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This research paper explores the application of Linear Programming (LP) as a strategic 

decision-making tool across diverse domains such as agriculture, management, site 

selection, services, investment, and transportation, with the overarching aim of 

maximizing profitability. The study introduces Octagonal Fuzzy Numbers (OFNs) and 

proposes a novel approach for defuzzification using a ranking function derived from 

Pascal's triangle to handle the left and right spreads of OFNs effectively. To obtain 

optimal solutions, the formulated LP problems are solved using Doolittle's method, the 

Simplex method, and the Graphical method. A comparative analysis of the results 

obtained from these techniques is carried out to determine the most optimal solution. 

The findings demonstrate the practical applicability and efficiency of LP in real-world 

scenarios and underscore the advantages of incorporating octagonal fuzzy numbers in 

uncertain decision-making environments. 
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1. INTRODUCTION

Optimization techniques are pivotal in solving real-world 

decision-making problems involving limited resources and 

competing objectives. These problems are generally classified 

into two types: linear and non-linear programming problems. 

Among them, Linear Programming Problems (LPPs) are 

extensively applied in domains such as operations research, 

engineering, economics, logistics, and management. LPPs aim 

to maximize or minimize a linear objective function subject to 

a set of linear constraints involving decision variables. 

In real-life applications, however, decision-making often 

involves uncertainties, vagueness, and imprecision, which 

cannot be adequately captured using traditional crisp 

parameters. To address this, fuzzy set theory, pioneered by 

Zadeh, has been successfully employed to model such 

imprecision. Later developments by Zimmermann and 

Kaufmann significantly advanced the application of fuzzy 

logic in optimization, particularly in solving Fuzzy Linear 

Programming Problems (FLPPs). 

Over the years, a variety of fuzzy number representations 

and ranking techniques have been developed to convert fuzzy 

parameters into crisp equivalents for computational purposes. 

Among these, Octagonal Fuzzy Numbers (OFNs) have gained 

attention due to their flexibility and ability to represent 

uncertain information more accurately than traditional 

triangular or trapezoidal fuzzy numbers. Despite these 

advantages, ranking OFNs in a consistent and computationally 

efficient manner remains a challenge. 

1.1 Motivation 

Existing literature demonstrates a growing interest in 

incorporating advanced fuzzy number forms such as 

hexagonal and octagonal fuzzy numbers to enhance the 

modeling of uncertain parameters. However, there is still a gap 

in developing robust ranking techniques tailored for OFNs and 

integrating them effectively with classical solution methods 

like the simplex method, graphical method, and Doolittle’s LU 

decomposition. Furthermore, a systematic comparative 

analysis of solutions obtained using multiple approaches is 

often lacking. 

1.2 Key contributions 

This research aims to bridge the above gaps and contributes 

to the existing body of knowledge in the following ways: 

Proposes a novel ranking method for Octagonal Fuzzy 

Numbers based on Pascal's triangle, which effectively handles 

left and right spreads. 

Develops a crisp conversion methodology for fuzzy linear 

programming models involving OFNs using the proposed 

ranking function. 

Solves the defuzzified LPPs using three distinct methods: 

the simplex method, graphical method, and Doolittle’s method, 

to ensure the robustness of the optimal solution. 

Presents a detailed comparative analysis of the results 

obtained through different methods to demonstrate the 

effectiveness and reliability of the proposed approach. 

Several authors have extended and improved these 

approaches by introducing novel ranking methods for different 

fuzzy number representations. Triruneh et al. [1] conducted an 

in-depth analysis of Doolittle’s method in solving linear 

systems, laying a foundation for efficient matrix factorization 

techniques in computational mathematics. Building upon this, 
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some researchers [2-4] adapted the method specifically for 

symmetric positive definite matrices, thereby enhancing its 

applicability in engineering and scientific computations. 

Deshmukh et al. [5] explored the optimality conditions within 

LPPs characterized by fuzzy parameters, contributing 

significantly to the field of fuzzy optimization. 

Djordjevic et al. [6] extended the operational framework for 

triangular fuzzy numbers by presenting modified arithmetic 

operations that improve the accuracy and efficiency of 

solution procedures. In the context of decision-making under 

uncertainty, Dong and Wan [7] introduced fuzzy subsets in the 

decision space to maintain a balance between feasibility and 

optimality. Gani et al. [8] proposed a signed distance-based 

ranking method for LR triangular fuzzy numbers, offering a 

robust alternative for prioritizing fuzzy values in optimization 

models. Complementing this, Ghadle and Ingle [9] developed 

a generalized octagonal fuzzy number using the incentre of 

Euclidean distance, effectively addressing challenges in 

solving fuzzy LPPs. 

Gurukumaresan et al. [10] applied octagonal fuzzy numbers 

to the classical transportation problem, providing a structured 

approach to handle imprecise costs and supplies in a fuzzy 

environment. Garg [11] introduced a novel rule-based 

approach to solve fuzzy relation inequalities, an essential 

aspect in systems governed by fuzzy constraints. Meanwhile, 

references [11, 12] employed vector computation techniques 

to systematically identify non-negative solutions that 

maximize the objective function, thereby improving 

computational outcomes in fuzzy LPPs. 

Reference [13] demonstrated the practical utility of 

Doolittle’s method in chemometric analysis, a branch of 

chemistry where multivariate data analysis is crucial. Kurian 

[13] and Maiti et al. [14] further extended fuzzy game theory 

by modeling payoffs using heptagonal, octagonal, and 

nonagonal fuzzy numbers in matrix games, addressing 

ambiguity in strategic interactions. Malini and Kennedy [15] 

showed how octagonal fuzzy numbers could transform fuzzy-

valued transportation problems into crisp equivalents solvable 

by traditional methods like MODI (Modified Distribution 

Method), simplifying the computational burden. 

Meenakshi and Sathish [16], and Meili et al. [17] 

emphasized the significance of risk-neutral fuzzy probability 

measures in financial modeling, especially in pricing fuzzy 

options under uncertain market conditions. Muralidaran and 

Venkateswarlu [18] contributed further insights into the fuzzy 

financial domain. Mittal and Kurdi [19] applied LU 

decomposition methods in the context of nonlinear symmetric 

matrices, broadening the scope of matrix analysis under 

uncertainty. 

Pandian and Jayalakshmi [20] adopted a decomposition-

based strategy to tackle fuzzy integer programming problems, 

enhancing scalability for large systems. Praveen Prakash and 

Geetha Lakshmi [21] introduced sub-trident forms in fuzzy 

aggregation, which proved effective in shortest path problems 

involving multiple criteria. Rafique [22] also provided detailed 

analysis of Doolittle’s method, reinforcing its reliability in 

solving linear systems. Darvishi Salookolaei and Nasseri [23] 

focused on dual fuzzy number systems (left-hand and right-

hand fuzzy numbers), and utilized Maleki and Yager’s ranking 

methods to refine decision-making models under uncertainty. 

Sanei [24] made substantial contributions by solving LPPs 

using hexagonal fuzzy numbers and linear ranking functions, 

respectively, with the former applying the simplex method and 

the latter addressing issues related to bounded fuzzy variables. 

Other researchers [25-27] developed a Bector–Chandra-

type duality framework for fuzzy linear programming, 

incorporating hyperbolic tangent membership functions to 

enhance the expressiveness of fuzzy constraints and objectives. 

Stephen and Jeyavuthin [28], Suba et al. [29] provided an 

extensive review of ranking techniques in fuzzy set theory and 

their practical implications in optimization and decision 

science. Suba et al. [29] underscored the importance of fuzzy 

numbers in decision-making under ambiguity and introduced 

generalized hexadecagonal fuzzy numbers as a novel 

representation for complex uncertainties. Sudha et al. [30] 

proposed a new ranking function tailored for pentagonal fuzzy 

numbers, while Vivekanand and Prakash [31] offered a 

comparative evaluation of the simplex and dynamic 

programming methods in fuzzy environments, highlighting 

the efficiency trade-offs of each approach. 

Zandkarimkhani [32] introduced a ranking method for 

multi-objective LPPs using hexagonal fuzzy numbers, 

demonstrating its effectiveness in handling conflicting goals. 

Finally, Zimmermann [33] made pioneering contributions to 

the integration of fuzzy logic in mathematical programming, 

particularly in formulating and solving FLPPs, establishing a 

foundational framework for future research in fuzzy 

optimization. 

In this research article, we propose a novel ranking function 

for OFNs, constructed using Pascal's triangle, to convert fuzzy 

coefficients into crisp values. A comprehensive methodology 

is developed and illustrated through a numerical example. The 

problem is then solved using Doolittle’s method, the simplex 

method, and the graphical method, and the results are 

compared to determine the optimal solution. 

The paper is organized as Section 2 presents the essential 

preliminaries, including fundamental definitions, notations, 

and background concepts related to fuzzy set theory and 

existing ranking techniques, forming the basis for the proposed 

work. In Section 3, a novel ranking approach is introduced to 

address the limitations of conventional methods and enhance 

the comparative analysis of fuzzy or neutrosophic numbers. 

Section 4 details the proposed strategy, integrating the new 

ranking technique into a structured decision-making 

framework supported by an algorithmic procedure. Section 5 

provides a comprehensive numerical example to illustrate the 

practical implementation and computational steps of the 

proposed method. In Section 6, the applicability of the 

proposed strategy is validated through a real-life case study, 

demonstrating its effectiveness in addressing uncertainty in 

decision-making. Section 7 offers a comparative analysis with 

existing models, highlighting the proposed method’s 

superiority in terms of accuracy, discrimination power, and 

reliability. Finally, Section 8 concludes the study by 

summarizing key contributions, emphasizing the model's 

practical significance, and suggesting directions for future 

research. 

 

 

2. PRELIMINARIES 

 

2.1 Fuzzy set 

 

If X is a collection of objects denoted generically by x, then 

the fuzzy set Ấ in X is defined to be a set of ordered pairs. 

where, 𝜇𝐴(𝑥) is called the membership function for the fuzzy 

set. The membership function maps each element of x to a 

value between (0,1). 
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2.2 Fuzzy number 

 

Fuzzy number Ã in the real line R is a fuzzy set 𝜇Ã(𝑥): 𝑅 →

 [0,1] that satisfies the following properties. 

◆ Ã is convex if 

 

𝜇Ã(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ 
𝑚𝑖𝑛 {𝜇Ã(𝑥1), 𝜇Ã(𝑥2)} ∀𝑥1, 𝑥2 ∈ 𝑋, 𝜆 ∈ [0,1] 

 

◆ Ã is normal if there exists at least one 𝑥 ∈ 𝑅 with 𝜇Ã(𝑥) =

1, 𝜇Ã(𝑥) is piece wise continuous. 

 

2.3 Octagonal fuzzy number 

 

A fuzzy number is a normal octagonal fuzzy number 

denoted (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8)  where 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤
𝑎4 ≤ 𝑎5 ≤ 𝑎6 ≤ 𝑎7 ≤ 𝑎8  are real numbers and its 

membership function (Figure 1) is 𝜇𝐴(𝑥) given be  
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Figure 1. Octagonal fuzzy number [4] 

 

2.4 Ranking function 

 

Let F(R) is a set of fuzzy numbers defined on the set of real 

numbers and the ranking of a fuzzy number is actually a 

function R from F(R) to R, which maps each fuzzy number 

into the real line. 

If Ã  and �̃�  are any two fuzzy numbers then the relation 

between those two fuzzy numbers is given by 

 

i. If R(Ã)≤R(B̃) then Ã˂B̃. 

ii. If R(Ã)>R(B̃) then Ã>B̃. 

iii. If R(Ã)=R(B̃) then Ã=B̃. 

 

2.5 α-cuts 

 

The α-cut (or) α-level set of fuzzy set Ā is a set consisting 

of those elements of the universe X whose membership values 

exceed the threshold level α that is  

 

Ā
𝛼

= {𝑥/µ
𝐴(𝑥) ≥ 1} 

 

2.6 Fuzzy linear programming model 

 

A generalized model for the FLPP is proposed and formally 

defined as follows, capturing the inherent uncertainty in the 

problem parameters through the incorporation of fuzzy 

representations. Let the parameters involved in the model be 

represented as OFNs �̃�𝑖𝑗, �̃�𝑖𝑗 . 

Max or Min 𝑍=𝑐𝑖𝑗𝑥𝑗 

Subject to constraints 

 

�̃�𝑖𝑗𝑥𝑗 ≤, =, ≥ �̃�𝑖𝑗 ;  𝑥𝑗 ≻ 𝑜 

 

2.7 Theorem 

 

If two octagonal fuzzy number �̃�=(𝛼1, 𝛼2 𝛼3, 𝛼4, 𝛼5 𝛼6, 𝛼7, 

𝛼8) and �̃�=(𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7, 𝛽8), it follows that: 

 

i. �̃�<�̃�  if and only if 𝛼1 <𝛽1 , 𝛼2 <𝛽2 , 𝛼3 <𝛽3 , 𝛼4 <𝛽4 , 

𝛼5<𝛽5, 𝛼6<𝛽6, 𝛼7<𝛽7, 𝛼8<𝛽8. 

ii. �̃�≤�̃�  if and only if 𝛼1 ≤𝛽1 , 𝛼2 ≤𝛽2 , 𝛼3 ≤𝛽3 , 𝛼4 ≤𝛽4 , 

𝛼5≤𝛽5, 𝛼6≤𝛽6, 𝛼7≤𝛽7, 𝛼8≤𝛽8. 

 

Proof: 

Let �̃�<�̃� by α level cut 

 

�̃�α=[(𝛼1 + 𝛼2 + 𝛼3)+[(𝛼4 + 𝛼5)-(𝛼1 + 𝛼2 + 𝛼3)]]𝛼,  

[(𝛼6 + 𝛼7 + 𝛼8)-[(𝛼6 + 𝛼7 + 𝛼8)-(𝛼4 + 𝛼5)]]𝛼,  

∀𝛼 ∈ [0,1] 
(1) 

 

and 

 

�̃�α=[(𝛽1 + 𝛽2 + 𝛽3)+[(𝛽4 + 𝛽5)-(𝛽1 + 𝛽2 + 𝛽3)]] 

α, [(𝛽6 + 𝛽7 + 𝛽8)-[(𝛽6 + 𝛽7 + 𝛽8)-(𝛽4 + 𝛽5)]]𝛼 

∀𝛽 ∈ [0,1] 
(2) 

  

[(𝛼1 + 𝛼2 + 𝛼3)+[(𝛼4 + 𝛼5)-(𝛼1 + 𝛼2 + 𝛼3)]]𝛼 

<[(𝛽1 + 𝛽2 + 𝛽3)+[(𝛽4 + 𝛽5)-(𝛽1 + 𝛽2 + 𝛽3)]]𝛼 
(3) 

 

[(𝛼6 + 𝛼7 + 𝛼8)-[(𝛼6 + 𝛼7 + 𝛼8)-(𝛼4 + 𝛼5)]]𝛼 < 

[𝛽6 + 𝛽7 + 𝛽8)-[(𝛽6 + 𝛽7 + 𝛽8)-(𝛽4 + 𝛽5)]]𝛼 
(4) 

 

Are hold ∀α ∈ [0,1]. Now by (A)§ (B) it shows that, α=0 

 

(𝛼1 + 𝛼2 + 𝛼3)<(𝛽1 + 𝛽2 + 𝛽3),  

(𝛼6 + 𝛼7 + 𝛼8)<(𝛽1 + 𝛽2 + 𝛽3) 
(5) 

 

for 𝛼 = 1(𝛼4 + 𝛼5)<(𝛽4 + 𝛽5), conversely, let 

 

(𝛼1 + 𝛼2 + 𝛼3)< (𝛽1 + 𝛽2 + 𝛽3), (𝑎4 + 𝑎5)<(𝛽4 +
𝛽5), (𝛼6 + 𝛼7 + 𝛼8)<(𝛽6 + 𝛽7 + 𝛽8) 

(6) 
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To show that �̃�<�̃� 

 
(1 − 𝛼)(𝛼1 + 𝛼2 + 𝛼3)<(1 − 𝛼)(𝛽1 + 𝛽2 + 𝛽3) 

∀𝛼 ∈ [0,1] 
(7) 

 

(𝛼4 + 𝛼5)𝛼 <(𝛽4 + 𝛽5)𝛼, ∀𝛼 ∈ [0,1] (8) 

 

Adding formula (3) and formula (5) 

 
(1 − 𝛼)(𝛼1 + 𝛼2 + 𝛼3)+(𝛼4 + 𝛼5) 

𝛼 < (1 − 𝛼)(𝛽1 + 𝛽2 + 𝛽3)+(𝛽4 + 𝛽5)𝛼, 
∀𝛼 ∈ [0,1] 

(9) 

 

The above formula (4) is same as formula (1). 

Similarly, 

 
(1 − 𝛼)(𝛼6 + 𝛼7 + 𝛼8)+(𝛼4 + 𝛼5)𝛼 

< (1 − 𝛼)(𝛽6 + 𝛽7 + 𝛽8)+(𝛽4 + 𝛽5)𝛼, ∀𝛼 ∈  [0,1] 
(10) 

 

The above formula (5) is same as formula (2). 

Thus �̃�<�̃� this proves statement formula (6). 

II. The proof �̃�≤�̃� of is similar way to proof formula (6) 

obviously. 

 

i. k≥0 

 

( ) ( )

( )) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( )

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

1 1

( ) ( ) , , , , , , , , , , , , , ,

, , , , , , , , , , , , , ,

, , , , , , ( )

,

k A B k

k k k k k k k k

k k ka k k k k k f kA B

f k

               

               

              

 

+ = +  

= +  

= + + + + + + + + +  

= + ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 3 3 4 4 5 5 6 6 7 7 8 8, , , , , ,ka k k k k k k            + + + + + + +  

 
(11) 
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1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

( ) , , , , , , ,

, , , , , , ,

( ) ( )

f kA B f k f k f k f k f k f k f k f k
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kf A f B
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= +

 
(12) 

 
ii. If k<0 

 

 

( ) ( )

( )) ( )

( ) ( )

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

k( ) ( ) ( k) , , , , , , , , , , , , , ,

k , k , k , k , k , k , k , k , , , , , , ,

, , , , , , , k ,k ,k ,k ,k ,k ,k ,k  

since

A B

b

a a

               

              

             
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( ) ( ) ( ) ( ) ( ) ( ) ( ) )1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

 (b a a b)

k , k , k , k , k , k , k ,(k               

+ = +

= + + + + + + + +  

 (13) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8
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, , , , , ,
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f kA B f k k ka k k k k k
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kf A f B
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= +

 (14) 

2.8 Remark 
 

The octagonal fuzzy number �̃�=(𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6, 𝛼7, 

𝛼8) then k(�̃�)=k�̃�. 
 

Proof: 

There are two cases, since k is a real value: k=0, k≠0. 

If k≠0 
 

( )

( )
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

( ) , , , , , , ,

, , , , , , ,

k A k

k k k k k k k k

kA

       

       

=

=

=

 (15) 

 

If k=0 
 

( )

( )
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

( ) , , , , , , ,

0 , , , , , , , 0

k A k        

       

=

= =
 (16) 

 

3. PROPOSED RANKING FUNCTION 

 

Let Ã=(𝛼1 , 𝛼2 , 𝛼3 , 𝛼4 , 𝛼5 , 𝛼6 , 𝛼7 , 𝛼8 ) be an Octagonal 

Fuzzy Number (OFN), where 

 

1 2 3 4 5 6 7 8               

 

The membership function of an OFN typically increases 

linearly from 𝛼1to 𝛼4, remains constant at its peak between 𝛼4 

and 𝛼5  then decreases linearly from 𝛼5 to 𝛼6  thereby 

representing uncertainty with greater flexibility compared to 

lower-order fuzzy numbers. 

In order to integrate OFNs into classical optimization 

frameworks such as linear programming, it is necessary to 

transform them into crisp values. To achieve this, we propose 

a novel ranking function that systematically incorporates all 

parameters of the octagonal fuzzy number using a Pascal’s 

triangle-based weighting scheme. This approach not only 
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maintains the integrity of the fuzzy data but also gives 

prominence to the central (most confident) values of the OFN. 

 

𝑅𝑜(Ã)=

(𝛼1+𝛼8)+7(𝛼2+𝛼7)+21(𝛼3+𝛼6)

+35(𝛼4+𝛼5)

128
 (17) 

 

The above mentioned ranking function is for left spread and 

the right spread is expressed as, 

 

𝑅𝑜(Ã) =
35(𝛼1+𝛼8)+21(𝛼2+𝛼7)+7(𝛼3+𝛼6)+(𝛼4+𝛼5)

128
  (18) 

 

For an equally spread octagonal fuzzy number we can use 

any of the above mentioned ranking function. 

This symmetric weighting structure ensures that the core 

values which represent the most reliable part of the fuzzy 

number-are given the highest importance in the ranking. The 

outermost values, which are associated with higher degrees of 

uncertainty, are given lower weights. As a result, the ranking 

function provides a balanced, intuitive, and computationally 

effective defuzzification technique, suitable for application in 

fuzzy linear programming models. 

The utilization of Pascal-based weights also allows for 

scalability and consistency across different fuzzy number 

types, making this technique a robust alternative to existing 

ranking functions. 

 

 

4. PROPOSED STRATEGY 

 

The following systematic procedure is employed to solve 

the octagonal fuzzy linear programming problem using the 

proposed ranking technique and Doolittle’s LU decomposition 

algorithm: 

Step 1: Formulation of the Octagonal Fuzzy Linear 

Programming Model 

Initially, the given real-world decision-making problem is 

formulated as a fuzzy linear programming model in which the 

parameters (such as coefficients in the objective function and 

constraints) are represented using OFNs. This model captures 

the uncertainty and imprecision inherent in the problem 

domain. 

Step 2: Conversion into an Equivalent Crisp Linear 

Programming Model 

Utilizing the proposed Pascal's triangle-based ranking 

function, each octagonal fuzzy parameter is transformed into 

its crisp equivalent. This process yields an equivalent crisp 

linear programming model, denoted as formula (6), which 

retains the underlying characteristics of the fuzzy environment 

while enabling the application of conventional solution 

techniques. 

Step 3: Application of Doolittle’s LU Decomposition 

Method 

To solve the system of equations arising from the linear 

programming constraints, we apply Doolittle’s LU 

decomposition algorithm. Let U are systematically computed 

using forward and backward substitution based on the 

relationships derived from the matrix multiplication. 

Step 4: Matrix Terminology and Structure 

In the LU decomposition framework, the matrix U is 

defined as an upper triangular matrix in which all elements 

below the main diagonal are zero. Conversely, the matrix L is 

a unit lower triangular matrix, characterized by ones on the 

diagonal and non-zero elements below the diagonal. These 

structures facilitate an efficient solution process for the 

resulting system of linear equations. 

The following is the terminology used to describe the U 

matrix: 

 

⩝j 

i=0→Uij =Aij 

i>0→Uij =Aij-∑  𝑖−1
𝑘=0 Lik Ukj 

(19) 

 

The following is a description of the L matrix: 

 

⩝i 

j=0→Lij =Aij/ Ujj  

j>0 →Lij =(Aij-∑  𝑖−1
𝑘=0 Lik Ukj )/ Ujj 

(20) 

 

Step 5: In addition, the crisp model of LPP is solved using 

simplex and graphical methods. From Step 4, we utilize 

linprog to handle the new LP problem and determine the most 

effective solution. 

 

 

5. NUMERICAL EXAMPLE 

 

The formulated linear programming problem is solved 

using three established techniques: Doolittle’s LU 

decomposition method, the Simplex method, and the 

Graphical method. Each approach is applied to obtain the 

optimal solution, and the results are subsequently compared to 

evaluate consistency and effectiveness across different 

solution strategies. 

 

Max Z=60x1+40x2 

Subject to constraints 

𝑎11̃x1 +𝑎12̃x2≤�̃�1 

𝑎21̃x1 +𝑎22̃x2≤ �̃�2 

x1, x2 ≥0. 

 

now, 

 

𝑎11̃=(11, 12, 14, 16, 16, 8, 7, 6) 

𝑎12̃=(8, 7, 5, 4, 4, 3, 2, 1) 

𝑎21̃=(2, 3, 6, 7, 7, 1, 8, 4) 

𝑎22̃=(4, 5, 3, 2, 2, 7, 9, 8) 

�̃�1=(120, 130, 140, 150,150, 130, 110, 90) 

�̃�2=(115, 120, 124, 125, 125, 130, 128, 127) 

 

In the proposed model, the octagonal fuzzy numbers can be 

transformed into their corresponding crisp values by 

employing any one of the defined spread-based approaches. 

This flexibility in selecting the spread enables adaptability in 

the defuzzification process, depending on the nature of the 

decision-making environment.  

 

a11=13.531, a12=4.16, a21=5.625, 

 

a22=3.593, e1=150.5, e2=125.48 

 

Formulating LPP  

 

Max Z=60x1+40x2 

Subject to constraints 

13.531 x1 +4.16x2≤150.5 

5.625x1 +3.593 x2≤125.48 

x1, x2 ≥ 0 
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Here we solving LPP through Doolittle’s method in LU 

decomposition to obtain precise and easy way to attains 

optimal solution 

 

5.1 Doolittle’s method 

 

Using Doolittle’s method in LU decomposition, the 

constraints can be converted to equation 

 

13.531x1+4.16x2=150.5 

 

5.625x1+3.593x2=125.48 

 

The constraints can be converted into matrix form 

 

[
13.531 4.16
5.625 3.593

] [
𝑥1

𝑥2
] = [

150.5
125.48

] 

 

Now  

 

A=[
13.531 4.16
5.625 3.593

] X=[
𝑥1

𝑥2
] B=[

150.5
125.48

] 

 

This implies 

 

𝑢11=13.53, 𝑙21𝑢12 + 𝑢22=3.59 

𝑢22=1.862 

∴ A=LxU=LU, let Ux= y then ly=B 

𝑦1=150.5, 0.4154 

    𝑦1 + 𝑦2 = 125.48 
𝑦2=62.9663 

Now Ux=y 

By using backward method 

x2=33.8156 

From the above matrix equation  

x1=0.7263 

MAX Z=60x1+40x2 

(x1, x2)=(0.7263 , 33.8156) 

MAX Z=1396.202 

 

The error is bound be for optimal solution in this method is 

0.718. So precise approximate way to find optimal solution we 

can use the Doolittle’s method in LU. 

 

5.2 Simplex method 

 

Formulating LPP 

 

Max Z=60x1+40x2 

Subject to constraints 

13.531 x1 +4.16x2≤150.5 

5.625x1 +3.593 x2≤125.48 

x1, x2 ≥0 

 

Max Z=60x1+40x2 

Subject to constraints 

13.531 x1 +4.16x2+x3=150.5 

5.625x1 +3.593 x2 +x4 =125.48 

x1, x2 ≥ 0 

 

The Simplex method is implemented using the linprog 

function in MATLAB (or Python/appropriate software), 

which efficiently computes the feasible region and determines 

the optimal solution to the formulated linear programming 

problem 𝑦1 + 𝑦2 = 125.48. 

5.3 Graphical solution 

 

Max Z=60x1+40x2 

Subject to constraints 

13.531x1+4.16x2≤150.5 

5.625x1+3.593x2≤125.48 

x1, x2≥0. 

 

The maximum value of the objective function Z=1396.92 

occurs at the extreme point (0, 34.92). Hence, the optimal 

solution to the given LP problem is x1=0, x2=34.92 and max 

Z=1396.94. and the graphical structure is explained in Figures 

2 and 3. 

 

 
 

Figure 2. Graphical solution 

 

 
 

Figure 3. Graphical structure for feasible and optimal region 
 

 

6. APPLICATION 

 

Consider a dietary planning scenario involving two types of 

food items: Food A and Food B. Each gram of Food A 

provides 20 units of protein and 40 units of minerals, while 
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each gram of Food B supplies 30 units of protein and 30 units 

of minerals. The nutritional requirements for an individual are 

assumed to be a minimum of 900 units of protein and 1200 

units of minerals per day. The cost per gram of Food A is 

approximately Rs. 6, and Food B is Rs. 8. 

The objective is to determine the optimal quantity (in grams) 

of each food item to be included in the daily diet such that the 

total cost is minimized, while satisfying the minimum 

nutritional requirements. However, it is important to note that 

both nutritional needs and food prices are subject to variation 

due to individual health conditions and market fluctuations. To 

incorporate this uncertainty into the model, the problem is 

formulated using fuzzy linear programming. Specifically, 

symmetrical octagonal fuzzy numbers are employed to 

represent imprecise parameters such as cost and nutritional 

content. 

For instance, the cost of Food A, originally estimated at Rs. 

6 per gram, is represented by the symmetrical octagonal fuzzy 

number (2,3,4,5,7,8,9,10). Similar fuzzy representations are 

adopted for the remaining uncertain parameters. Based on 

these fuzzy values, the problem is structured and solved as a 

fuzzy linear programming model. 

 

( ) ( )1 22, 3, 4, 5, 7, 8, 9, 10 3, 4, 5, 7, 9, 11, 12, 13Min Z x x= +  

 

Subject to 

 

20�̃�1 + 30�̃�2

≥ (885, 886, 888, 890, 910, 912, 914, 915)40�̃�1 + 30�̃�2

≥ (1190, 1191, 1193, 1195, 1205, 1207, 1209, 1210) 

�̃�1, �̃�2 ≻ 0 

 

Formulating LPP 

 

𝑀𝑖𝑛𝑍 = 5.4�̃�1 + 8�̃�2 
20�̃�1 + 30�̃�2 ≥ 900;  40�̃�1 + 30�̃�2 ≥ 1200 

�̃�1, �̃�2 ≻ 0 

 

6.1 Doolittle’s method 

 

Using Doolittle’s method in LU decomposition, the 

constraints can be converted to equation: 

 

20𝑥1 + 30𝑥2 = 900;  40𝑥1 + 30𝑥2 = 1200 

 

The constraints can be converted into matrix form  
 

[
20 30
40 30

] [
𝑥1

𝑥2
] = [

900
1200

] 

 

Now  

 

A=[
20 30
40 30

], X=[
𝑥1

𝑥2
] and B=[

900
1200

] 

 

This implies 

 

11u =20, 𝑙21𝑢12 + 𝑢22=30; 22u =1.862 

∴ A =LxU=LU, let Ux= y then ly=B 

𝑦1, 𝑦2=900, -600 
 

Now Ux=y, by using backward method: x2=20, from the 

above matrix equation 

x1=15 

    𝑀𝑖𝑛𝑍 = 5.4�̃�1 + 8�̃�2 

(x1, x2)=(15, 20) 

MinZ=241 
 

Graphical Method 

 

𝑀𝑖𝑛𝑍 = 5.4�̃�1 + 8�̃�2;  20�̃�1 + 30�̃�2 ≥ 900 
40�̃�1 + 30�̃�2 ≥ 1200; �̃�1, �̃�2 ≻ 0 

 

 
 

Figure 4. Graphical solution 

 

 
 

Figure 5. Graphical structure for feasible and optimal region 

for application 

 

x2=20 

x1=15 

    𝑀𝑖𝑛𝑍 = 5.4�̃�1 + 8�̃�2 

(x1, x2)=(15, 20) 

MinZ=241 
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Table 1. Graphical solution 

 
Extreme Point 

Coordinates 

(x1,x2) 

Lines Through 

Extreme Point 

Objective 

Function Value 

Z=5.4x1+8x2 

A(0,40) 
2→40x1+30x2≥1200 

3→x1≥0 
5.4(0)+8(40)=320 

B(15,20) 
1→20x1+30x2≥900 

2→40x1+30x2≥1200 
5.4(15)+8(20)=241 

C(45,0) 
1→20x1+30x2≥900 

4→x2≥0 
5.4(45)+8(0)=243 

 

The maximum value of the objective function Z=241 occurs 

at the extreme point (15, 20) (Figure 4 and Figure 5). Hence, 

the optimal solution to the given LP problem is x1 =15, x2 =20 

and max Z=241 in Table 1 provided the graphical solution. 

 

 

7. COMPARISON ANALYSIS 

 

A comparative analysis is conducted between the solutions 

obtained using the existing method and the proposed method. 

The performance of both methods is evaluated based on their 

ability to solve the fuzzy linear programming problem and 

achieve optimal solutions, with a particular focus on the 

accuracy, efficiency, and reliability of the results in Table 2. 

 

Table 2. The comparative analysis 

 

Problems  
Existing 

Method 
Proposed Method 

Example 1 Max Z=310.882 

Doolittle’s 

Method 
Max Z=1396.2 

Simplex Method 
Max 

Z=1396.94 

Graphical 

Method 

Max 

Z=1396.94 

Application Min Z=213 

Doolittle’s 

Method 
Min Z=241 

Simplex Method Min Z=241 

Graphical 

Method 
Min Z=241 

 

 

8. ADVANTAGES 

 

Versatility Across Domains: The research highlights the 

broad applicability of Linear Programming (LP) across 

multiple domains, including agriculture, management, site 

selection, services, investment, and transportation, which 

showcases its strategic importance in diverse real-world 

decision-making contexts. 

 

Incorporation of Octagonal Fuzzy Numbers: The use of 

Octagonal Fuzzy Numbers (OFNs) allows for more precise 

modeling of uncertainty, making it easier to handle and 

represent ambiguous data, thereby enhancing decision-making 

under uncertainty. 

 

Novel Defuzzification Approach: The introduction of a 

new defuzzification technique based on a ranking function 

derived from Pascal’s triangle offers an innovative way to 

manage the left and right spreads of OFNs, providing a more 

refined approach for handling fuzzy numbers. 

 

Comparison of Multiple Solution Methods: The study’s 

comparative analysis of Doolittle’s method, Simplex method, 

and Graphical method offers a comprehensive evaluation of 

different approaches, helping to identify the most efficient and 

optimal solution technique for the given LP problems. 

 

Practical Applicability: The findings emphasize the real-

world applicability and efficiency of LP, demonstrating how 

these methods can be applied to solve complex decision-

making problems in various sectors. 

 

Enhanced Decision-Making in Uncertainty: By 

incorporating octagonal fuzzy numbers, the paper enhances 

decision-making models, making them more reliable and 

effective in uncertain environments, which is crucial for real-

world applications. 

 

 

9. CONCLUSION 

 

In this research study, the effectiveness of Doolittle's 

method, the simplex method, and the graphical method in 

solving linear programming problems under octagonal fuzzy 

number environments has been systematically examined. A 

comparative analysis through a numerical example 

demonstrates that all three methods successfully yield both 

precise and fuzzy optimal solutions. Notably, Doolittle's 

method, based on LU decomposition, offers a direct and 

computationally efficient approach, producing results 

consistent with those obtained through the simplex and 

graphical methods. Although a minor error margin is observed 

with Doolittle’s method, it remains a reliable approximation 

technique. Owing to its simplicity, computational efficiency, 

and ease of implementation, Doolittle’s method proves to be a 

practical and accessible tool for decision-makers handling 

fuzzy optimization problems. 

This study opens several avenues for future research. The 

application of Doolittle’s method within the framework of 

fuzzy linear programming can be further extended to 

accommodate more complex fuzzy environments, such as 

intuitionistic, Pythagorean, and q-rung orthopair fuzzy sets. 

Additionally, exploring its integration with advanced multi-

objective optimization models under uncertainty can enhance 

its applicability in real-world decision-making scenarios. 

Future work may also focus on the development of hybrid 

algorithms combining Doolittle’s method with metaheuristic 

or artificial intelligence techniques to improve solution 

accuracy and computational efficiency. Moreover, the 

proposed approach can be adapted and validated across 

diverse domains such as supply chain management, healthcare, 

finance, and engineering design, where uncertainty and 

imprecision are inherent. 
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