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Various challenges associated with using construction materials for delivering 

sustainable land management and infrastructure have been addressed using 

nanotechnology in the extensive literature. This study explores the utility of artificial 

intelligence (AI) models in forecasting soil properties, including compressive strength 

and the crashing load of active soils stabilized by organosilane nanomaterials, which is 

considered an unexplored area. In this regard, three AI models (multilayer perceptron, 

radial basis function, and generalized neural network) have been adopted to simulate 

the soil properties. For the model development, six parameters known as plasticity index 

(PI), liquid limit (LL), natural moisture content (NMC), activity (A), clay content (C), 

and nanomaterial-to-water ratio (Mix per.) have been considered as inputs to the AI 

models. Based on various statistical matrices and graphical appraisals, the multilayer 

perceptron (MLP) model showed significantly high-performance predicting crash (q) 

load and compressive strength (UCS) compared to other models with obtained R2 values 

of 0.926 and 0.957, respectively. Meanwhile, both radial basis function neural network 

(RBFNN) and generalized regression neural network (GRNN) models demonstrate a 

significantly poor performance for both parameters, with an R2 values ranging from 

0.803 to 0.837, indicating the lack of generalization ability and recognition of 

complicated relationships and patterns. 

Keywords: 

soil restoration, organosilane nanomaterial, 

mechanical properties, artificial intelligence, 

machine learning, infrastructure development, 

sustainable land management 

1. INTRODUCTION

Expansive or active soils worldwide have been a constant 

source of challenges for civil engineers during the construction 

and implementation of infrastructure projects, impacting the 

successful delivery of such projects. The main characteristics 

of active soils are high plasticity, huge potential to expand or 

shrink, and extreme heave [1]. The heaving mechanism in the 

ground is restricted to upward movement, leading the soil 

surface to rise as the water content increases and shrinks when 

it is evaporated, which has enormous implications for the 

structures built on them [2]. Consequently, stabilizing active 

soils can prevent detrimental effects on the foundation of soil 

structures, considering the utilization of cost-effective 

approaches to reduce the quantity of material utilized. 

Generally, soil stabilization primarily focuses on enhancing 

the mechanical properties of soil, bearing capacity, plasticity, 

permeability, and durability [3-8]. In this regard, different 

approaches have been adopted to stabilize soil in recent 

decades [9-15]. Among various techniques used to stabilize 

expansive soil, cement and lime are considered the most 

popular approaches [16-20]. However, these approaches had 

some drawbacks, such as high emission of CO2 during the 

production of raw materials, high energy consumption, and 

cost-wise expensive [21]. Moreover, specific soil properties 

can be damaged using these approaches as well as it is 

challenging to reduce the stabilized soil section so that it meets 

the specified technical properties [21]. As a result, researchers 

have been encouraged to use alternative approaches to 

stabilize soil, specifically the use of by-products such as fly 

ash [21, 22], phosphogypsum [23, 24], biomass bottom ash 

[25, 26], and various types of slag [27, 28]. 
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On the other hand, nanomaterials can be considered a 

potential alternative to conventional soil stabilization 

techniques due to their fineness (1-100 nm), high specific 

surface (SSA), and quick bonding capability with soil, 

attracting much interest in the last decades [29-32]. 

Nanoparticles differ from conventional materials in their 

physics and chemistry primarily because nanometre-sized 

grains, plates, and cylinders possess significant surface-to-

volume ratios, and their quantum effects are induced by spatial 

confinement [33]. Kong et al. [34] investigated the mechanical 

behavior, particularly unconfined compressive strength 

(UCS), of soil stabilized with cement and nano SiO2. The 

results showed that nano SiO2 considerably increased the 

strength of the cement soil while reducing cement 

consumption. Using nanomaterials provides unique solutions 

for many soil challenges by enhancing the stability and 

durability of soil, delivering long-term infrastructure at a low 

cost [35]. Khodabandeh et al. [36] investigated the 

stabilization of collapsible soils utilizing various materials, 

such as nanomaterials, polymers, and fibers. The results 

showed that using nanomaterials has significantly improved 

the soil's durability, swelling, permeability, shear strength, and 

UCS.  

Meanwhile, the predominant focus of soil improvement 

techniques research lies in experimental studies [37]. 

However, assessing the significance of soil parameters, such 

as UCS and crashing load (q), and studying the effect of 

different nanomaterial ratios on these parameters using the 

experimental approach is rather complicated, time-consuming, 

and expensive. Predicting these parameters is essential to 

ensure stability, safety and infrastructure stability, particularly 

in regions where active soil is predominant. Moreover, 

accurate prediction of these parameters paves the way for soil 

stabilization techniques, minimizes trial and error 

experimentation, and ensures the long-term sustainability of 

structures. Additionally, it allows the efficient design of 

stabilization strategies and reduces both the cost and the 

overuse of stabilizing agents. In this regard, several prediction 

approaches, such as the classical regression techniques, have 

been adopted as behavioural models [37, 38]. However, 

regression techniques have limitations, including the 

assumption of pre-defined linear or nonlinear relationships 

among inputs and outputs, which does not hold in practical 

scenarios [39, 40]. On the other hand, the field of machine 

learning (ML) has recently been explored by evolutionary 

computationally compliant researchers using artificial neural 

networks (ANN), support vector machines (SVMs), and many 

others to forecast soil parameters such as UCS and the q taking 

into account myriad variety of factors and associated 

parameters that influence them [40-44]. Chen et al. [45] 

explored the potential of deep learning techniques such as 

ANN, CNN, backpropagation neural network (BPNN), and 

long short-term memory (LSTM) in predicting the UCS of soil 

stabilized with one part geopolymer. Furthermore, the study 

utilizes the Wasserstein generative adversarial network 

(WGAN) to generate new data for the training process of the 

adopted models. The findings showed that the deep-learning 

models significantly improved the prediction accuracy, 

specifically in the scenario where both experimental and 

generated data are used for the training process, reducing the 

reliance on costly experiments.  

While many studies have successfully applied AI models to 

predict soil properties, most have not addressed nanomaterial-

stabilized soils, where the latter involves unique 

characteristics such as the pozzolanic effect and the 

complicated impact of nanomaterial-to-water ratio. In light of 

the results of such applications of ML approaches in 

nanotechnology thus far, it becomes clear that the degree to 

which the use of nanomaterials has improved soil properties 

can be accurately and reliably predicted. 

To this end, three AI models have been adopted to predict 

the crashing load (q) and UCS of active soil stabilized with 

nanomaterials, a topic with limited yet growing research 

interest. These models encompass the multilayer perceptron 

(MLP) neural network, generalized regression neural network 

(GRNN), and radial basis function neural network (RBF), and 

their performance has been evaluated using a variety of statical 

matrices and plots. Finally, sensitivity analysis was conducted 

to select the parameter(s) that impact the crushing load and 

compressive strength the most. 

2. MATERIALS AND METHODS

2.1 Case study 

Figure 1. Case study area location (a) Nigeria's Niger Delta, 

(b) Data locations

The study area is in Nigeria's Niger Delta, which has active 

soil known as the Niger flood zone. The annual rainfall of 

these areas is typically more than 2000 mm. As a result of the 

underlying terrain's flatness, drainage is impeded, resulting in 

poor lateralization of the very active (montmonillinitic) silty 

clay found there [46]. Furthermore, they swell and shrink upon 

contact with water, leading to the surface to be severely 

deformed, pavement cracking, and infrastructure failures [46]. 

In this regard, the active soil was enhanced using different 

nanomaterial-to-water ratios (1:50, 1:100, 1:150, 1:200, and 

1:250), and the results were compared with untreated active 

from physical, chemical, and mechanical aspects. The results 
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showed that including nanomaterials in active soil led to 

considerable change in the soil's physical, chemical, and 

mechanical characteristics by modifying its molecular 

structure. The soil's consistency and swelling potential were 

improved by decreasing the liquid limit, plasticity index, and 

shrinkage limit while increasing the plastic limit for different 

nanomaterial ratios.  

Furthermore, the molecular-level hydrophobicity imparted 

by nanomaterial inclusion is highlighted in reducing water 

levels by offering a water-repellent zone on the stabilized 

surface. Moreover, the soil bearing and strength were 

considerably improved due to the pozzolanic reaction induced 

by adding nanomaterials. Additionally, the durability of the 

soil was significantly improved, reaching high values of 80% 

with a high nanomaterials ratio [46]. 

For model development, experimental data from five 

locations in the Niger Delta, namely Rivers-Atese (Loc 1-R), 

Rivers-Mbiama (Loc 2-R), Bayelsa-Opokuma (Loc 3-B), 

Bayelsa-Kiama (Loc 4-B), and Delta-Patani (Loc 5-D), as 

shown in Figure 1, are obtained from the literature [46]. A total 

of 60 datasets, 30 for crashing load and 30 for unconfined 

compressive strength prediction, are obtained. These data are 

represented in terms of plasticity index (PI), liquid limit (LL), 

natural moisture content (NMC), activity (A), clay content (C), 

and nanomaterial-to-water ratio (Mix per.), UCS and crushing 

load (q). 

 

2.2 MLP 

 

MLP is classified as an ANN type architecture and is 

regarded as the most dominant network in predictive and 

classification tasks due to its exceptional learning ability, 

enabling deeper connections to be made among data. MLP is 

composed of nodes known as perceptron arranged in layers 

[47]. Each layer in the MLP structure can be categorized as an 

input layer, where the features (input parameters) used for 

prediction are received; a hidden layer(s) (in this study are 

two), where the hidden features are being extracted and the 

output layer, where the outcomes (predictions) are determined. 

Furthermore, each layer consists of multiple interconnected 

neurons, with connections established through weight (ω), and 

bias (β). Figure 2(a) shows the structure of the MLP. Several 

factors influence the performance of the hidden layer, 

including the number of involved nodes and their activation 

functions [48]. Therefore, it is essential to configure the hidden 

layer properly to ensure good network performance. Eq. (1) 

determines neuron’s output (n) in the hidden layer. 

 

𝐻𝑛 = 𝜑1(∑ 𝜔𝑛𝑖𝑋𝑖 + 𝛽𝑖)

𝐼

𝑖=1

 (1) 

 

where, 𝜔𝑛𝑖  and 𝛽𝑖  are the hidden layer's weights and biases 

and φ1(. ) is the activation function. The network output (𝛾) 

is illustrated in Eq. (2). 

 

𝛾 = 𝜑2(∑ 𝜔𝑘𝑗𝐻𝑖 + 𝛽𝑂) 

𝐽

𝑗=1

 (2) 

 

where, 𝜔𝑘𝑗  and 𝛽𝑂 are weights and biases, respectively. φ2(. ) 

is the output layer activation function. 

 

 

2.3 GRNN 

 

GRNN is a type of RBF proposed by Specht [49]. The 

GRNN computes the network’s output by employing the 

maximum probability approach, utilizing Parzen estimation 

based on nonparametric regression, and the available sample 

data serve as posterior conditions. The GRNN architecture 

comprises of four layers, namely the input, hidden, 

summation, and output layers, as illustrated in Figure 2(b). The 

GRNN's summation layer consists of two variations of 

neurons: the denominator unit, responsible for calculating the 

algebraic sum of each neuron in the hidden layer (as shown in 

Eq. (5)), and the molecular unit, which computes the weighted 

sum of each neuron in the hidden layer (as shown in Eq. (6)). 

The weights in this context represent the predicted training 

samples’ output values. 

 

𝑆 = ∑ 𝜔𝑟𝑒[−𝐷(𝑥,𝑥𝑖)]

𝑅

𝑟=1

 (3) 

 

𝐷 = ∑ 𝑒[−𝐷(𝑥,𝑥𝑖)] 

𝑅

𝑟=1

 (4) 

 

The calculation of the predicted value of Y in the output 

layer is calculated by dividing the output of the molecular unit 

by denominator unit’s output as follows: 

 

𝑌(𝑋) =
𝑆

𝐷
=

∑ 𝜔𝑟e[−𝐷(𝑥,𝑥𝑖)]𝑅
𝑟=1

𝐷 = ∑ 𝑒[−𝐷(𝑥,𝑥𝑖)] 𝑅
𝑟=1

 (5) 

 

where 𝜔𝑟 and 𝑅 donate the weight and neurons number linked 

to the 𝑟𝑡ℎ neuron between the hidden layer and the summation 

layer. Moreover, the Gaussian function (𝐷(𝑥, 𝑥𝑖))  can be 

mathematically expressed as follows: 

 

𝐷(𝑥, 𝑥𝑖) = ∑ (
𝑥𝑙 − 𝑥𝑖𝑙

𝜃𝑙

)
2

 

L

𝑙=1

 (6) 

 

where the input vector’s dimension is indicated in J. 𝑥𝑙  and 𝑥𝑖𝑙  

are the 𝑙𝑡ℎ  element of 𝑥 and 𝑥𝑖 , respectively. Finally, 𝜃𝑙 

represent the spread factor and to optimize the network, 

different spread factors are utilized several times until a 

minimum mean square error (MSE) value is reached or a 

predetermined threshold value. 

 

2.4 RBF 

 

RBF is a feedforward neural network (FFNN) type that 

resembles MLP in terms of structure and is employed for a 

variety of tasks, including classification and regression. The 

main advantages of these networks are their ease of design, 

robustness to input noise, and speed and comprehensiveness 

of training, enabling them to map rather complicated nonlinear 

relationships. The RBF network architecture comprises three 

layers: input, hidden, and output, as depicted in Figure 2(c). 

The input parameters are received in the input layer, and the 

latter distributes them to the hidden layer. Moreover, radial 

basis functions are employed by the hidden layer to generate 

radial basis functions, while in the output layer, hidden 

neurons' outputs are linearly combined to generate the network 

outputs (predictions). The RBF output function can be 
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mathematically expressed as follows: 

𝑌𝑖(𝑥) = ∑ 𝜔𝑖𝑗𝛼(‖𝑥 − 𝐶𝑗‖)

𝐽

𝑗=1

(7) 

where, 𝑥 is the input vector, 𝑌𝑖  is the network ith output, 𝐽 is

the hidden layer neurons number, 𝐶𝑗  refers to the jth  hidden

neurons center, 𝜔𝑖𝑗  is the weight, ‖. ‖ refers to the Euclidian

norm, and finally, 𝛼 is the radial basis function, which, in this 

study, takes the form of the Gaussian function and can be 

mathematically expressed as follows: 

𝛼(‖𝑋 − 𝐶𝑗‖) = 𝑒
(−

‖𝑋−𝐶𝑗‖
2

2𝛿𝑗
2 ) (8) 

where, 𝛿𝑗 is the jth hidden neuron width.

2.5 Model development and data preparation 

The input parameters of this study are six presented in the 

PI, LL, NMC, activity (A), clay content (C), and nanomaterial-

to-water ratio (Mix per.) to obtain two outputs presented in 

UCS and crushing load (q) using three machine learning 

models, namely MLP, RBF, and GRNN. The notion behind 

selecting these models because of their technical suitability 

and efficiency in related fields. The model's unique capacity to 

manage a rather complicated relationship, as well as 

computational efficiency and scalability, influenced the 

choosing process, making them suitable for capturing high 

dimensionality and intricate interrelationships among soil 

properties. The MLP model was chosen for its deep learning 

structure, enabling it to capture intricate patterns in high-

dimensional data. The RBF model offers localized learning 

methodology and robustness to noise, enabling it to deal with 

spatially varying soil properties. Finally, the GRNN model 

offers nonparametric regression capabilities, enabling it to 

obtain smooth prediction, particularly with limited samples 

and undefined relationships. Moreover, these models have 

been proven in comparable fields [50-52].  

The statistical description of all inputs and outputs is 

illustrated in Table 1. The collected data have been divided 

into three categories: training, which includes 70% of the data; 

validation, which includes 15% of the data; and testing, which 

includes the remaining 15% of the data.  

The number of hidden layers has been chosen to be 1 layer 

for the GRNN and RBF and 2 layers for the MLP model, with 

6 number of neurons in each layer for all models. Cross-

validation is a highly recommended criterion for stopping the 

training of a network. For the current study, the stopping 

training process after 100 epochs and the lowest value of MSE 

will be considered. The activation function of all models used 

to be sigmoid. This study developed the suggested model 

using NeuroSolutions software version 7.1.1 on a Windows 

PC (core i7 12 gen CPU and 16 Gb RAM).  

(a)  (b) 

(c) 

Figure 2. The structural configuration of (a) MLP, (b) RBF, and (c) GRNN 

1744



 

Table 1. The statistical characteristics of the input parameters 

 
Statistics/Dataset NMC (%) LL (%) PI (%) C (%) A (%) q (kg) UCS (kN/m2) 

Maximum 27.00 67.00 42.60 31.60 1.43 154.00 221.30 

Minimum 19.00 36.20 31.90 24.90 1.28 40.00 61.30 

Average 23.69 53.96 38.50 28.13 1.36 104.59 157.54 

Standard deviation 2.82 10.76 3.95 2.51 0.05 30.77 45.78 

Skewness -0.63 -0.56 -0.66 0.10 -0.08 -0.7 -0.71 

Confidence level (95%) 1.07 4.09 1.5 0.96 0.02 11.71 17.41 

 

2.6 Performance criteria  
 

Assessing the performance of the proposed models is 

crucial in predicting the values of UCS and crushing load (q). 

In this regard, different statistical matrices have been 

implemented to examine the proposed models' prediction 

against the actual value obtained from the laboratory tests. 

These matrices are represented in normalized root mean 

square error (NRMSE), and normalized mean absolute error 

(NMAE) which asses the proposed models by measuring the 

size of the discrepancy between the actual and the predicted 

value. At the same time, another two matrices, namely 

correlation coefficient (CC) and coefficient of determination 

(R2) have been utilized for evaluating correlation and 

visualizing the closeness between the models’ prediction and 

the actual data [31, 53-55]. The performance matrices are 

obtained using Eqs. (9)-(12). 

 

𝑁𝑀𝐴𝐸 =

1
𝑛

∑ |𝛾𝑟 − 𝛾𝑟|𝑛
𝑟=1

�̅�
 (9) 

 

𝑁𝑅𝑀𝑆𝐸 =
√1

𝑛
∑ (𝛾𝑟 − 𝛾𝑟)2𝑛

𝑟=1

�̅�
 

(10) 

 

𝑅 =
∑ (𝛾𝑟 − �̅�)(𝛾𝑟 − 𝛾𝑚)𝑛

𝑟=1

√∑ (𝛾𝑟 − �̅�)2 ∑ (𝛾𝑟 − 𝛾𝑚)2𝑛
𝑟=1

𝑛
𝑟=1

 (11) 

 

𝑅2 =

1
𝑛

∑ (𝛾𝑟 − �̅�)(𝛾𝑟 − 𝛾𝑚)𝑛
𝑟=1

√1
𝑛

∑ (𝛾𝑟 − �̅�)2𝑛
𝑟=1

√1
𝑛

∑ (𝛾𝑟 − 𝛾𝑚)𝑛
𝑟=1

 (12) 

 

where, 𝛾𝑟  is the observed value, 𝛾𝑟  is the predicted value, �̅� 

and 𝛾𝑚  are the mean of the actual and predicted values, 

respectively. 

 

 

3. SENSITIVITY ANALYSIS 

 

In this study, sensitivity analysis based on a modified 

Garson algorithm is performed to identify the input factor that 

most significantly impacts both the crushing load (q) and UCS. 

The method is more straightforward to implement by 

partitioning the output weights of neural network connections 

since it incorporates neural network tools within its framework 

[56]. The mathematical formulation of the algorithm is as 

follows: 

 

𝜃 =
∑ |𝜔𝑖𝑗𝑣𝑗𝑘|/ ∑ |𝜔𝑟𝑗|𝑅

𝑟=1
𝐽
𝑗=1

∑ ∑ (|𝜔𝑖𝑗𝑣𝑗𝑘|/ ∑ |𝜔𝑟𝑗|𝑅
𝑟=1 )𝐽

𝑗=1
𝐼
𝑖=1

 (13) 

 

where, 𝜃  represents the impact of input’s parameter on the 

output, the wight 𝜔𝑖𝑗  indicates the connection strength 

between the input and hidden neuron, and 𝑣𝑗𝑘  signifies the 

weight connection strength between the hidden and the output 

neurons. Finally, 𝜔𝑟𝑗  represents the weight connection 

between input’s neurons and the hidden layer. To ensure 

consistency and avoid the conflicting effects of positive and 

negative values, the connection weights are assigned their 

absolute values. 

 

 
 

Figure 3. The impact of the input parameters on the crushing 

load and compressive strength 

 

Figure 3 presents the sensitivity analysis results, illustrating 

the impact of each parameter on crushing load and 

compressive strength. It is worth noting that the sensitivity 

analysis highlights the importance of parameters, namely clay 

content, nanomaterial to water ratio, natural moisture content, 

and liquid limit, on the crushing load and compressive 

strength. In contrast, the importance of the other investigated 

parameters called plasticity index and activity of clay is less 

apparent. The clay content (C%) showed the most significant 

impact on both crashing load and unconfined compressive 

strength. This can be attributed to clay’s intrinsic properties, 

particularly its high surface area, enabling it to interact with 

nanomaterials through chemical bonding and pozzolanic 

reaction, improving the soil's strength, compressibility, and 

deformation. The second most influential factor is the 

nanomaterial-to-water ratio (Mix.per), highlighting its critical 

role in modifying soil properties. The pozzolanic reaction from 

adding nanomaterial to the investigated soil is the primary 

mechanism for improving soil’s properties by creating an 

additional bond between soil particles as well as reducing 

voids. This ratio governs the reaction efficiency as excess 

water may dilute the stabilization process, while insufficient 

water may hinder the reaction, highlighting the need to control 

this ratio precisely during practical applications. The third and 

fourth most influential factors are natural moisture content 

(NMC) and liquid limit (LL) due to their critical role in soil’s 

plasticity and its ability to retain water, which are considered 

critical factors for soil response to stabilization techniques. 

Higher moisture content can increase the potential of soil to 

swell and shrinkage, while liquid limit governs the soil 
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stability under various water content. On the other hand, both 

plasticity index (PI) and activity (A) showed significantly low 

impact on both crashing load and unconfined compressive 

strength, which may be attributed to nanomaterial presence, 

where the latter can modify the chemical and structure of the 

soil. 

4. RESULTS AND DISCUSSION

This endeavor uses data from various locations in Nigeria's 

Niger Delta to develop and validate the proposed models 

taking into consideration two outcomes presented in crushing 

load (q) and UCS. The performance evaluation of the proposed 

models is evaluated through two distinct phases: training and 

testing. The performance during the training phase is depicted 

in Table 2 in terms of NRMSE, NMAE, and R. According to 

Table 2, the MLP model yields the best performance by 

delivering the highest prediction accuracy R=0.992 and 0.990 

and lower prediction errors NMAE=0.036 and 0.035, 

NRMSE=0.043 for both q and UCS, respectively, providing a 

considerable generalization ability. Meanwhile, the RBF 

model provides the lowest performance for predicting q and 

UCS, providing high margins of errors and lower prediction 

accuracy.  

Table 2. The performance matrices: Training phase 

Model Output NRMSE NMAE R 

MLP 
q(Kg) 0.043 0.036 0.992 

UCS (kN/m2) 0.043 0.035 0.990 

RBF 
q(Kg) 0.132 0.098 0.900 

UCS (kN/m2) 0.148 0.114 0.867 

GRNN 
q(Kg) 0.131 0.103 0.924 

UCS (kN/m2) 0.145 0.115 0.902 

Table 3. The performance matrices: Testing phase 

Model Output NRMSE NMAE R 

MLP 
q(Kg) 0.139 0.122 0.962 

UCS (kN/m2) 0.118 0.099 0.978 

RBF 
q(Kg) 0.229 0.186 0.803 

UCS (kN/m2) 0.211 0.174 0.820 

GRNN 
q(Kg) 0.316 0.280 0.817 

UCS (kN/m2) 0.300 0.266 0.837 

On the other hand, the testing phase results for the proposed 

models are displayed in Table 3, highlighting their 

performance. Furthermore, the accuracy of the proposed 

model has also been measured by employing the coefficient of 

determination (R2) as presented in Figures 4 and 5, which is a 

statistical metric that quantifies the relationship between the 

predicted and actual values, indicating the level of correlation 

between them. The ideal correlation is achieved when R2=1, 

and all data points align perfectly on a line that passes through 

the origin, resulting in a 45° angle. According to Table 3, the 

MLP model outperforms both RBF and GRRN models in 

predicting q and UCS, providing significantly high R-value 

and lower NMAE and NRMSE values. Furthermore, Figures 

4(a) and 5(a) show the scatter plot between the actual and 

predicted data samples, showing that the MLP model exhibits 

the highest R2 value for both q and UCS with a value of 0.926 

and 0.957, respectively. Additionally, the data samples exhibit 

proximity to the line, indicating the effectiveness of the MLP 

model in accurately predicting the crashing load and 

compressive strength. Moreover, the MLP can predict UCS 

more efficiently with R2, R, NMAE, and NRMSE values of 

0.957, 0.978, 0.099, and 0.118, respectively. On the other 

hand, the GRNN and RBF models showed an inferior 

performance in predicting q and UCS, providing higher 

prediction errors in terms of NMAE and NRMSE and lower 

prediction performance in terms of R. Figures 4(b), 5(b), 4(c), 

and 5(c) show the scatter plot of both models in predicting 

crushing load and compressive strength. According to Figures 

4(b) and 5(b), the data samples for GRRN are scattered away 

around the line, with R2 values 0.667 and 0.700 in terms of q 

and UCS, respectively, which is the same case for the RBF 

model (see Figures 4(c) and 5(c)) with R2 values 0.644 and 

0.672 terms of q and UCS, respectively. Additionally, the 

performance of both models in predicting compressive 

strength is slightly better than that of the crushing load. 

(a) 

(b) 

(c) 

Figure 4. The scatter plot between actual and predicted 

values for crushing load (a) MLP, (b) GRNN, and (c) RBF 
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(a) 

(b) 

(c) 

Figure 5. The scatter plot between actual and predicted 

values for unconfined compressive strength (a) MLP, (b) 

GRNN, and (c) RBF 

Figure 6 depicts the actual value against the predicted value, 

which, in this case, q and UCS, for each model. Figure 5 

demonstrates the superiority of the MLP model for 

simulating the peak values of compressive strength and 

crushing load, which is the same case for the lower values (see 

Figure 6(a)). On the contrary, the GRRN and RBF models are 

unable to simulate the actual values of the compressive 

strength and crushing load (see Figures 6(b) and 6(c)). 

The superiority of the MLP model is attributed to its 

advanced deep learning structure, allowing it to capture 

complex patterns and nonlinear relationships within the 

dataset. On the other hand, RBF and GRNN have simple 

architectures and predefined kernel or regression functions. 

Meanwhile, the MLP model’s parameters are dynamically 

adjusted during training, allowing it to capture intricate 

interactions among the six soil parameters. Moreover, the 

MLP utilizes a nonlinear activation function to improve the 

model's flexibility, enabling it to process high-dimensional 

data that the shallow structure of the other models might miss. 

Additionally, the backpropagation technique allows the MLP 

model to minimize the prediction error iteratively and 

optimize the weights, ensuring the best performance in cases 

of noise or variability in the data.  

(a) 

(b) 

(c) 

Figure 6. Comparison between actual and predicted for both 

the crushing load and compressive strength values (a) MLP, 

(b) GRNN, and (c) RBF

5. CONCLUSIONS

This study explores the potential of ML models in 

predicting the crushing load and compressive strength of 

nanomaterials stabilized active soil. Accordingly, three AI 

models have been implemented, namely, MLP, RBF, and 

GRNN. The proposed models’ performance is assessed 

through the training and testing phases, using different 

statistical matrices and graphical appraisals. The finding 

showed that the MLP model provides authentic predictions 

and generalization abilities with R^2 values of 0.926 and 0.957 

for both crashing load and compressive strength, respectively. 

Furthermore, the MLP model exhibited better performance in 

predicting compressive strength compared to crushing load. 

Meanwhile, the RBF and GRNN, despite having a 

considerable performance in the training phase, showed 

significantly poor performance in the testing phase. The MLP 

1747



model's superiority denotes its deep learning architecture, 

which is ideal for complex, non-linear data patterns, making 

the model typical in soil properties. Additionally, MLP 

structure allows for effective learning of high-dimensional 

data and intricate interactions. On the contrary, the RBF and 

GRNN models, while initially performing well in training, 

likely due to overfitting issues, influencing their generalization 

to new data. The robustness of the MLP model is enhanced by 

optimal tuning of the parameters, mimicking the specific 

characteristics of the soil property dataset, leading to more 

accurate predictions. From the practical perspective, 

leveraging the MLP model paves the way for engineers to 

predict soil’s critical parameters, which in turn reduces the 

reliance on resource-intensive and time-consuming 

experiments, particularly in soil stabilization practices.  

Finally, sensitivity analyses are established to investigate 

the impact of the input parameters on the crashing load and 

compressive strength, showing that the clay content (C) has 

the most impact on both outputs, followed by the 

nanomaterial-to-water ratio (Mix per.), NMC, and LL. 

In light of these findings, this study suggests investigating 

other advanced neural network types, such as CNN and 

recurrent neural networks (RNNs), which may increase 

prediction accuracy and generalization ability. Furthermore, 

incorporating other soil parameters, such as permeability and 

shear strength, to obtain a more comprehensive understanding 

of soil behaviour during the stabilization process. Moreover, 

utilizing hybrid models incorporates vanilla models with bio-

inspired algorithms such as genetic algorithm (GA) or particle 

swarm optimization (PSO), which refine the model’s output 

and optimize input parameters. 
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NOMENCLATURE 

q Crashing load Kg 

UCS Unconfined compressive strength kN/m2 

LL Liquid limit (%) 

PL Plastic limit (%) 

NMC Normal moisture content (%) 

A Activity (dimensionless) 

C Clay content (%) 

Mix per. Nanomaterial-to-water ratio (dimensionless) 

Greek symbols 

φ Activation function for MLP (dimensionless) 

𝜃 Spread factor for GRNN (dimensionless) 

α Radial basis function for RBF (dimensionless) 

𝛿 Jth hidden layer width for RBF (dimensionless) 

σ Gaussian function parameter (dimensionless) 

𝜔 Weight (dimensionless, refers to neural 

network weights in MLP/RBF/GRNN models) 

Subscripts 

AI Artificial intelligence  

MLP Multilayer perceptron  

GRNN Generalize regression neural network 

RBF Radial basis function neural network 

NRMSE Normalized root mean square error 

(dimensionless) 

NMAE Normalized mean absolute error 

(dimensionless) 

R Correlation coefficient (dimensionless) 

R2 Coefficient of determination (dimensionless) 

1750




