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Waste constitutes a significant environmental challenge globally, including in 

Indonesia. The manual classification of waste demands considerable time and effort, 

necessitating the development of technology for automatic classification. The 

application of deep learning technology for waste classification has advanced swiftly. 

However, training deep learning models such as DenseNet121 remains a challenge due 

to the substantial time and computational resources required, particularly with extensive 

datasets. This study proposes a novel waste classification approach that integrates 

genetic algorithm (GA)-based hyperparameter optimization with data downsampling 

and data augmentation to significantly improve computational efficiency without 

compromising accuracy. To identify the optimal hyperparameter configuration, we 

tested multiple scenarios involving different image resizing dimensions, as well as 

augmentation techniques. A refined dataset of 2,748 images curated from CompostNet 

and TrashNet via duplicate removal, balancing, and quality filtering was used to train 

and test the model. The proposed approach successfully reduced training time by a 

factor of four, from 3,099 seconds to 789 seconds. Moreover, GA optimization yielded 

the best hyperparameter configuration: 896 neurons with a 30% dropout rate in the first 

layer, and 512 neurons with a 20% dropout rate in the second layer. This configuration 

improved classification accuracy from 94% to 97%. 
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1. INTRODUCTION

Waste constitutes a significant environmental challenge 

globally, including in Indonesia. In 2023, the documented 

quantity of waste exceeded 67 million tons annually. The 3R 

method (Reduce, Reuse, Recycle) can be implemented to 

minimize waste. Classification of waste types is essential for 

the implementation of this method. The manual classification 

of waste is time-consuming and labor-intensive, necessitating 

the development of technology for automatic classification. 

The application of deep learning technology for waste 

classification has advanced swiftly. The primary challenge in 

training deep learning models such as DenseNet121 is the 

considerable duration required for training, particularly when 

utilizing extensive datasets. The extended training period not 

only impedes model development but also necessitates 

substantial computational resources [1]. 

This study aimed to develop a waste classification system 

that enhances computational efficiency and accuracy, utilizing 

DenseNet121, optimized via genetic algorithm (GA), and 

employing downsampling and augmentation methodologies 

[2]. This study employs multiple scenarios to identify the 

optimal combination of hyperparameters for model 

construction. The hyperparameters to be evaluated are 

implemented during the resizing, augmentation, and 

optimization phases. Subsequently, utilizing the optimal 

hyperparameter combination, the DenseNet121 model will be 

refined through genetic algorithms to identify the most 

effective pairs of hyperparameters for neuron count and 

dropout rate. This study employs a consolidated dataset from 

CompostNet and TrashNet, comprising a total of 2,748 

images. 

The use of deep learning technology for waste classification 

has rapidly developed. One of the widely used methods is the 

Convolutional Neural Network (CNN), which has proven 

effective in recognizing patterns in images. The use of transfer 

learning demonstrates effectiveness in waste classification 

using the MobileNet model in the CompostNet system. This 

system is capable of classifying waste into three categories: 

organic, recyclable, and non-recyclable [3]. Another study 

conducted a comparative analysis of DenseNet121, ResNet34, 

MobileNetV2, CompostNet (Version A), and CompostNet 

(Version B) for waste classification tasks. Among the 

evaluated models, DenseNet121 demonstrated the highest 

classification accuracy across various waste categories, 

including paper, metal, plastic, glass, and compost [4]. 

However, the main challenge in training deep learning models 

like DenseNet121 is the relatively long training time, 

especially when using large datasets. The long training 

duration not only slows down the model development process 
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but also requires high computational resources. In the context 

of the research conducted, a solution is needed that can reduce 

the model training time without sacrificing accuracy. 

One of the approaches that can be used to address this issue 

is by applying downsampling. Downsampling serves to reduce 

the size of the data processed by the model while retaining 

important information, thereby accelerating the training 

process. Additionally, the use of data augmentation techniques 

such as 25-degree rotation and flipping (horizontal and 

vertical) can produce more skilled deep neural networks, as the 

augmentation approach provides variations in the images, 

allowing the trained model to apply their learning to new 

images [5], and ensuring that even though the dataset size is 

reduced, data variation is maintained, so the model's 

performance does not decline. 

The urgency of using this technique is very clear, especially 

in the context of developing a waste classification model with 

DenseNet121 optimized using a GA. With this approach, the 

training process can be accelerated, allowing more 

experiments to be conducted in a shorter time and with more 

efficient use of resources. The final result is expected to 

maintain high accuracy while also improving efficiency in the 

waste management process. In order to ensure the quality and 

consistency of training data, a dataset preparation process was 

conducted prior to model training. Although the original 

datasets (TrashNet and CompostNet) contained over 5,000 

images in total, a series of preprocessing steps including 

duplicate removal, class balancing, and image quality filtering 

resulted in a refined dataset of 2,748 high-quality and 

representative images. This was essential to avoid class bias, 

reduce noise, and ensure that the model was trained on clean 

and balanced data that support better generalization. 

2. RELATED WORK

Waste classification based on deep learning has been 

advanced through multiple CNN architectural methodologies. 

Research on MobileNet demonstrates a comparatively 

lightweight CNN model for transportation devices that 

enhances mobile device commuting efficiency. The 

architecture employs depthwise separable convolution and 

hardware optimization, rendering it economical for real-time 

waste classification. This research has been utilized by 

numerous other scholars to facilitate waste classification with 

minimal data, while maintaining satisfactory accuracy [6]. 

DenseNet121 was created for multi-category classification 

by employing dense connections among dimensions in the 

convolutional layers, demonstrating superiority in this domain 

[7]. This model was employed to categorize six types of solid 

waste in the TrashNet dataset: glass, paper, metal, plastic, food 

waste, and cardboard [8]. Nonetheless, the limitation of this 

model lies in its substantial computational resource demands, 

particularly with extensive datasets [9]. 

A survey on data imbalance indicates that data 

augmentation, including image rotation and flipping, is a 

prevalent data mining technique [10]. his method can enhance 

accuracy by as much as 12% in the developed model [11]. This 

approach is pertinent to the waste issue in Indonesia, 

characterized by an uneven distribution of waste [12]. 

Conversely, adaptive resampling for downsampling has 

demonstrated the capacity to diminish identifiable data over 

time with minimal loss [13]. Scenarios are required in its 

application to attain optimal results. The significance of 

scenarios in identifying optimal parameters is rooted in their 

impact on the model's accuracy and loss outcomes, 

underscoring that the choice of the appropriate scenario is 

essential for attaining superior model performance [14]. 

Adaptive resampling has been implemented in the TACO 

learning model, demonstrating a potential reduction in training 

time by up to 40%, albeit with a decline in accuracy exceeding 

90% relative to prior performance [15]. This method results in 

a verbose process regarding the impact of the DenseNet121 

model, which is an imbalanced resource [16]. 

The intricacy of CNN enables the model to discern intricate 

features; however, it necessitates increased time and 

computational resources for training and testing. 

Simultaneously, the application of GA proves to be highly 

efficacious in addressing diverse optimization and 

combinatorial challenges [17]. Genetic algorithms operate by 

employing the principles of natural selection, whereby 

individuals with superior fitness values possess an increased 

likelihood of being chosen as solutions in subsequent 

generations [18]. Evolutionary algorithms have been utilized 

to optimize learning rates and the number of layers in ResNet-

50, yielding a 5% enhancement in accuracy and a 30% 

decrease in training duration [19]. A separate study 

demonstrates that DenseNet121, when optimized with a 

genetic algorithm (GA), enhances accuracy in waste image 

classification, suggesting that GA is highly effective in 

improving the performance of CNN models [20]. This 

technique will provide a foundation for waste classification 

using this algorithm in comparison to alternative algorithms. 

The review indicates that integrating selective augmentation 

strategies, downsampling, and genetic algorithms with the 

DenseNet121 model attained a high accuracy level with 

limited connection resources, while addressing data non-

stationarity in the Indonesian waste issue. 

3. RESEARCH METHODS

This research is an applied study focused on enhancing the 

accuracy of the DenseNet121 model for waste classification 

through GA optimization. The study specifically addresses the 

challenge of improving training efficiency and reducing 

computational costs while maintaining high classification 

accuracy. The research centers on processing waste images 

using downsampling and augmentation techniques and 

subsetting dataset, which allows for the optimization of the 

model’s performance and the reduction of training time. The 

comprehensive research phases are illustrated in Figure 1. 

Figure 1. Research stage 

3.1 Dataset construction 

This study utilizes a combined dataset from two publicly 

available sources: TrashNet and CompostNet, resulting in a 
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total of 2,748 images spanning seven waste categories. Given 

the class imbalance-where some categories were 

underrepresented-data augmentation was applied specifically 

to the minority classes to increase their representation without 

requiring additional data collection. 

3.2 Preprocessing data 

To enhance the diversity of the dataset and improve the 

model's ability to generalize, several data augmentation 

techniques were applied. These included rotation by 25 

degrees to simulate varying image orientations, horizontal and 

vertical flipping to generate mirrored counterparts, and 

shearing transformations to introduce slight geometric 

distortions. These augmentations were particularly beneficial 

for enhancing the representation of minority classes and 

encouraging the model to learn more robust and discriminative 

features. Furthermore, all images were resized to three 

different input dimensions-224×224, 256×256, and 300×300-

to evaluate the impact of input resolution on model 

performance. The dataset was subsequently divided into 

training and testing subsets, with a 75:25 split. This 

partitioning ensured that the model was evaluated on 

previously unseen data, providing a reliable measure of its 

generalization capability. 

3.3 Model architecture and initial configuration 

The DenseNet121 model was selected for this study due to 

its compact and efficient architecture, which facilitates 

improved gradient flow and promotes feature reuse through 

densely connected layers [1]. To enhance learning efficiency 

and convergence speed, transfer learning was applied using 

pre-trained weights from ImageNet. The base architecture was 

extended with a fully connected (FC) layer consisting of one 

dense layer with 1024 neurons, followed by an output layer of 

7 neurons corresponding to the waste categories. 

3.4 Training setup 

All training procedures were conducted using a batch size 

of 16 and a total of 60 epochs, the value used is based on the 

best result from [4]. The experiments utilized two optimization 

algorithms: Adam, with a learning rate of 5.13×10⁻³, and 

Adadelta, with a learning rate of 0.1 and a decay rate of 0.001. 

These configurations were consistently applied across all 

experimental phases to ensure comparability and 

reproducibility. 

Phase I: Input resolution exploration 

The first phase focused on identifying the most appropriate 

input image resolution that offers a balance between 

classification performance and computational cost. Input 

images were resized to several dimensions, including 

512×384, 300×400, and 224×224. To further explore 

efficiency, a dataset subsetting strategy was applied, in which 

only 50% of the original samples were used for certain 

configurations-namely, 50% of the 512×384 and 50% of the 

300×400 datasets-while preserving class distribution. Each 

resolution and subset combination were evaluated using both 

the Adam and Adadelta optimizers, with the FC configuration 

kept fixed as previously described. 

Phase II: Fully connected layer optimization using a 

genetic algorithm 

In the second phase, the structure of the fully connected 

layers was optimized using a GA. This phase focused on 

tuning two key hyperparameters: the number of neurons and 

the dropout rate in two consecutive dense layers. The search 

space for each layer included neuron counts ranging from 128 

to 1024 in steps of 128, and dropout rates from 0% to 50%. 

The optimization focus is used to mitigate the risk of model 

overfitting [1]. Each candidate solution was encoded as a 

chromosome in the genetic population. The GA was 

configured with a population size of 10, evolved over 4 

generations, and employed crossover and mutation 

probabilities of 85% and 30%, respectively. The F1-score was 

used as the fitness function to guide selection and 

reproduction, as it provides a balanced metric for evaluating 

model precision and recall in the presence of class imbalance. 

3.5 Optimizer comparison protocol 

To compare the impact of different optimization strategies, 

both Adam and Adadelta were applied across all resolution 

and architectural configurations. Adam was selected for its 

adaptive learning rate and momentum-based updates, which 

facilitate faster convergence. Adadelta was included for its 

dynamic learning rate mechanism and capability to handle 

sparse gradients efficiently. This comparison aimed to 

evaluate each optimizer's effectiveness in diverse training 

conditions without altering other hyperparameters. 

4. RESULT AND DISCUSSION

4.1 Dataset collection 

The researchers are currently in the process of data 

collection, utilizing two publicly available datasets: TrashNet 

and CompostNet. TrashNet contains 2,527 images distributed 

across six waste categories: cardboard, glass, paper, metal, 

plastic, and trash. CompostNet, on the other hand, includes 

2,678 images classified into seven categories: cardboard, 

compost, glass, paper, metal, plastic, and trash. 

In constructing the final dataset, the two sources were 

carefully merged, taking into account the potential presence of 

duplicate or visually identical images across both datasets. 

After the necessary filtering and de-duplication process, a 

refined dataset of 2,748 unique images was obtained, covering 

seven waste categories: cardboard, compost, glass, paper, 

metal, plastic, and trash. This curated dataset served as the 

foundation for the subsequent model training and evaluation 

tasks. 

To address class imbalance during dataset preparation, 

special attention was given to categories with a limited number 

of images-namely, the trash and compost classes, which 

initially contained 174 and 184 images, respectively. To 

enhance the representation of these minority classes, data 

augmentation techniques were applied. As a result, the total 

number of images in the dataset increased to 3,106. 

Figure 2 illustrates examples of the augmented images for 

each class, showcasing the visual diversity introduced to 

support more effective model training and generalization. 
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Figure 2. Augmentation results for each class in the dataset 

4.2 Baseline evaluation with varying input resolutions and 

optimizers 

The primary objective of this study was to identify the 

optimal model configuration that effectively balances 

classification performance and training time. Experiment 1 

was defined as the reference configuration, using an input 

resolution of 512×384 and the Adam optimizer with a learning 

rate of 5.13e-3. This setup achieved an accuracy of 94%and 

required 3099 seconds of training time, which provided a 

baseline for comparison in subsequent experiments. 

To evaluate the impact of varying image resolution and 

optimizer settings on model performance, several experiments 

were conducted. Experiment 2, which utilized a 300×400 

resolution and the Adam optimizer, achieved the highest 

accuracy (96%) among all the configurations tested, with a 

reduced training time of 2002 seconds. While this 

configuration provided the best performance in terms of 

accuracy and computational efficiency, it did not provide the 

most optimal balance when considering the goal of 

minimizing training time. 

Other configurations were also tested to evaluate their trade-

offs. Experiment 3, which used 50% of the 512×384 resolution 

with the Adam optimizer, achieved 91% accuracy and reduced 

training time to 825 seconds. This experiment demonstrated 

that reducing image resolution led to faster training times, but 

at the cost of decreased classification accuracy. Similarly, 

Experiment 4, which used 50% of the 300×400 resolution and 

the Adam optimizer, attained 90% accuracy and 578 seconds 

of training time, providing the fastest training time, though the 

accuracy was further reduced. 

Experiment 5, using 224×224 resolution with the Adam 

optimizer, achieved 95% accuracy and 831 seconds of training 

time, offering a reasonable balance between classification 

performance and computational cost. Despite achieving high 

accuracy, however, the configuration still required relatively 

high training time when compared to Experiment 2. 

Furthermore, the Adadelta optimizer was tested in 

Experiments 6 through 10. The results showed that although 

Adadelta led to minor reductions in training time in some 

configurations, it did not outperform the Adam optimizer in 

terms of accuracy. For instance, Experiment 6, using 512×384 

resolution with the Adadelta optimizer, achieved 93% 

accuracy and 3126 seconds of training time, while Experiment 

7 with 300×400 resolution and Adadelta achieved 91% 

accuracy and 1982 seconds of training time. Despite some 

advantages in training time, these configurations yielded lower 

accuracy compared to those using the Adam optimizer (Table 

1). 

After thoroughly analyzing the results of all the 

experiments, Experiment 8 emerged as the optimal 

configuration. In Experiment 8, 50% of 512×384 resolution 

was used in conjunction with the Adadelta optimizer (lr=0.1, 

decay=0.001), achieving 95% accuracy and 789 seconds of 

training time. This configuration stood out due to its ability to 

significantly reduce training time by utilizing only half of the 

dataset while maintaining a high accuracy. The decision to use 

50% of 512×384 resolution resulted in a marked reduction in 

the amount of computational resources required, but without a 

notable loss in performance. Furthermore, the relatively 

efficient Adadelta optimizer contributed to a further reduction 

in training time. 

Table 1. Scenario test results on the DenseNet121 model 

Experiment Resize Optimizer 
Accuracy 

(%) 

Time 

(s) 

1 [4] 512×384 
Adam 

(lr=5.13e-3) 
94 3099 

2 300×400 
Adam 

(lr=5.13e-3) 
96 2002 

3 
50% of 

(512×384) 

Adam 

(lr=5.13e-3) 
91 825 

4 
50% of 

(300×400) 

Adam 

(lr=5.13e-3) 
90 578 

5 224×224 
Adam 

(lr=5.13e-3) 
95 831 

6 512×384 

Adadelta 

(lr=0.1, 

decay=0.001) 

93 3126 

7 300×400 

Adadelta 

(lr=0.1, 

decay=0.001) 

91 1982 

8 
50% of 

(512×384) 

Adadelta 

(lr=0.1, 

decay=0.001) 

95 789 

9 
50% of 

(300×400) 

Adadelta 

(lr=0.1, 

decay=0.001) 

91 543 

10 224×224 

Adadelta 

(lr=0.1, 

decay=0.001) 

92 848 
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Table 2. Optimal chromosome in each generation of CNN and its performance 

Model Generation 
Accuracy 

(%) 

Training Time 

Per 

Chromosome 

(s) 

Hyperparameter Values 

Layer 1 Layer 2 

Number of 

Neurons 
DropOut Rate 

Number of 

Neurons 
DropOut Rate 

Original DenseNet121 - 94 3099 - - - - 

Optimized DenseNet121 

1 92 752 512 0 128 0 

2 92 752 512 0 128 0 

3 95 812 640 0 128 0 

4 97 789 896 30 512 20 

Although Experiment 2 with 300×400 resolution and the 

Adam optimizer produced slightly higher accuracy (96%), 

Experiment 8 was preferred for its superior balance between 

performance, reduced training time, and efficient use of 

dataset size. The performance and time efficiency achieved in 

Experiment 8 suggest that it is the most suitable configuration 

for real-world applications, where both model effectiveness 

and computational resources are important considerations. 

In conclusion, Experiment 8 proved to be the most optimal 

configuration, providing 95% accuracy while significantly 

reducing training time to 789 seconds. This configuration not 

only leveraged a reduced dataset size but also optimized the 

balance between performance and training efficiency, making 

it the best configuration for the task at hand. Table 2 displays 

the chromosomes exhibiting optimal performance in each 

generation of the CNN. 

4.3 Hyperparameter optimization using a genetic 

algorithm 

To evaluate the effectiveness of the GA in optimizing the 

DenseNet121 model, several generations of chromosome 

configurations were assessed. The baseline model, referred to 

as the "Original DenseNet121," utilized a fixed FC layer 

configuration with default settings and achieved an accuracy 

of 94% on the test set, with a training time of 3099 seconds. 

This served as the reference point for further comparative 

analysis. 

The optimization phase using GA was conducted across 

four generations, with each chromosome representing a 

distinct configuration of hyperparameters-specifically, the 

number of neurons and dropout rates in two fully connected 

layers. The GA was designed to identify configurations that 

balance classification accuracy and training efficiency. 

In Generation 1 and Generation 2, identical chromosome 

configurations (Layer 1: 512 neurons, 0% dropout; Layer 2: 

128 neurons, 0% dropout) were evaluated, both yielding 92% 

accuracy and a significantly reduced training time of 752 

seconds per chromosome. These configurations already 

showcased the potential of GA in reducing computational time 

while maintaining competitive accuracy. 

Generation 3 presented a configuration with increased 

neurons in Layer 1 (640 neurons) while keeping Layer 2 

unchanged. This modification resulted in a 95% accuracy and 

a slight increase in training time to 812 seconds, indicating a 

performance gain without a substantial computational cost. 

The most effective configuration emerged in Generation 4, 

which demonstrated the highest classification accuracy of 

97%-a 3% improvement over the original model. This 

configuration involved a deeper and more regularized 

network: 896 neurons with 30% dropout in Layer 1 and 512 

neurons with 20% dropout in Layer 2. The associated training 

time was 789 seconds, substantially lower than that of the 

baseline model. This outcome illustrates that strategic tuning 

of FC layers using GA not only enhances model performance 

but also significantly reduces training time. 

These findings highlight the efficacy of combining 

evolutionary algorithms like GA with deep learning models 

for hyperparameter optimization. The approach successfully 

discovered a configuration that surpassed the performance of 

the original architecture, both in terms of accuracy and 

efficiency. The optimized model demonstrates strong potential 

for deployment in real-world waste classification scenarios, 

where high performance and limited computational resources 

are often critical factors. 

The performance of the optimized DenseNet121 model, 

configured using the genetic algorithm, is further validated 

through the confusion matrix presented in Figure 3. This 

matrix illustrates the classification outcomes across seven 

waste categories: Cardboard, Compost, Glass, Metal, Paper, 

Plastic, and Trash. The model demonstrates high classification 

accuracy across all classes, with accuracy values ranging from 

95% to 99%. Specifically, the Cardboard and Compost classes 

achieved the highest accuracy of 99%, with only one 

misclassified instance in each class. Similarly, the Metal class 

reached 98% accuracy, indicating reliable performance with 

very few errors. The Paper and Plastic classes attained 97% 

and 96% accuracy, respectively, with a small number of 

instances misclassified as other categories. Although the Glass 

class showed a slightly lower accuracy of 95%, most of the 

misclassifications were concentrated in visually similar 

categories, such as Plastic and Metal. The Trash class, which 

typically poses greater classification challenges due to its 

diverse visual features, still achieved a commendable 96% 

accuracy. 

The overall distribution in the confusion matrix reveals that 

the optimized model effectively distinguishes between waste 

classes, even in the presence of inter-class visual similarities. 

The few misclassifications observed are within a reasonable 

range and suggest a robust model performance. These results 

confirm that the best-performing model configuration-

consisting of 896 neurons with a 30% dropout rate in the first 

fully connected layer and 512 neurons with a 20% dropout in 

the second layer-was successful in learning discriminative 

features across all categories. The outcome also underscores 

the effectiveness of the genetic algorithm in optimizing the 

model’s hyperparameters, leading to improved accuracy and 

reduced training time. This enhanced model performance 

makes it suitable for real-world waste classification 

applications, particularly in scenarios requiring a balance 

between computational efficiency and high predictive 

accuracy. 
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Figure 3. Confusion matrix for DenseNet121 model on test set 

5. CONCLUSIONS

Waste management in Indonesia has become an 

increasingly complex challenge due to the continual rise in 

waste volume. Deep learning offers a promising avenue to 

support more efficient and scalable waste classification 

systems. This study proposed an optimized DenseNet121 

architecture enhanced through a two-phase strategy: image 

preprocessing techniques and GA-based hyperparameter 

tuning. 

In the first phase, data augmentation and downsampling 

were employed not only to improve dataset diversity and 

model generalization but also to reduce the computational 

cost. By resizing images to lower resolutions and subsetting 

the dataset, training time was significantly decreased without 

a substantial loss in accuracy. Specifically, this approach 

reduced the model's training time by a factor of four—from 

3099 seconds to 789 seconds. 

In the second phase, the GA effectively identified the 

optimal configuration of the fully connected layers. The best-

performing configuration consisted of 896 neurons with a 30% 

dropout rate in the first dense layer and 512 neurons with a 

20% dropout rate in the second. This optimization led to an 

increase in classification accuracy from 94% to 97%, 

demonstrating the GA's ability to enhance model performance 

while maintaining computational efficiency. 

Future work should focus on expanding the dataset to 

include a broader range of waste types collected from diverse 

regions, which would improve the model’s generalizability. 

Moreover, deploying the optimized model on edge computing 

devices could enable real-time classification in operational 

waste management systems, further increasing practical 

applicability and environmental impact. 
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