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The objective of this research paper is to utilise artificial neural networks (ANNs) in 

order to propose an analytical method for establishing constitutive correlations for 

normal-strength concrete (NSC) and high-strength concrete (HSC) in fire situations. 

The goal is to create a useful model and outline the fire-performance specifications for 

concrete structures in fire situations. The outcomes of NSC and high-strength concrete 

(HSC) were evaluated using reactive error distribution techniques and multiple layered 

networks. The multi-layered networks with reactive error distribution technology assign 

weights to each variable, which impacts the strength of concrete. Elevated temperatures 

have a detrimental effect on both NSC and HSC. With a correlation coefficient of 

96.2%, a determination coefficient of 92.7%, a mean absolute percentage error (MAPE) 

of 7.3%, and a determination coefficient (R2) of 89.6%, the ANNs were able to 

accurately predict the compressive strength of concrete at high temperatures. 
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1. INTRODUCTION

The fire safety designing of high-rise buildings and 

infrastructures involves providing various measures that must 

be included in any design for it to be considered safe. In these 

circumstances, concrete is one of the main materials that may 

be considered in its structural design. At the moment, 

reinforced concrete (RC) members' fire resistance can be 

provided through prescriptive approaches involving either the 

use of standard fire-resistance tests or empirical calculation 

methods [1-6]. Despite the limitations of extensively 

benefiting from either of these approaches, there are no 

heavily publicised failing structures or structural components 

made of normal-strength concrete (NSC) and high-strength 

concrete (HSC) if they are well-designed after the relevant 

rules in the loading and fire analysis. Recently, there has been 

a growing interest in utilising numerical approaches to assess 

the fire resistance of structural elements. It is well known that 

concrete behaviours at temperatures, such as during a fire, vary 

with concrete materials constituents [7]. 

At normal temperatures, there are several compressive 

constitutive models for concrete. However, it’s very difficult 

to comprehend how concrete material behaves at high 

temperatures, as current knowledge of the material's thermal 

characteristics at high temperatures is based on a small number 

of experimental test investigations. The test data of some high 

temperature properties of concrete are very scarce and the test 

data of other properties of concrete at high temperatures are 

significantly different and inconsistent [8-10]. These 

inconsistencies and discrepancies are primarily attributed to 

the variations in test methodologies and procedural settings as 

well as environmental conditions during testing [4]. 

The fire resistance in building codes for the protection of 

structural members is almost exclusively (but not exclusively) 

based on the properties of the materials that the structural 

members are made of, with little regard to the geometry of the 

structural members [11]. Therefore, to be competent in 

evaluating concrete mixtures in light of performance-based 

building codes, a competent understanding of the high-

temperature characteristics of concrete is necessary [12]. 

Some interaction occurs between the cement paste drying and 

aggregates’ thermal expansion. It seems that limestone 

aggregates, which have a lower thermal coefficient of 

expansion than siliceous aggregates, may help produce 

concretes that resist disintegration due to such a cause at high 

temperatures [13]. 

High-strength concrete (HSC), with compressive strength 

above a similar limit of NSC, which is 55.2 MPa, was 

demonstrated that they are not the same under high 

temperatures according to early investigations [14, 15]. 

Degradation of HSC is faster, according to Diederichs, Kodur 

and Phan [3, 15, 16]. Therefore, the present high-temperature 

relationships, primarily based on limited fire testing of the 

traditional NSC material, must be carefully evaluated before 

being applied to HSC [10]. 

Artificial neural networks (ANNs) are computational 

models which mimic the construction and primitive operation 

of biological neural networks. It can be used to solve nonlinear 

problems or have excess data, which they can solve very 

quickly [17, 18]. Many researchers have shown that neural 

networks are a powerful tool for practical classification tasks 

and solving all kinds of intricate structural and civil 
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engineering problems where there are limited or it does not 

exist an adequate or sufficient amount of data [19, 20]. All 

ANNs have an identical structure or topology, which involves 

arranging neurons in a succession of layers, as depicted in 

Figure 1. 

 

 
 

Figure 1. Architecture of the neural network 

 

In ANN, the first layer takes in raw data, either from sensors 

or input files, and processes it as independent variables or 

features. The final layer produces the predicted values or 

classes, which can then be sent to external systems like 

mechanical controllers or other computer programs [21]. The 

middle layers, also known as hidden layers, consist of several 

neurons with varying connection topologies. The model 

features NNN inputs and a single output. The neuron’s soma 

contains a summing junction (Σ) and an activation function 

f(x), both of which are characteristic features of artificial 

neurons [22]. 

The weight assigned to each input determines its 

contribution to the summation function. The output activation 

is influenced by the node’s internal bias (b), which remains 

constant. The input vector consists of elements (x1, x2, ..., xN), 

while the weight vector consists of elements (w1, w2, ..., wN). 

The summing function is obtained by multiplying vector x 

(input vector) and vector w (weight vector), followed by 

adding the resulting products, as shown in Eq. (1): 
 

𝑎 = ∑(𝑤𝑖

𝑁

𝑖=1

𝑥𝑖) + 𝑏 (1) 

 

The output is a single value. A transfer function technique 

is then used to process this weighted total, yielding the final 

result for analysis. If the neuron generates a strong enough 

signal, the output is 1; otherwise, it is 0. Various types of 

transfer functions exist to match different models with the 

range of outputs a neuron can produce [23, 24]. 

This study aims to develop a model to establish 

relationships between elevated temperatures and compressive 

strength, specifically focusing on the residual compressive 

strength of NSC and HSC. The model will use ANNs to derive 

an arithmetic formula that can be employed by researchers for 

predicting the fire resistance of reinforced concrete (RC) 

members, where the proposed model has two inputs (fc and 

T). In contrast, previous models were based on one variable 

(T) and this variable, through data analysis in the current 

research, proved that there is a change in (fc) with (T) 

whenever the amount of (fc) changes by ten units (10 MPa). 
 

 

2. PREVIOUS MODELS 

 

Table 1. Compressive strength models of concrete at high temperatures 
 

References Compressive Strength at Elevated Temperatures 

Lie et al. [27] 𝑓𝑐𝑇
′ = 𝑓𝑐

′ (2.011 − 2.353
𝑇 − 20

1000
) ≤ 𝑓𝑐

′ 

Eurocode 2 [28]  

𝑓𝑐𝑇
′ = 𝑓𝑐

′(1 − 0.001𝑇) 𝑇 ≤ 500∘C, 
𝑓𝑐𝑇

′ = 𝑓𝑐
′(1.375 − 0.00175𝑇) 500∘ ≤ 𝑇 ≤ 700∘C, 

𝑓𝑐𝑇
′ = 0                                𝑇 ≥ 700∘C 

ASCE [29] 

𝑓𝑐𝑇
′ = 𝑓𝑐

′                              𝑇 ≤ 100∘C, 
𝑓𝑐𝑇

′ = 𝑓𝑐
′(1.067 − 0.00067𝑇)        100∘C ≤ 𝑇 ≤ 400∘C, 

𝑓𝑐𝑇
′ = 𝑓𝑐

′(1.44 − 0.0016𝑇)               𝑇 ≥ 400∘C 

Lie and Erwin [30] 

𝑓𝑐𝑇
′ = 𝑓𝑐

′                                                  20∘ ≤ 𝑇 ≤ 450∘C, 

𝑓𝑐𝑇
′ = 𝑓𝑐

′ [2.011 − 2.353 (
𝑇 − 20

1000
)]        450∘ ≤ 𝑇 ≤ 874∘C, 

𝑓𝑐𝑇
′ = 0                                                               𝑇 > 874∘C 

Chang and Jau [31] 

𝑓𝑐𝑇
′ = 𝑓𝑐

′                                           0∘C ≤ 𝑇 < 450∘C, 

𝑓𝑐𝑇
′ = 𝑓𝑐

′ (2.06 − (
𝑇

425
))            𝑇 ≥ 450∘C 

Kodur et al. [32] 
𝑓𝑐𝑇

′ = (1 − 0.001𝑇)𝑓𝑐
′                                                0∘C ≤ 𝑇 ≤ 500∘C, 

𝑓𝑐𝑇
′ = [1.6046 + (1.3𝑇2 − 2817𝑇) × 10−6]𝑓𝑐

′         𝑇 > 500∘C 

Li and Purkiss [33] 𝑓𝑐𝑇
′ = {

𝑓𝑐
′[1.0 − 0.003125(𝑇 − 20)] 𝑇 < 100∘C

0.75𝑓𝑐
′ 100∘C ≤ 𝑇 ≤ 400∘C

𝑓𝑐
′[1.33 − 0.00145𝑇] 400∘C < 𝑇

} 

Chang et al. [34] 𝑓𝑐𝑇
′ = 𝑓𝑐

′ (0.00165 (
𝑇

100
)

3

− 0.03 (
𝑇

100
)

2

+ 0.025 (
𝑇

100
) + 1.002) 

Bastami and Aslani 

et al. [35]  

𝑓𝑐𝑇
′ = 𝑓𝑐

′ (1.008 +
𝑇

450 ln(
𝑇

5800
)
) ≥ 0.0          20∘C < 𝑇 ≤ 800∘C,  

𝑓𝑐𝑇
′ = 𝑓𝑐

′ {
1.01 − 0.00055𝑇                      20∘C < 𝑇 ≤ 200∘C
1.15 − 0.00125𝑇 200∘C ≤ 𝑇 ≤ 800∘C

}  

Lie et al. [27] 𝑓𝑐𝑇
′ = 𝑓𝑐

′ [

1.012 − 0.0005𝑇 ≤ 1.0 20∘C ≤ 𝑇 ≤ 100∘C
0.985 + 0.0002𝑇 − 2.235 × 10−6𝑇2 + 8 × 10−10𝑇3 100∘C < 𝑇 ≤ 800∘C

0.44 − 0.0004T 900∘C ≤ 𝑇 ≤ 1000∘C
0 𝑇 > 1000∘C

] 
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The investigation of NSC residual compressive behaviour 

continued during the early 1960s by many researchers [3, 16, 

25]. Since compressive strength is the strength of a material 

that has been heated in a product and then cooled to a specific 

test temperature content at room temperature, emphasis has 

resulted from this research. Residual strains, along with 

strength recovery with time, are included in the analysis. Table 

1 summarises important versions that regarded the eased 

strength of concrete by fire in the literature. Another 

connection suggested for examination is the compressive 

strength of NSC and HSC with siliceous aggregate. In 

regression analysis, the primary goals are to inspect the 

changing experimental compressive strength of NSC 

behaviours in elevated temperatures and to offer clear and 

simple correlations that systematically correlate nicely with 

experimental data. 

The relationship between the uniaxial compressive strength 

of NSC at various temperatures is determined by unstressed 

experimental experiments. In these tests, a specimen is heated 

without any pre-loading, and the temperature is increased at a 

steady pace. Several researchers have conducted studies on the 

impact of temperature on NSC using direct visual observation. 

Normally, the compressive strength of NSC decreases by 

approximately 10-20% when it is heated to 300℃ [2-4, 6, 29]. 

The temperature at which the maximum rate of decay for 

cement uniaxial compression first develops of strength is 

about 60-75% for heating to 600℃. Extreme values for NSC 

strength at elevated are obtained from the Lie et al. [26, 27]. 

A relationship between high & ultra-HSC contains siliceous 

aggregate (55.2 to 80 MPa) and (80 to 110 MPa) of different 

aggregates; thermal was verified and reported in Table 1, and 

also listed the available published unstressed experimental 

results taken from various sources [2-6] which sets the 

valuable information for experiment, because Table 1 has 

many loading combinations of temperature and average 

concrete strength. Lie and Lin [26] defined a more tightly 

defined upper limit for concrete, showing an upper limit for 

fcT. Castillo [2] studied the compressive behaviour of 

concrete; he calculated the strength loss of HSC up to a 

temperature of 450℃, and the strength loss is higher up to 

about 40%. Also, the strength ratio between Singapore fly ash 

concrete and corresponding Portland cement concrete was as 

low as 0.6. If the test is conducted for another ratio of mixes, 

the results are directly related to the test’s compressive 

strength. the distinguishes the ANNs is that the expected result 

appears based on a single equation and is not divided into 

sections, in addition to the fact that the expected result in the 

neural network model depends on estimating the missing 

values based on the known values (deals with disconnected, 

unconnected data). 
 

 

3. DATA COLLECTION 
 

The data was collected based on the researchers’ previous 

experiments, which were used by previous researchers in 

comparing the previously proposed models [2-6, 29, 30] as in 

Figure 2. The previous models relied on the relationship 

between temperature and the residual ratios of the compressive 

strength (fc/fcT). In collecting data, both the compressive 

strength was taken before and after exposure to high 

temperature, in addition to temperature, since it was observed 

that the ratios of compressive strength reduction are dependent 

on the compressive strength and alter whenever the 

compressive strength varies by 10 MPa. Thus, the inputs in the 

proposed model will be two inputs and one output, in contrast 

to the rest of the models that take one input. and one output. 

The number of data collected from previous researches for the 

purpose of constructing and training the model of an ANNs to 

determine the compressive strength of the NSC was 132 

collected from 8 previous researches, while for HSC 

constructing and training the model it was 89. 

 

 
(a) NSC (20-40) MPa 

 
(b) HSC (50-110) MPa 

 

Figure 2. Data collection from previous researchers 

 

 

4. MODEL DEVELOPMENT BY ANNS 

 

An ANN was employed to analyze and forecast how NSC 

and HSC will interact structurally. The variables to be entered 

into the model were chosen by the ANN, enabling simulations 

that forecast the concrete's compressive strength at elevated 

temperatures. 

There are feed-forward neural networks, self-regulated 

Cohon and Pyreptron [17, 22]. Back-propagation feed-

forward, which comprised interconnected layers of neurons, 

was used in the work. Every individual neuron inside a given 

layer forms connections with every other neuron in the 

subsequent layer. Typically, these networks consist of three 

neural layers: input, hidden, and output. Figure 1 shows that 

the input layer does not undergo any processing. Exactly at the 

point where the network transmits radiation data. Data is 

transmitted from the input layer to the hidden layer. Next, the 

concealed layer transmits the output. The study uses an ANN 

made up of several sub-models, including input and output 

models, data division, neural network design selection, model 

weighting, and validation. The SPSS program was used to 

apply artificial intelligence techniques and create multiple 

neural networks. This approach helps demonstrate how the 

different components work together, from input to output. 

The study uses an ANN with several sub-models, including 

input and output models, data division, neural network design 

selection, model weighting, and validation. The SPSS 
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software was utilized as a tool for executing artificial 

intelligence methodologies and constructing diverse ANNs. 

This application was utilized to demonstrate the procedure of 

creating a sub-model from input to output model. 

 

 

5. RESULTS AND DISCUSSION 

 

5.1 A statistical study using ANNs 

 

5.1.1 Normal-strength concrete NSC 

Two independent variables make up the input data in the 

input model: normal compressive strength (fc) and 

temperature (T). The output data is the compressive strength 

at elevated temperature (fcT). The data were partitioned into 

three distinct groups: a training group, which was used to 

optimise the weights associated with ANNs; a testing group, 

which was used to assess the network’s performance; and a 

validation group, it was employed to assess the overall 

performance of the model. Training was halted when the error 

rate increased within the testing group. 

The data distribution ratio for each of the three groups is 

displayed in Table 2. By optimising the correlation coefficient 

(r), a trial-and-error method was employed to increase the 

ANNs' efficiency. According to the data in Table 3, the 

training group has the highest classification rate of 85%, 

followed by the testing group with 7% and the validation 

group with 8%. This coefficient quantifies the degree to which 

the predicted compressive strength at high temperatures (fcT) 

matches the actual normal compressive strength (fc). The 

lowest testing error ratio of 6.2% and the greatest correlation 

coefficient of 96.2% serve as the foundation for this finding. 
 

Table 2. The impact of data division on ANNs' efficiency 
 

Data Division 
Training Error (%) Testing Error (%) Coefficient Correlation (r) (%) 

Training (%) Testing (%) Validation (%) 

60 10 30 9.8 15 89.5 

60 20 20 12.1 15.1 93.9 

60 30 10 9.7 19 94.7 

70 10 20 92 22 83 

70 20 10 18 17.4 90.9 

80 10 10 9 12.4 94.8 

85 7 8 13.4 6.2 96.2 

The application provides efficient techniques for 

distributing the 53 samples among the three groups, allowing 

for various allocation strategies such as random assignment, 

striped pattern, or integrated package or blocked style. The 

decision to use the striped technique was based on its higher 

correlation coefficient and lower error ratio. 

In the input layer, there are two neural nodes, but in the 

output layer, there are, there is only one neural node that 

reflects the compressive strength at higher temperature (fcT). 

There are numerous suitable methods for determining the 

quantity of neural nodes in ANNs. The best way to know the 

number of nodes related to the artificial neural network, as 

shown in Eq. (2) [17, 20], Eq. (2) can be used to determine the 

maximum number of neural nodes equal to 5 by beginning 

with a single node in the hidden layer and progressively 

increasing the number of neural nodes until the through-put is 

achieved: 

 

Max. No. of Node = 1 + 2 ∗ I (2) 

 

where, I: Number of variables in the input layer. 

Table 4 presents the testing error ratios and correlation 

coefficients specifically for the middle layer, also known as 

the concealed layer. The values were obtained using a learning 

rate of 0.4 and a momentum coefficient of 0.9. The middle 

layer utilized the hyperbolic tangent as the transfer function, 

as shown in Table 3, it can be observed that the optimal 

performance of ANNs occurs when there are three neural 

nodes in the hidden layer. This configuration yields a 

maximum coefficient of correlation of 96.2% and the lowest 

error ratio of 6.2%. Thus, the result included of a total of two 

neural nodes in the input layer, three in the hidden layer, and 

one neural node in the output layer. These nodes indicate the 

anticipated compressive strength at higher temperatures (fcT). 

The weights of a connection, which quantify the 

significance of the relationship between two neurons, are 

utilized to scale each input value from neurons in the 

preceding layer. The neuron subsequently accumulates all of 

these multiplications. 

Upon completing the training of the ANNs, the weights of 

the neural nodes were acquired. Both the connections between 

the hidden layer and the output layer and the connections 

between the input layer and the hidden layer are represented 

by these weights. The layers are described in Figure 3, and 

Table 4 displays the weights of these connections as well as 

the output and hidden layer threshold limits. 

 

Table 3. The impact of the hidden layer's node count on 

ANN performance 

 

No. of Nodes 
Training 

Error (%) 

Testing Error 

(%) 

Coefficient 

Correlation 

(r) (%) 

1 7.9 10.2 93.6 

2 15.1 11.8 89 

3 13.4 6.2 96.2 

4 9.1 8.3 95.1 

5 7.8 21.9 96.3 

 

 
 

Figure 3. The neural network architecture model 
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Table 4. The weights of connections 

 

Predictor 

Predicted 

Hidden Layer 1 Output Layer 

H1-i H2-i H3-i Output 

Input Layer 

(Bias) 0.090 -1.167 0.106  

fc 0.323 1.085 0.199  

T -0.605 1.081 -0.435  

Hidden Layer 1 

(Bias)    -0.715 

H1-i    -0.902 

H2-i    -1.018 

H3-i    -0.587 

 

Importantly, during the training phase, all inputs (variables) 

(fc, T) have been transformed from their actual values to 

relative values in the range of (-1, 1) in compliance with the 

SPSS program's specifications. The weights (Wi) and 

threshold limit (Bias) listed in Table 4 were used to achieve 

this change. The following is the equation that is produced: 

 

𝐻1 = 𝑇𝑎𝑛ℎ[0.001 ∗ 𝑓𝑐 − 0.063 ∗ 𝑇 + 1.632] (3) 

 

𝐻2 = 𝑇𝑎𝑛ℎ[0.003 ∗ 𝑓𝑐 + 0.114 ∗ 𝑇 − 5.983] (4) 

 

𝐻3 = 𝑇𝑎𝑛ℎ[0.0005 ∗ 𝑓𝑐 − 0.046 ∗ 𝑇 + 1.256] (5) 

 

The variable (fcT) can be found in the following equation: 

 

𝑆𝑐𝑎𝑙𝑒 (𝑓𝑐𝑇) = 𝑇𝑎𝑛ℎ[(−0.902 ∗ 𝐻1) − (1.018
∗ 𝐻2) − (0.587 ∗ 𝐻3) − 0.715] 

(6) 

 

In order to acquire the actual values of outputs (fcT), Eq. (7) 

must be used to modify the relative value of the output. The 

value of the compressive strength at higher temperature (fcT) 

for NSC can be determined using Eq. (7): 

 

𝑈𝑛𝑠𝑐𝑎𝑙𝑒 (𝑓𝑐𝑇𝑁𝑆𝐶 ) = [𝑆𝑐𝑎𝑙𝑒 (𝑓𝑐𝑇) ∗ 𝐷(𝑓𝑐𝑇)] + 𝐴 (7) 

 

where, D(fcT)=(fcT Max.-fcT Min.) equal 18Mpa from 

experimental data. And D(fcT)=(fcT Max.-D(fcT)) equal to 

21.6 MPa from experimental data. 

In order to acquire the actual values of outputs (fcT), Eq. (8) 

must be used to modify the relative value of the output. 

 

𝑈𝑛𝑠𝑐𝑎𝑙𝑒 (𝑓𝑐𝑇_𝑁𝑆𝐶) = [18 ∗ 𝑆𝑐𝑎𝑙𝑒(𝑓𝑐𝑇)] + 21.6 (8) 

 

When fc equals 31 MPa and T equals 309℃, Eqs. (3)-(7) 

are practically applied using one of the experimental results. 

As a result, the compressive strength at higher temperatures 

(fcT) for NSC is measured from Eqs. (3)-(8) is equal 27.1 MPa 

and the value experimental 27.9 MPa. 

Statistical indicators such as mean absolute percentage error 

(MAPE), average accuracy percentage (AA%), coefficient of 

determination (R2), and correlation coefficient (R) were used 

by the validation model to evaluate the retrieved values. The 

efficacy of the equation obtained from the ANN model was 

assessed using these criteria. Eq. (9) was utilised to ascertain 

the MAPE value. 

 

𝑀𝐴𝑃𝐸 =  
(∑

⎸𝐴 − 𝐸⎹
𝐴

) ∗ 100

𝑛
 

(9) 

 

where, 

A: Actual values of (fcT). 

E: The values of (fcT) are calculated by Eq. (8). 

n: Number of samples. 

The average accuracy percentage (AA %) value is 

calculated using Eq. (10). 

 

𝐴𝐴 % = 100% − 𝑀𝐴𝑃𝐸 (10) 

 

The statistical standards result for the validation model on 4 

samples, or 8% of the total samples, are shown in Table 5. 

According to the findings, the formula used in the ANN model 

to calculate compressive strength at high temperatures (fcT) 

has an astounding 92.7% accuracy rate. The model established 

in the research is highly efficient, as evidenced by its great 

accuracy. Also, Figure 4 shows the agreement between the 

practical results and the proposed model. 

 

Table 5. The result validation of ANNs model 

 
Statistical 

Standards 
(R) 

Determination 

Coefficient (R2) 

MAPE 

(%) 

AA 

(%) 

Statistical value for 

ANNs model 
96.2 89.6 7.3 92.7 

 

 
 

Figure 4. Agreement between the practical results and the 

proposed model 

 

5.1.2 High-strength concrete HSC 

Also, the input model consists of two independent variables: 

normal compressive strength (fc) and temperature (T). The 

output data is the high-strength concrete HSC at elevated 

temperature (fcT). The trial-and-error approach was employed 

to optimize the performance of the ANNs by maximizing the 

correlation coefficient (r) and minimizing testing mistakes. 

The data in Table 6 indicates that the training group has the 

greatest classification rate of 84%, while the testing group has 

a rate of 9% and the validation group has a rate of 7%. This 

conclusion is based on the lowest testing error ratio of 4.8% 

and the highest correlation coefficient of 97.2%. 

Eq. (2) most can be used to determine the optimal number 

of neural nodes in ANNs in order to distribute the thirty-one 

samples across the three groups and attain the maximum 

number of neural nodes equal to 5. The correlation coefficients 

and testing error ratios for the middle layer, or concealed layer, 

of the high-strength concrete HSC at higher temperature (fcT) 

are shown in Table 6. 

A learning rate of 0.4 and a momentum coefficient of 0.9 

were used to get the values. The hyperbolic tangent function 

was used as the transfer function for the intermediate layer. As 

shown in Table 7, the ANNs perform best when the hidden 

layer consists of three neural nodes, achieving a maximum 

correlation coefficient of 97.2% and a minimum error rate of 

4.8%. In order to depict the anticipated high-strength concrete 
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HSC at enhanced temperature (fcT), ANNs developed a final 

model that included two neural nodes in the input layer, three 

neural nodes in the hidden layer, and one neural node in the 

output layer. 

 

Table 6. The impact of data partitioning on ANN performance 

 
Data Division 

Training Error (%) Testing Error (%) 
Coefficient Correlation (r) 

(%) Training (%) Testing (%) Validation (%) 

60 10 30 4.3 11.4 95.3 

60 20 20 6.3 9.1 94.9 

60 30 10 8.1 7.8 96.6 

70 10 20 9.1 5.2 96.2 

70 20 10 4.9 30 96.3 

80 10 10 14.4 15 94.7 

84 9 7 6.4 4.8 97.2 

Table 7. The impact of the hidden layer's node count on 

ANN performance 

 

No. of Nodes 
Training 

Error (%) 

Testing Error 

(%) 

Coefficient 

Correlation 

(r) (%) 

1 8.9 10.8 94.6 

2 14.7 10.7 94.8 

3 6.4 4.8 97.2 

4 10.5 7.3 95.8 

5 17.8 21.0 94.9 

 

Table 8. The weights of connections 

 

Predictor 

Predicted 

Hidden Layer 1 Output Layer 

H1-i H2-i H3-i Output 

Input 

Layer 

(Bias) -0.515 0.145 -0.727  

fc 1.000 0.521 -0.221  

T 0.484 0.272 -1.405  

Hidden 

Layer 

1 

(Bias)    -0.646 

H1-i    -1.223 

H2-i    -0.735 

H3-i    -1.219 

 

The final weights of a connection after training the model 

development by ANNs represent the importance of the 

correlation between two neurons. Table 8 also shows the 

weights of these connections, along with the output layer's and 

the hidden layer's threshold limits. 

The training phase of SPSS needed all inputs (variables) (fc, 

T) to be converted to relative values between -1 and 1. This 

transformation uses weights (Wi) in Table 9 and threshold 

limit (Bias). The resulting equation is below: 

 

𝐻1 = 𝑇𝑎𝑛ℎ[0.002 ∗ 𝑓𝑐 + 0.019 ∗ 𝑇 − 3.296] (11) 

 

𝐻2 = 𝑇𝑎𝑛ℎ[0.001 ∗ 𝑓𝑐 + 0.011 ∗ 𝑇 − 1.367] (12) 

 

𝐻3 = 𝑇𝑎𝑛ℎ[−0.001 ∗ 𝑓𝑐 − 0.055 ∗ 𝑇 − 3.994] (13) 

 

𝑆𝑐𝑎𝑙𝑒(fcT) = 𝑇𝑎𝑛ℎ[(−0.646 ∗ 𝐻1) − (1.223 ∗ 𝐻2)
− (0.735 ∗ 𝐻3) − 0.219] 

(14) 

 

fcTHSC = [41.1 ∗ 𝑆𝑐𝑎𝑙𝑒 (fcT)] + 43.4 (15) 

 

In the practical application of Eqs. (11)-(15) using one of 

the experimental data when fc, T equals 106Mpa and 350℃. 

As a result, the fcT_HSC is measured from Eqs. (11)-(15) is 

equal 71.66 MPa and the value experimental (70.47Mpa). 

Table 9 displays the statistical standards findings for the 

validation model was tested on three samples, accounting for 

7% of the total dataset. The findings indicate that the formula 

for predicting compressive strength at high temperatures (fcT) 

in the ANN model has a high accuracy of 88.8%. The model 

established in the research is highly efficient, as evidenced by 

its great accuracy. Also, Figure 5 shows the agreement 

between the practical results and the proposed model. 

 

Table 9. The validation of the ANNs model's results 

 
Statistical 

Standards 
(R) 

Determination 

Coefficient (R2) 

MAPE 

(%) 

AA 

(%) 

Statistical value for 

ANNs model 
97.2 90.3 11.2 88.8 

 

 
 

Figure 5. Agreement between the practical results and the 

proposed model 

 

5.2 Previous models vs. the proposed model 

 

Recent computational approaches and methodologies for 

evaluating the fire performance of building structural elements 

have evolved. However, research on input information 

(material qualities) has lagged [7, 16]. The majority of ACI 

216R-89 [31] is founded on studies conducted in the 1950s and 

1960s, and it does not have a consistent link for high-

temperature properties [7]. 

Analyze test results by comparing them to hypothesized 

relationships of compressive strength. Next, the proposed 

relationships between compressive and tensile stress and strain 

for NSC and HSC at elevated temperatures are compared to 

various experimental data from previous studies. Figures 6 to 

8 show NSC and HSC compressive strength test results and 

models at different temperatures. Figure 6 compares Table 1 

of models to the suggested NSC (20-45 MPa) connection at 
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various temperatures using published unstressed experimental 

test findings [2-4, 6, 29, 30]. Unstressed tests heat the 

specimen constantly without pre-load until it reaches the 

desired temperature and thermal steady state. 

Figures 7 and 8 illustrate the comparisons between the 

models mentioned in Table 1 and the suggested correlation for 

HSC at different temperatures within the ranges of 55.2 to 80 

MPa and 80 to 110 MPa, respectively, with previously 

published experimental results without any applied stress [2-

6]. The hypothesized correlation closely corresponds to the 

test outcomes for NSC and HSC, which were generated using 

ANNs. 

 

 
 

Figure 6. Comparison between NSC (20-45 MPa) at elevated 

temperatures with the proposed model 

 

 
 

Figure 7. Comparison between HSC (50-80Mpa) at elevated 

temperatures with the proposed model 

 
 

Figure 8. Comparison between HSC (80-110 MPa) at 

elevated temperatures with the proposed model 

 

6. CONCLUSIONS 

 

(1) The bulk of compressive strength correlations available 

are unreliable for measuring NSC and HSC at high 

temperatures. Compressive strength and concrete at 

high temperatures are linked using a modified ANN 

model. 

(2) The proposed model has two inputs (fc and T). In 

contrast, previous models were based on one variable 

(T) and this variable, through data analysis in the 

current research, proved that there is a change in (fc) 

with (T) whenever the amount of (fc) changes by ten 

units (10 MPa). 

(3) The neural network method ANN was employed to 

predict the behavior of the NSC and HSC at high 

temperatures. The predictions achieved an average 

accuracy of 92.7% and a correlation coefficient of 

96.2% for the NSC, and an average accuracy of 88.8% 

and a correlation coefficient of 97.2% for the HSC. 

(4) NSC loses 10-20% from fc at 300°C and 60-75% at 

600℃. The models described by Lie and Lin [26] and 

Lie et al. [27] provide the upper and lower bounds for 

fc′T. Also, HSC loses 40% from fc up to 450℃. 

(5) This research emphasizes the necessity of conducting 

additional experiments at various temperatures to 

examine the influence of compressive strength on both 

NSC and HSC. 

(6) The possibility of building an ANN model for 

lightweight concrete LWC exposed to high 

temperatures through previous research data. 
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