a 60.8% reduction in processing time. The 

efficiency gain is even more pronounced in T3, where ALO1 

takes 59.4678 s, whereas ALO2 requires only 4.9581 s, 

yielding an impressive 91.7% improvement in execution 

speed. These results highlight the computational efficiency of 

ALO2, particularly for larger and more complex network 

topologies like T3. The significant reduction in execution time 

makes ALO2 more scalable and practical for real-world SDN 

deployments, where minimizing processing delays is critical 

for applications such as real-time traffic engineering and flow 

management. 

To further evaluate scalability, we conducted additional 

experiments with varying TCAM sizes (20-100) entries per 

node). As shown in Table 3, ALO2 exhibits linear growth in 

execution time, completing in less than 10 seconds even for 

100 TCAM entries. In contrast, ALO1 demonstrates quadratic 

growth, exceeding 120 seconds for large TCAM sizes. This 

difference in scalability makes ALO2 more suitable for real-

time applications, where flow management updates must be 

completed within sub-30-second response times to ensure 

optimal network performance. 

To further validate ALO2 efficiency, we compared its 

execution time with two other methods, LFF [13] and FSBA 

[16], in T3 using fixed the TCAM size at 50 entries per node. 

Figure 3 illustrates the computation time respect to numeral of 

devices or nodes. ALO2 consistently maintained a lower 

execution time, with its growth curve remaining much flatter 

compared to LFF and FSBA, proving its scalability and 

computational advantage in complex networks. 

The efficiency (eff) of TCAM utilization is defined as: 

 

eff =
total number of useful sd flows

total number of added sd flows
 (6) 

 

Table 2. Execution time (fixed TCAM size, 50 entries per 

node) 

 
 T2 T3 

ALO1 0.2546s 59.4678s 

ALO2 0.0998s 4.9581s 

 

Table 3. Execution time (T2 and T3) 

 
TCAM Size ALO1 (T2) ALO2(T2) ALO1(T3) ALO2 (T3) 

20 0.15s 0.05s 10.2s 0.8s 

40 0.25s 0.07s 30.5s 2.5s 

60 0.40s 0.15s 62.5s 5.0s 

80 0.60s 0.20s 90.0s 8.0s 

100 0.85s 0.25s 120.0s 10.0s 

 

 
 

Figure 3. Execution time of three methods with fixed TCAM 

Size, 50 entries per node 

 

Table 4. Efficiency of three methods in two topologies 

 
TCAM 

Size 

T1 

Proposed  

T1 

[13] 
T1 [16] 

T2 

Proposed 

T2 

[13] 

T2 

[16] 

17 1 0.5 0.6 - - - 

22 1 0.6 0.7 1 0.9 0.8 

27 1 0.7 0.75 1 0.85 0.75 

32 1 0.7 0.8 1 0.8 0.7 

37 1 0.65 0.75 1 0.75 0.65 

42 1 0.6 0.7 1 0.7 0.6 

47 1 0.55 0.65 1 0.65 0.55 

52 1 0.5 0.6 1 0.6 0.5 

57 1 0.5 0.6 1 0.55 0.5 

62 - - - 1 0.5 0.5 
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A useful sd flow contributes to increasing the rate of volume 

M. A higher eff value indicates more efficient utilization of the 

TCAM entries, leading to better estimation results. Table 4 

presents a comparative analysis of TCAM utilization 

efficiency across different ALO in T1 and T2, with a fixed 

number of SDN nodes while varying the TCAM size. The 

results demonstrate that the proposed method consistently 

achieves 100% utilization, significantly outperforming 

conventional methods such as LFF and FSBA, whose 

efficiency declines as TCAM size increases. The proposed 

method’s superior performance can be attributed to the 

RAISPR mechanism, which effectively manages flow entries 

to optimize TCAM space. In contrast, conventional methods 

struggle with flow selection, leading to suboptimal utilization 

and inefficiencies. For example, in T1, LFF efficiency drops 

from 0.6 at size 22 to 0.5 at size 57, while FSBA declines from 

0.7 to 0.6 over the same range. Similarly, in T2, FSBA 

efficiency falls from 0.8 at size 22 to 0.5 at size 62, illustrating 

its reduced ability to manage flow entries efficiently as TCAM 

capacity grows. This trend is expected, as conventional 

methods fail to dynamically adapt to increasing TCAM 

capacity, making it more difficult to select independent flow 

entries efficiently. 

As a result, their effectiveness diminishes, particularly in 

large-scale SDN deployments where optimal TCAM 

utilization is critical for maintaining high network 

performance. The findings underscore the practical 

advantages of the proposed method, making it well-suited for 

real-world SDN environments where TCAM resources are 

often a limiting factor. By ensuring full utilization, the 

proposed method provides: 

• Better scalability, allowing for efficient flow 

management in large networks. 

• Optimized resource allocation, minimizing wasted 

TCAM space. 

• Improved network performance, as efficient flow 

placement reduces processing overhead. 

In contrast, the limitations of LFF [13] and FSBA [16] 

indicate that these conventional strategies may not be viable 

for large-scale SDN implementations. Their decreasing 

efficiency with larger TCAM sizes highlights their inability to 

manage flow entries dynamically, reinforcing the need for 

intelligent, adaptive methods like the one proposed in this 

study. 

Our proposed approach demonstrates its ability to fully 

utilize the TCAM entries, ensuring optimal performance in 

traffic measurement scenarios. Lastly, the performance of the 

proposed framework was compared against two existing 

methods, LFF and FSBA, across three network topologies. In 

these networks, programable nodes constituted approximately 

14% of the total nodes. The quantity of TCAM used was set to 

29% of the overall quantity of devices in each T. Figure 4 and 

Table 5 illustrate the results of the comparison. The proposed 

framework consistently outperformed LFF and FSBA. For 

example, in T1, the maximum estimation error of FSBA was 

reduced from 11.23% to 2.69%, while LFF saw a reduction 

from 6.88% to 1.28%. Furthermore, as the TCAM size 

increased, the rate of performance improvement was 

significantly higher for the proposed framework compared to 

the other two methods, as shown in Table 5. 

Another notable observation is that the performance of the 

proposed framework improved consistently with increasing 

TCAM size. This behavior contrasts with LFF and FSBA, 

where, performance gains were inconsistent. The 

inconsistency in LFF and FSBA can be attributed to their 

inability to ensure that every flow insert to the FT be a useful 

info about the Flow Volume. In contrast, the proposed method 

leverages the RAISPR, which guarantees that every flow 

added to the FT enhances the estimation accuracy, leading to 

steady performance improvement as the TCAM size grows. 

From the above, the accuracy of Flow Volume estimation in 

the proposed framework depends on the initial weight 

estimation provided by the tomogravity model. While the 

tomogravity model has been shown to improve accuracy over 

the standard gravity model, its assumptions may not always 

hold under real-world network conditions. To assess the 

framework’s robustness against potential inaccuracies in 

initial weight estimation, we conduct a sensitivity analysis by 

introducing controlled perturbations to the estimated weights. 

To evaluate the impact of weight estimation errors, we 

introduce variations of ±10%, ±20%, and ±30% to the initial 

weight values generated by the tomogravity model. The 

perturbed weights are then used in the flow selection process, 

and the resulting Flow Volume estimation accuracy is 

measured using the ARRMSE. Table 6 presents the ARRMSE 

values under different levels of perturbation in initial weights 

for T2 and T3. 

 

 
 

Figure 4. Assessment of three approaches in different 

network conditions 

 

Table 5. Efficiency comparison (A: T1-Proposed, B: T1-

LFF, C: T1-FSBA, D: T2-Proposed, D: T2-LFF, F: T2-

FSBA, G: T3-Proposed, H: T3- LFF, I: T3-FSBA) 

 
TCAM 

Size 
A B C D E F G H I 

16 0.3 0.3 0.3 - - - - - - 

19 0.2 0.3 0.3 - - - - - - 

22 0.1 0.2 0.3 0.4 0.4 0.4 - - - 

25 0.1 0.2 0.2 0.3 0.4 0.3 - - - 

28 0.2 0.1 0.2 0.2 0.3 0.3 - - - 

31 0.1 0.1 0.2 0.2 0.2 0.3 - - - 

34 0.1 0.15 0.1 0.2 0.2 0.2 - - - 

37 0.1 0.15 0.2 0.1 0.2 0.2 - - - 

40 0.2 0.15 0.1 0.1 0.1 0.2 - - - 

49 - - - - - - 0.3 0.3 0.3 

56 - - - - - - 0.2 0.2 0.2 

63 - - - - - - 0.2 0.2 0.2 

70 - - - - - - 0.2 0.1 0.2 

77 - - - - - - 0.1 0.1 0.2 

84 - - - - - - 0.2 0.2 0.2 

91 - - - - - - 0.1 0.1 0.2 

98 - - - - - - 0.1 0.2 0.1 

105 - - - - - - 0.2 0.2 0.1 
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Table 6. Impact of initial weight perturbation on ARRMSE 

for T2 and T3 

 
Perturbation Level ARRMSE (T2) ARRMSE (T3) 

No Perturbation 0.12 0.14 

±10% Variation 0.13 0.15 

±20% Variation 0.15 0.18 

±30% Variation 0.18 0.22 

 

From the results, we observe that moderate variations 

(±10% to ±20%) do not significantly degrade accuracy, with 

an ARRMSE increase of only 0.01 to 0.03. However, at higher 

perturbations (±30%), the estimation accuracy begins to 

degrade more noticeably, highlighting the sensitivity of the 

framework to large deviations in initial weight estimation. For 

future enhancements  and to minimize the impact of inaccurate 

initial weights, the following strategies can be integrated into 

the framework: 

• Iterative Refinement: After the initial weight 

estimation, periodic updates using real-time traffic 

measurements can refine the weight values. 

• Machine Learning-Based Estimation: Incorporating 

predictive models trained on historical data can 

improve initial weight accuracy. 

• Hybrid Weight Estimation: Combining the 

tomogravity model with other estimation techniques 

(e.g., flow sampling-based methods) may enhance 

robustness. 

This sensitivity analysis demonstrates that while the 

framework is relatively stable under moderate weight 

variations, incorporating adaptive mechanisms can further 

enhance its resilience in real-world deployments. 

 

 

7. SCALABILITY AND ADAPTABILITY TO 

DYNAMIC TRAFFIC CONDITIONS 

 

The scalability of the proposed framework is a crucial factor 

in ensuring its applicability in large-scale SDN deployments. 

While ALO2 significantly reduces computational complexity 

compared to ALO1, its effectiveness in large-scale networks 

and under dynamic traffic conditions warrants further analysis. 

 

7.1 Scalability considerations 

 

The computational complexity of ALO2, making it feasible 

for medium to large-scale networks. However, as network size 

increases, the number of possible sd flow combinations grows 

exponentially, which may introduce additional overhead in 

managing flow entries within the TCAM. To address this, the 

following optimizations can be considered: 

• Hierarchical Flow Selection: Instead of selecting 

flows globally, the network can be divided into 

regions where flow selection is performed locally 

before aggregation at a central controller. 

• Dynamic TCAM Allocation: Allocating TCAM 

entries adaptively based on network congestion levels 

and demand patterns can further optimize resource 

utilization. 

• Parallel Processing for Flow Selection: Utilizing 

distributed SDN controllers or parallel computing 

techniques can further improve processing time for 

large-scale implementations. 

 

7.2 Performance under dynamic traffic conditions 

 

Dynamic traffic conditions pose challenges in maintaining 

accurate Flow Volume estimation. The proposed framework 

mitigates these issues through: 

• Periodic Re-Evaluation of Flows: The framework can 

periodically update selected sd flows based on real-

time network measurements. This ensures that only 

the most informative flows remain in the TCAM, 

improving adaptability. 

• Threshold-Based Adaptation: Instead of fixed flow 

selection criteria, dynamically adjusting the RAISPR 

threshold based on traffic variability ensures better 

responsiveness to sudden traffic shifts. 

• Machine Learning Integration: Future enhancements 

can incorporate reinforcement learning techniques to 

predict high-impact flows based on historical data, 

further optimizing measurement accuracy. 

 

 

8. CONCLUSIONS AND FUTURE WORK 

 

This paper introduced a novel framework to address the 

FVE problem in a programable framework using IP networks. 

A key advantage of this framework is its ability to ensure that 

every flow added to a programable node increases the rate of 

the primary structure for FVE. In simple terms, its assurances 

that no drift supplementary for size can be derivative from the 

data of additional flows previously or already in the FT of 

wholly programable nodes. This feature significantly 

enhances the efficiency of TCAM utilization within FT. 

Through performance evaluations, we demonstrated that this 

framework delivers substantial improvements over existing 

methods. Accurate FVE plays a crucial role in solving 

challenges like routing optimization and network 

provisioning. The advancements presented in this work have 

the potential to fundamentally influence the way routing and 

traffic management are approached in future programable 

networks. Although the current evaluation focuses on 

networks with up to 60 nodes, real-world SDN deployments 

often involve thousands of nodes. To validate the framework’s 

scalability, future work will extend the evaluation to larger 

topologies, leveraging datasets from real-world backbone 

networks. Additionally, experiments under dynamic traffic 

scenarios will be conducted to assess the robustness of the 

heuristic approach in handling sudden traffic spikes and 

congestion events. 
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NOMENCLATURE 

 

RV Routing volume 

eff Efficiency 
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FVESDN Traffic volume estimation SDN 

FV Traffic volume 

LL Link loads 

nl Normalization 

RAM Rate of volume 

v Vector 

at Actual traffic 

wei Wight 

M Volume 

BV Binary volume 

NO Total number 

sd source-destination 

d Destination-based flow 

SN Sets of nodes 

TCAM Ternary content addressable memory 

 

Subscripts 

 

z Set of all source-destination 

sd Source-destination 

i Link 

sl Sets of links 
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