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Quality and cost are two main criteria that must be balanced in production processes for 

many reasons, the most prominent of which are gaining customer satisfaction and 

maximizing profits. In project and product management, achieving the optimal balance 

between quality and cost is a major challenge, and this balance is called the quality-cost 

trade-off problem. This problem imposes its presence in multiple fields, and due to its 

great importance, researchers were interested in studying it in order to reach the best 

solution to this problem. In light of this, there are studies that included algorithms that 

were not free of some gaps that made their performance or results not completely 

satisfactory. Thus, it is necessary to develop new algorithms that overcome these gaps, 

and therefore it was decided in this study to present a new algorithm to solve the quality-

cost trade-off problem. The goal behind this is to achieve the optimal balance between 

quality and cost wherever they exist by using a linear programming approach. In this 

paper, firstly, the formulation of a new effective mathematical model that simulates this 

problem was presented, and secondly, the second technique for quality optimization 

(STQO) was designed. In this regard, results were impressive in terms of simulating the 

problem according to an efficient mathematical model, as well as in terms of STQO’s 

excellence in performance and results. It should be noted that among of reasons for 

efficiency of the new mathematical model is that its objective function is subject to a 

set of constraints related to all paths in the problem network graph, while the reason for 

distinction of STQO in results and performance is its logical design. In conclusion, the 

new mathematical model was characterized by generality and accuracy, and STQO was 

distinguished by the efficiency of its steps and solving the problem at any size, within 

the best possible time and effort. Likewise, what was presented in this paper provides 

decision makers with an effective methodology in performance and reaching optimal 

solutions based on experiments and tests that were conducted on real and hypothetical 

problems. 
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1. INTRODUCTION

The meaning of trade-off refers to finding a balance 

between two conflicting factors or goals, and this balance is 

considered the solution to it, and therefore it is often preferable 

to find the optimal balance. In the decision-making process 

and optimization problems, trade-offs require considering 

features and defects of different options and providing the best 

solution that suits the goal to be achieved. From another 

perspective, trade-offs are inherent in many aspects of life and 

play a critical role in making informed decisions that are 

aligned with available resources and priorities. The quality-

cost trade-off problem is one of the most important and 

prominent problems that are sought to be solved in project 

management and production processes. One of benefits of 

searching for its best solutions is that it contributes to 

maximizing profits and revenues in areas in which they arise. 

In fact, when the word “quality” is associated with a particular 

project it means that project complies with specific standards 

and characteristics upon completion that affect its ability to 

meet specific needs. Thus, quality is one of the main factors 

that lead to project success and product excellence. The quality 

of the project (or product) can be subject to optimization 

process by providing resources required to carry out this 

process. On the other hand, providing these resources requires 

additional costs other than the total cost specified for 

completing the project before optimizing its quality. Hence, 

the quality-cost trade-off problem is created, which is 

concerned with raising the quality of the project in exchange 

for the lowest additional costs to complete this process. 

Accordingly, quality optimization should be planned at the 

project design stage [1]. This paper focused on studying the 

quality-cost trade-off problem in order to design an algorithm 

that is efficient in its work and gives the best basic feasible 

solution to this problem. Where this problem is extremely 

important wherever it exists because it prevents the waste of 

money allocated to optimizing the quality of the product or 

project, it is an important means to provide money [2]. 

Therefore, the quality-cost trade-off problem is considered one 

of optimization problems for which a mathematical model can 
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be formulated, as this was one of reasons that led to the interest 

in studying it [3]. Other researchers have also presented 

multiple papers on this problem and problems related to it in 

order to identify the most important obstacles it faces [4-7]. 

The quality-cost trade-off problem, some network 

optimization problems, and reliability were studied. 

References [8, 9] focused on linear and non-linear problems, 

mathematical models, and the time-cost trade-off problem. 

After conducting an extensive review of previous relevant 

literary studies [10, 11], an intellectual background was built 

on the problem, and the most important strengths and 

weaknesses of those studies were also identified. It is worth 

noting that the most prominent questions within the 

framework of the problem addressed by this study are: Can a 

linear programming approach be used to solve the quality-cost 

trade-off problem? Is it possible to obtain the solution of this 

problem by using a computer program in order to reduce 

computational time and effort? The purpose of this study is to 

formulate a new mathematical model for the quality-cost 

trade-off problem, which is characterized by efficiency and 

generality and is used to solve this problem [12]. The linear 

programming approach is an approach used to solve linear 

problems that have their own mathematical model. There are 

many life problems that are classified as linear programming 

problems, and their solutions can be obtained by using the 

simplex method. The word “program” here indicates the 

existence of a mathematical model of the problem that has 

been formulated to find plans and timetables that help solve 

the problem. A mathematical model is an abstract description 

of a concrete problem by using concepts and language of 

mathematical in order to be controlled or optimized. In 

optimization models, variables and a set of equations are used 

that define relationships between variables [13]. The process 

of developing a mathematical model is called mathematical 

modeling. Mathematical models are used in applied 

mathematics, in the natural sciences and engineering 

disciplines, as well as in non-physical disciplines such as the 

social sciences. As long as “the project” and “production 

processes” are mentioned in this paper, it must be pointed out 

that what is meant by them is any area of life that needs to be 

planned in order to develop the best plan to improve quality in 

exchange for the least additional costs [14].  

The study presented in this paper was concerned with 

developing a new technique to solve the quality-cost trade-off 

problem, which is the second technique for quality 

optimization (STQO). The basis of STQO's work is depends 

on the new mathematical model that was formulated for the 

quality-cost trade-off problem in this paper as well [15]. The 

reason for this is that STQO uses a linear programming 

approach to solve this problem, which imposes a linear 

relationship between quality and cost. The new mathematical 

model of the problem was formulated after studying its finest 

details and by defining decision variables and determining the 

goal of the problem to be achieved along with constraints to 

which the desired goal must be subject [16, 17]. Then, the 

testing process for this new model was conducted by using it 

to solve many practical examples related to the quality-cost 

trade-off problem. In this regard, the simplex method was used 

through the “Solver” tool in the Microsoft Excel program to 

solve these examples after expressing them in the new 

mathematical model. Based on the above, results were 

impressive in their effectiveness and superiority in terms of 

numerical value, computational time and effort expended. The 

importance of the study included in this paper is evident after 

the formulation of the new mathematical model through its 

ease of use to express any practical problem related to the 

quality-cost trade-off problem, as well as its generality, 

accuracy and efficiency in solving that problem [18. 19]. In 

addition, there is another importance of this study, which is 

provision a lot of time and effort related to the solution 

procedures and the accuracy of results by using the “Solver” 

tool in Microsoft Excel to solve the quality-cost trade-off 

problem of any size [20, 21]. One of reasons that led to 

obtaining these fruitful results was the correct formulation of 

the effective mathematical model that simulated all important 

aspects of that problem. Furthermore, there is another reason 

that lies in taking advantage of some of characteristics of the 

problem network graph, through which a set of the most 

important constraints of the new mathematical model to which 

the objective function is subject was formulated. Before 

concluding, this paper contributes to the literature in several 

aspects, the most prominent of which is how to take advantage 

of properties of the problem network graph to formulate 

mathematical models and optimization processes. In the end, 

it should be noted that this paper is characterized by originality, 

and it was not found that it was presented by other researchers 

within the scope of the research that was conducted and 

previous literary studies related to the problem of the study.  

 

 

2. NEW MATHEMATICAL MODEL  
 

In life in general mathematics is applied on real problems to 

clarify their structure and to make them amenable to formal 

manipulation. Therefore, the problem must first be formulated 

in mathematical relationships, and this is called mathematical 

modeling. Mathematical modeling is an art that describes real 

problems in mathematical concepts through what is called a 

model. The aim of this is to be able to use mathematical tools 

that help solve and control these problems. There is no doubt 

that the increasing importance of mathematical modeling in 

solving many problems has made it the focus of attention in 

modern studies. In fact, the mathematical model is not an 

integrated copy of the real world, but rather it is always a 

simplification that simulates reality, which helps in revealing 

and controlling the main features of real problems.  

 

2.1 Problem description 

 

The quality-cost trade-off problem is of great importance in 

many areas of life, most notably the management of projects, 

products, and manufacturing industries. This problem arises 

when the goal is to reduce additional costs allocated to 

resources through which the quality of the project or product 

is maximized to the desired level [1]. It is known that these 

projects and products have many success criteria, the most 

important of which are quality, cost and time, due to their 

significant impact on results. Although delay in completing the 

project may lead to a fine, which means more cost, on the other 

hand, the quality standard is considered the final key that 

confirms the success of the project. Accordingly, in this paper, 

the quality and cost criteria were studied to complete the 

project or product as best as possible in terms of the process of 

optimizing its quality in exchange for reducing the additional 

costs of this process. It is worth noting that each project is a 

combination of different events linked together by activities 

that are responsible for accomplishment those events, and that 

project is completed when all its events are accomplished. This 
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leads to the possibility of converting the network of any 

project into a graph for the purpose of controlling these 

projects by taking advantage of features and characteristics 

that graphs possess. The role of the project network graph in 

this study is highlighted by formulating an important set of 

constraints to which the objective function is subject in the 

new mathematical model formulated after this subsection.  

 

2.2 Assumptions of the new mathematical model 

 

Before presenting the new general mathematical model for 

the quality-cost trade-offs problem in the subsequent 

subsection, it is necessary to point out the basic assumptions 

on which that mathematical model is based. Consequently, this 

subsection will address that task by adopting assumptions as 

follows:  

I. Decision variables 𝑥𝑖 𝑗, which represent the amount 

of permissible increase in the quality of activities related to 

them.  

II. Each activity in the project should include the natural 

quality 𝑁𝑄𝑖 𝑗 and to what extent its quality can be optimized 

𝑂𝑄𝑖 𝑗.  

III. Each activity in the project should include natural 

quality costs 𝑁𝐶𝑖 𝑗 along with additional costs for the process 

of optimizing its quality through the optimization cost 𝑂𝐶𝑖 𝑗 

for that activity.  

IV. For each activity whose quality can be optimized, the 

cost for optimizing quality 𝑂𝐶𝑖 𝑗 is larger than the normal cost 

𝑁𝐶𝑖 𝑗.  

V. Calculating the value of 𝑆𝑖 𝑗  is through Eq. (1).  

VI. Calculating the value of ∆𝑄𝑖 𝑗 is through Eq. (3). 

VII. The number of activities 𝑛 in the current path.  

VIII. The required quality rate 𝑅𝑄𝑅  after project 

completion.  

IX. The graph 𝐺 of the project network.  

 

2.3 Formulation of the new mathematical model 

 

Most problems in life contain a general mathematical model 

through which the optimal solution to these problems can be 

found by using a linear programming approach. The 

mathematical model consists of three main parts: decision 

variables, the objective function, and constraints if the 

problem is constrained. Specifically, decision variables 

represent the unknowns in the model whose values must be 

found. The objective function consists of decision variables 

and parameters and usually takes the maximum or minimum 

value. While constraints are a set of equations or inequalities 

around decision variables, noting that in linear programming 

problems the objective function and its constraints are linear. 

Thus the solution to the linear programming problem is to find 

a solution to a system of linear formulas that fulfills constraints 

so that the objective function reaches its best value in the case 

of maximization or minimization. Now, the most important 

symbols that constitute the new mathematical model will be 

defined, which represent abbreviations for important terms, 

indicators, decision variables, and parameters. All of these are 

considered the basics on which this mathematical model of the 

problem is based.  

𝐺(𝑉, 𝐸): The project network graph.  

𝑉: The set of vertices (events) in the project network graph 

𝐺 with cardinality |𝑉| = 𝑘 ∈ ℕ.  

𝐸: The set of edges (activities) in the project network graph 

𝐺 with cardinality |𝐸| = 𝑙 ∈ ℕ.  

𝑃𝑠: The set of all paths that form the graph 𝐺 of the project 

network, where each path in this set starts from the initial 

vertex (initial event) and ends at the final vertex (final event).  

𝑓(𝑥): The objective function.  

𝑖:  The predecessor vertex (predecessor event) of edge 

(activity) 𝑒𝑖 𝑗 ∈ 𝐸 in the project network graph 𝐺.  

𝑗: The successor vertex (successor event) of edge (activity) 

𝑒𝑖 𝑗 ∈ 𝐸 in the project network graph 𝐺. 

𝑥𝑖 𝑗:  Decision variables that represent the percentage of 

quality that is allowed to be added to activity 𝑒𝑖 𝑗.  

𝑆𝑖 𝑗: The quality optimization cost slope per unit at each 

activity 𝑒𝑖 𝑗 in the project, where, 

 

𝑆𝑖 𝑗 =
 ∆𝐶 𝑖 𝑗  

 ∆𝑄 𝑖 𝑗  
 (1) 

 

∆𝐶𝑖 𝑗 = 𝑂𝐶𝑖 𝑗 − 𝑁𝐶𝑖 𝑗 (2) 

 

∆𝑄𝑖 𝑗 = 𝑂𝑄𝑖 𝑗 − 𝑁𝑄𝑖 𝑗 (3) 

 

𝑁𝐶𝑖 𝑗: The normal cost of completing the activity 𝑒𝑖 𝑗.   

𝑂𝐶𝑖 𝑗: The optimization cost of completing the activity 𝑒𝑖 𝑗.  

𝑁𝑄𝑖 𝑗:  The natural quality of the activity 𝑒𝑖 𝑗  after its 

completion.   

𝑂𝑄𝑖 𝑗:  The optimal quality of the activity 𝑒𝑖 𝑗  after its 

completion.  

∆𝐶𝑖 𝑗: The amount of change in cost.  

∆𝑄𝑖 𝑗: The amount of change in quality.  

𝑛: Number of activities in the current path.  

𝑅𝑄𝑅: The required quality rate after project completion. 

Accordingly, the general formula of the new mathematical 

model that simulates the quality-cost trade-off problem 

appears in the following model:  

Objective function  

 

𝑚𝑖𝑛 𝑓(𝑥)  = ∑ ∑ 𝑆𝑖 𝑗𝑥𝑖 𝑗

𝑘

𝑗=2 

𝑘−1

𝑖=1
, ∀𝑖, 𝑗 and 𝑖 ≠ 𝑗 (4) 

 

Subject to 

 

𝑥𝑖 𝑗 ≤ ∆𝑄𝑖 𝑗 , ∀𝑖, 𝑗 and 𝑖 ≠ 𝑗 (5) 

 
∑ (𝑁𝑄𝑖 𝑗+𝑥𝑖 𝑗)∀𝑖,𝑗 in the current path 

 𝑛 
≥ 𝑅𝑄𝑅  

For all paths in 𝑃𝑠 
(6) 

 

𝑥𝑖 𝑗 ≥ 0, ∀𝑖, 𝑗 and 𝑖 ≠ 𝑗  

where 𝑖 = 1,2, … , 𝑘 − 1 but 𝑗 = 2,3, … , 𝑘 
(7) 

 

After presenting the new mathematical model above, all 

formulas appearing in it are now explaining. It is known that 

in all mathematical models the most important formula is the 

objective function because through it the desired goal of the 

problem is achieved. Here, the objective function appears in 

the Eq. (4), which is of the minimization type because what is 

required is to reduce additional costs allocated to the quality 

optimization process. This is followed by constraints to which 

the objective function is subject, which are from Eq. (5) to Eq. 

(7). Eq. (5) is a generalization of the set of constraints for the 

permissible amount of increase in quality for each activity in 
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the project after optimizing its quality. While Eq. (6) also 

represents a generalization, but here it concerns the set of 

constraints of all paths that form the project network graph. 

Finally, Eq. (7) is specific to the non-negativity constraint of 

decision variables values. It is worth noting that the role of 

constraints in Eq. (5) lies in determining the range of possible 

values for each of decision variables through which the best 

basic feasible solution is found. While the role of constraints 

in Eq. (6) is highlighted in making the overall quality of each 

path in that graph no less than the overall quality required by 

the project management after the optimization process.  

 

 

3. METHODOLOGY  
 

In this paper STQO is presented which involves using a 

linear programming approach to solve the quality-cost trade-

off problem. Based on this, the general formulation of the new 

mathematical model for this problem was formulated as 

contained in the previous section. It is worth noting that this 

model contains some basic data related to the problem to be 

solved. On the other hand, this study included using the 

“Solver” tool in the Microsoft Excel program to solve the 

problem in question after writing it according to the new 

mathematical model in order to reduce the effort and 

computational time, as well as creating the report regarding the 

final solution. Moreover, this model can also be solved by 

using other programming languages, such as MATLAB or 

LINDO, but the “Solver” tool was chosen in this study because 

of its efficiency and ease of use.  

 

3.1 About STQO 

 

STQO is the abbreviation for the second technique for 

quality optimization that was created after the design of the 

first technique for quality optimization (FTQO). STQO was 

designed to find the optimal balance for the process of raising 

the overall quality of projects or products to the required level 

in exchange for the least additional costs that allocate 

resources used for this process. In this regard, the work of this 

technique depends mainly on the new mathematical model for 

the quality-cost trade-off problem that was presented above. 

Based on the distinguished and comprehensive formulation of 

the new mathematical model, which simulates the problem as 

best as possible, it played a fundamental role in making STQO 

highly efficient in its performance and superior in its results. 

In addition, the STQO steps were distinguished by their 

consistency and the use of a linear programming approach to 

solve the quality-cost trade-off problem, specifically the 

simplex method. Therefore, STQO is considered an iterative 

method whose stopping condition depends on the simplex 

method's stopping condition. On the other hand, when using 

STQO it does not require a lot of effort and time, and the 

reason lies in the use of the “Solver” tool in the Microsoft 

Excel program. Among the most important issues that should 

be noted are assumptions on which STQO is based, which are 

as follows:  

I. For each activity 𝑒𝑖 𝑗 in the project, the relationship 

between its quality and cost is linear before and after the 

optimization process.  

II. Formulate the mathematical model of the problem.  

III. The “Solver” tool in the Microsoft Excel program.  

 

 

3.2 STQO algorithm 

 

In this section it will be shown how STQO is used to solve 

the quality-cost trade-off problem by mentioning its steps in 

detail with inputs and outputs of this technique as follows. 

Moreover, a flowchart was created showing the STQO steps 

as shown in Figure 1.  

 

 
 

Figure 1. Flowchart of STQO algorithm 

 

STQO Algorithm 

Inputs:  

➢ All activities must be holding quality and cost values 

when working in normal situation, as well as when 

working with project quality optimization.  

➢ Connected, directed and weighted graph 𝐺  of the 

project network.  

Phase 1. The theoretical phase, during which the 

mathematical model of the problem is built. 

Step 1) Calculate the value of the quality optimization cost 

slope 𝑆𝑖 𝑗 per unit at each activity 𝑒𝑖 𝑗 in the project by 

using the formula (1), and then record this step results 

in a new table.  

Step 2) Plot all paths in 𝑃𝑠  which form graph 𝐺  of the 

project network. 

Step 3) Building the mathematical model of the problem 

according to formulas from (4) to (7).  
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Phase 2. The practical phase, during which the “Solver” 

tool in the Microsoft Excel program is used to 

solve the problem.  

Step 4) Correct entry of all data of the mathematical model 

of the problem into the Microsoft Excel program.  

Step 5) Use the “Solver” tool on the “Data” tab in the main 

interface of Microsoft Excel program.  

Step 6) After entering all the required data in the “Solver 

Parameters” pop-up window, select “Simplex LP” as 

the solving method, and finally click on “Solver” at the 

bottom of this window.  

Outputs:  

➢ The required percentage for the overall quality of the 

project after optimization.  

➢ The total amount of additional costs in order to 

optimize the project quality. 

 
 

4. PRACTICAL APPLICATION  

 

It is known that all algorithms that are designed to solve 

specific problems are tested for their efficiency by using them 

to solve many issues related to the problem for which they 

were designed and then observing results and this is called 

practical application. In light of this, a hypothetical issue is 

presented in the following example, among many issues of the 

quality-cost trade-off problem that were solved by using 

STQO. The aim of this is to clarify how to simulate this issue 

according to the new mathematical model, as well as to 

demonstrate the STQO procedures in practice and the extent 

of their efficiency and accuracy of their results.  

Example: A project proceeds according to specific plans to 

accomplish it in the best possible way, as shown in the graph 

of its network in Figure 2. According to those plans, the project 

is accomplished through the completion of its activities that 

lead to the completion of all its events. Accordingly, Table 1 

includes the cost and the quality percentage for each activity 

carried out in the project when working in the normal situation 

and when working in the quality maximization situation. In 

this regard, the project management seeks to optimizing the 

overall quality of the project after its completion by making it 

to be at least 94% in exchange for the least additional costs 

allocated to resources through which the quality optimization 

process is carried out.  

Solution: It is known that the basis of the work of all 

algorithms depends on their inputs to obtain their outputs, and 

in this regard the STQO inputs of this problem must first be 

defined. It is clear that all the project data required by inputs 

have been mentioned in Table 1. While the project network 

graph has been given in this example as shown in Figure 2 

which includes 13 vertices (events) and 18 edges (activity). 

Now STQO will start working from the step 1 in the phase 1 

until obtaining outputs after implementing step 6 in the phase 

2 of this algorithm. The step 1 is to calculate the value of the 

quality optimization cost slope 𝑆𝑖 𝑗 for each unit in all project 

activities, which is stated in Table 2 in order to write the 

objective function according to formula (4).  

After that, based on the project network graph, all paths in 

𝑃𝑠 that form that graph will be drawn below, which begin with 

the initial vertex numbered ❶ and end with the final vertex 

numbered ⓭, in order to write the set of constraints for all 

those paths according to formula (6).  

 

 
 

Figure 2. The graph 𝐺 of the project network in the above example 

 

              Path 1: ❶─A➝❷─B➝❸─S➝❻─J➝❽─M➝❿─P➝⓫─W➝⓭ 

 Path 2: ❶─A➝❷─B➝❸─S➝❻─K➝❾─N➝⓫─W➝⓭ 

Path 3: ❶─A➝❷─B➝❸─S➝❻─K➝❾─O➝⓬─R➝⓭ 

              Path 4: ❶─A➝❷─C➝❹─F➝❻─J➝❽─M➝❿─P➝⓫─W➝⓭ 

 Path 5: ❶─A➝❷─C➝❹─F➝❻─K➝❾─N➝⓫─W➝⓭ 

Path 6: ❶─A➝❷─C➝❹─F➝❻─K➝❾─O➝⓬─R➝⓭ 

                              Path 7: ❶─A➝❷─C➝❹─T➝❼─U➝❺─H➝❽─M➝❿─P➝⓫─W➝⓭ 

                                           Path 8: ❶─A➝❷─C➝❹─T➝❼─L➝❾─K➝❻─J➝❽─M➝❿─P➝⓫─W➝⓭ 

Path 9: ❶─A➝❷─C➝❹─T➝❼─L➝❾─N➝⓫─W➝⓭ 

 Path 10: ❶─A➝❷─C➝❹─T➝❼─L➝❾─O➝⓬─R➝⓭ 

   Path 11: ❶─A➝❷─D➝❺─H➝❽─M➝❿─P➝⓫─W➝⓭ 

                                             Path 12: ❶─A➝❷─D➝❺─U➝❼─L➝❾─K➝❻─J➝❽─M➝❿─P➝⓫─W➝⓭ 

   Path 13: ❶─A➝❷─D➝❺─U➝❼─L➝❾─N➝⓫─W➝⓭ 

  Path 14: ❶─A➝❷─D➝❺─U➝❼─L➝❾─O➝⓬─R➝⓭
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Table 1. Project network data 

 

Activities 

Normal Optimize 

Quality (Percent) Cost (€) Quality (Percent) Cost (€) 

❶─A➝❷ 96 9160 100 9800 

❷─B➝❸ 89 7840 100 9600 

❷─C➝❹ 91 8328 100 9750 

❷─D➝❺ 91 8223 100 9600 

❸─S➝❻ 97 8905 100 9400 

❹─F➝❻ 90 7750 100 9300 

❹─T➝❼ 98 9380 100 9700 

❺─U─❼ 94 8656 100 9640 

❺─H➝❽ 100 8800 100 8800 

❻─J➝❽ 95 8570 100 9400 

❻─K─❾ 85 7050 100 9300 

❼─L➝❾ 96 8460 100 9100 

❽─M➝❿ 93 7815 100 8900 

❾─N➝⓫ 92 7880 100 9200 

❾─O➝⓬ 97 9035 100 9500 

❿─P➝⓫ 100 8800 100 8800 

⓫─W➝⓭ 85 7620 100 9900 

⓬─R➝⓭ 90 8230 100 9800 

 

Table 2. The quality optimization cost slope per unit at all activities 

 

Activities 

Normal Optimization ∆ 
𝑺𝒊 𝒋 

(€) 
Quality 

(Percent) 

Cost 

(€) 

Quality 

(Percent) 

Cost 

(€) 

∆𝑸𝒊 𝒋 

(Percent) 

∆𝑪𝒊 𝒋 

(€) 

❶─A➝❷ 96 9160 100 9800 4 640 160 

❷─B➝❸ 89 7840 100 9600 11 1760 160 

❷─C➝❹ 91 8328 100 9750 9 1422 158 

❷─D➝❺ 91 8223 100 9600 9 1377 153 

❸─S➝❻ 97 8905 100 9400 3 495 165 

❹─F➝❻ 90 7750 100 9300 10 1550 155 

❹─T➝❼ 98 9380 100 9700 2 320 160 

❺─U─❼ 94 8656 100 9640 6 984 164 

❺─H➝❽ 100 8800 100 8800 0 0 - 

❻─J➝❽ 95 8570 100 9400 5 830 166 

❻─K─❾ 85 7050 100 9300 15 2250 150 

❼─L➝❾ 96 8460 100 9100 4 640 160 

❽─M➝❿ 93 7815 100 8900 7 1085 155 

❾─N➝⓫ 92 7880 100 9200 8 1320 165 

❾─O➝⓬ 97 9035 100 9500 3 465 155 

❿─P➝⓫ 100 8800 100 8800 0 0 - 

⓫─W➝⓭ 85 7620 100 9900 15 2280 152 

⓬─R➝⓭ 90 8230 100 9800 10 1570 157 

Thus, the mathematical model of the problem mentioned in 

this example can be built according to formulas from (4) to (7) 

after defining decision variables with the following hypothesis. 

Assume that:  

𝑥1 2 is the amount of increase when optimizing the quality 

of activity A.  

𝑥2 3 is the amount of increase when optimizing the quality 

of activity B.  

𝑥2 4 is the amount of increase when optimizing the quality 

of activity C.  

𝑥2 5 is the amount of increase when optimizing the quality 

of activity D.  

𝑥3 6 is the amount of increase when optimizing the quality 

of activity S.  

𝑥4 6 is the amount of increase when optimizing the quality 

of activity F.  

𝑥4 7 is the amount of increase when optimizing the quality 

of activity T.  

𝑥5 7 is the amount of increase when optimizing the quality 

of activity U.  
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𝑥5 8 is the amount of increase when optimizing the quality 

of activity H.  

𝑥6 8 is the amount of increase when optimizing the quality 

of activity J.  

𝑥6 9 is the amount of increase when optimizing the quality 

of activity K.  

𝑥7 9 is the amount of increase when optimizing the quality 

of activity L.  

𝑥8 10 is the amount of increase when optimizing the quality 

of activity M.  

𝑥9 11 is the amount of increase when optimizing the quality 

of activity N.  

𝑥9 12 is the amount of increase when optimizing the quality 

of activity O.  

𝑥10 11 is the amount of increase when optimizing the quality 

of activity P.  

𝑥11 13 is the amount of increase when optimizing the quality 

of activity W.  

𝑥12 13 is the amount of increase when optimizing the quality 

of activity R.  

Objective function  
 

𝑚𝑖𝑛 𝑓(𝑥)  = 160𝑥1 2 + 160𝑥2 3 + 158𝑥2 4 + 153𝑥2 5

+ 165𝑥3 6 + 155𝑥4 6 + 160𝑥4 7 + 164𝑥5 7

+ 166𝑥6 8 + 150𝑥6 9 + 160𝑥7 9

+ 155𝑥8 10 + 165𝑥9 11 + 155𝑥9 12

+ 152𝑥11 13 + 157𝑥12 13 
 

Subject to  

Constraints of increasing quality for each activity:  

 

𝑥1 2 ≤ 4%, 𝑥2 3 ≤ 11%, 𝑥2 4 ≤ 9%, 𝑥2 5 ≤ 9%, 𝑥3 6 ≤ 3% 

𝑥4 6 ≤ 10%, 𝑥4 7 ≤ 2%, 𝑥5 7 ≤ 6%, 𝑥5 8 = 0%, 𝑥6 8 ≤ 5% 

𝑥6 9 ≤ 15%, 𝑥7 9 ≤ 4%, 𝑥8 10 ≤ 7%, 𝑥9 11 ≤ 8%, 𝑥9 12 ≤ 3% 

𝑥10 11 = 0%, 𝑥11 13 ≤ 15%, 𝑥12 13 ≤ 10% 

 

Constraints of graph paths:  

 

 
96% + 𝑥1 2 + 89% + 𝑥2 3 + 97% + 𝑥3 6 + 95% + 𝑥6 8 + 93% + 𝑥8 10 + 100% + 𝑥10 11 + 85% + 𝑥11 13 

7
≥ 94% 

⟹  𝑥1 2 + 𝑥2 3 + 𝑥3 6 + 𝑥6 8 + 𝑥8 10 + 𝑥10 11 + 𝑥11 13 ≥ 3% 

 
 96% + 𝑥1 2 + 89% + 𝑥2 3 + 97% + 𝑥3 6 + 85% + 𝑥6 9 + 92% + 𝑥9 11 + 85% + 𝑥11 13 

 6 
≥ 94% 

⟹  𝑥1 2 + 𝑥2 3 + 𝑥3 6 + 𝑥6 9 + 𝑥9 11 + 𝑥11 13 ≥ 20% 

 
 96% + 𝑥1 2 + 89% + 𝑥2 3 + 97% + 𝑥3 6 + 85% + 𝑥6 9 + 97% + 𝑥9 12 + 90% + 𝑥12 13 

 6 
≥ 94% 

⟹  𝑥1 2 + 𝑥2 3 + 𝑥3 6 + 𝑥6 9 + 𝑥9 12 + 𝑥12 13 ≥ 10% 
 96% + 𝑥1 2 + 91% + 𝑥2 4 + 90% + 𝑥4 6 + 95% + 𝑥6 8 + 93% + 𝑥8 10 + 100% + 𝑥10 11 + 85% + 𝑥11 13 

 7 
≥ 94% 

⟹  𝑥1 2 + 𝑥2 4 + 𝑥4 6 + 𝑥6 8 + 𝑥8 10 + 𝑥10 11 + 𝑥11 13 ≥ 8% 

 
 96% + 𝑥1 2 + 91% + 𝑥2 4 + 90% + 𝑥4 6 + 85% + 𝑥6 9 + 92% + 𝑥9 11 + 85% + 𝑥11 13 

 6 
≥ 94% 

⟹  𝑥1 2 + 𝑥2 4 + 𝑥4 6 + 𝑥6 9 + 𝑥9 11 + 𝑥11 13 ≥ 25% 

 
 96% + 𝑥1 2 + 91% + 𝑥2 4 + 90% + 𝑥4 6 + 85% + 𝑥6 9 + 97% + 𝑥9 12 + 90% + 𝑥12 13 

 6 
≥ 94% 

⟹  𝑥1 2 + 𝑥2 4 + 𝑥4 6 + 𝑥6 9 + 𝑥9 12 + 𝑥12 13 ≥ 15% 

 
 96% + 𝑥1 2 + 91% + 𝑥2 4 + 98% + 𝑥4 7 + 94% + 𝑥7 5 + 100% + 𝑥5 8 + 93% + 𝑥8 10 + 100% + 𝑥10 11 + 85% + 𝑥11 13 

 8 
≥ 94% ⟹  𝑥1 2 + 𝑥2 4 + 𝑥4 7 + 𝑥7 5 + 𝑥5 8 + 𝑥8 10 + 𝑥10 11 + 𝑥11 13 ≥ ⎻5% 

 
 96% + 𝑥1 2 + 91% + 𝑥2 4 + 98% + 𝑥4 7 + 96% + 𝑥7 9 + 85% + 𝑥9 6 + 95% + 𝑥6 8 + 93% + 𝑥8 10 + 100% + 𝑥10 11 + 85% + 𝑥11 13 

 9 
≥ 94% ⟹  𝑥1 2 + 𝑥2 4 + 𝑥4 7 + 𝑥7 9 + 𝑥9 6 + 𝑥6 8 + 𝑥8 10 + 𝑥10 11 + 𝑥11 13 ≥ 7% 

 
 96% + 𝑥1 2 + 91% + 𝑥2 4 + 98% + 𝑥4 7 + 96% + 𝑥7 9 + 92% + 𝑥9 11 + 85% + 𝑥11 13 

 6 
≥ 94% 

⟹  𝑥1 2 + 𝑥2 4 + 𝑥4 7 + 𝑥7 9 + 𝑥9 11 + 𝑥11 13 ≥ 6% 

 
 96% + 𝑥1 2 + 91% + 𝑥2 4 + 98% + 𝑥4 7 + 96% + 𝑥7 9 + 97% + 𝑥9 12 + 90% + 𝑥12 13 

 6 
≥ 94% 

⟹  𝑥1 2 + 𝑥2 4 + 𝑥4 7 + 𝑥7 9 + 𝑥9 12 + 𝑥12 13 ≥ ⎻4% 

 
 96% + 𝑥1 2 + 91% + 𝑥2 5 + 100% + 𝑥5 8 + 93% + 𝑥8 10 + 100% + 𝑥10 11 + 85% + 𝑥11 13 

 6 
≥ 94% 

⟹  𝑥1 2 + 𝑥2 5 + 𝑥5 8 + 𝑥8 10 + 𝑥10 11 + 𝑥11 13 ≥ ⎻1% 
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96% + 𝑥1 2 + 91% + 𝑥2 5 + 94% + 𝑥5 7 + 96% + 𝑥7 9 + 85% + 𝑥9 6 + 95% + 𝑥6 8 + 93% + 𝑥8 10 + 100% + 𝑥10 11 + 85% + 𝑥11 13

 9 
≥ 94% ⟹  𝑥1 2 + 𝑥2 5 + 𝑥5 7 + 𝑥7 9 + 𝑥9 6 + 𝑥6 8 + 𝑥8 10 + 𝑥10 11 + 𝑥11 13 ≥ 11% 

 
 96% + 𝑥1 2 + 91% + 𝑥2 5 + 94% + 𝑥5 7 + 96% + 𝑥7 9 + 92% + 𝑥9 11 + 85% + 𝑥11 13 

 6 
≥ 94% 

⟹  𝑥1 2 + 𝑥2 5 + 𝑥5 7 + 𝑥7 9 + 𝑥9 11 + 𝑥11 13 ≥ 10% 

 
 96% + 𝑥1 2 + 91% + 𝑥2 5 + 94% + 𝑥5 7 + 96% + 𝑥7 9 + 97% + 𝑥9 12 + 90% + 𝑥12 13 

 6 
≥ 94% 

⟹  𝑥1 2 + 𝑥2 5 + 𝑥5 7 + 𝑥7 9 + 𝑥9 12 + 𝑥12 13 ≥ 0% 

 

Constraints of non-negativity.  

𝑥𝑖 𝑗 ≥ 0, ∀𝑖, 𝑗 and 𝑖 ≠ 𝑗 where 𝑖 = 1,2, … ,12 but 𝑗 = 2,

3, … , 13. 

Based on the above, the phase 1 of the STQO algorithm 

work ended after the completion of building the above 

mathematical model. After that, the phase 2 of the STQO 

algorithm started working and its implementation in the 

Microsoft Excel program for the purpose of using the “Solver” 

tool. In order to clarify some of happenings of this phase, 

Table 3 was presented, which included writing the 

mathematical model for this problem in the Microsoft Excel 

program and the appearance of the result of the objective 

function after implementing the “Solver” tool. 

Now STQO outputs are obtained to solve the problem given 

in this example as follows.  

➢ Achieving the required percentage of the overall 

quality of the project after optimization, which is not less than 

94%. 

➢ The total amount of additional costs is 3770 € in order 

to optimize the project quality to the required level.  

 

Table 3. Mathematical model of the problem in the Microsoft Excel 

 
R.H.S. Relation Total XR XW XP XO XN XM XL XK XJ XH XU XT XF XS XD XC XB XA Variables 

                     Objective 
   157 152 0 155 165 155 160 150 166 0 164 160 155 165 153 158 160 160 Coefficients 
  3770 0 10 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 Values 
                     Constraints 

4 ≤ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Cons. (1) 

11 ≤ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 Cons. (2) 

9 ≤ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 Cons. (3) 

9 ≤ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 Cons. (4) 

3 ≤ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 Cons. (5) 

10 ≤ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 Cons. (6) 

2 ≤ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 Cons. (7) 

6 ≤ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Cons. (8) 

0 = 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Cons. (9) 

5 ≤ 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Cons. (10) 

15 ≤ 15 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 Cons. (11) 

4 ≤ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Cons. (12) 

7 ≤ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Cons. (13) 

8 ≤ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Cons. (14) 

3 ≤ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cons. (15) 

0 = 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cons. (16) 

15 ≤ 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cons. (17) 

10 ≤ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cons. (18) 

3 ≥ 10 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 Cons. (19) 

20 ≥ 25 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 Cons. (20) 

10 ≥ 15 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 Cons. (21) 

8 ≥ 10 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 Cons. (22) 

25 ≥ 25 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 Cons. (23) 

15 ≥ 15 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 Cons. (24) 

-5 ≥ 10 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 Cons. (25) 

7 ≥ 25 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 Cons. (26) 

6 ≥ 10 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 Cons. (27) 

-4 ≥ 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 Cons. (28) 

-1 ≥ 10 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 Cons. (29) 

11 ≥ 25 0 1 1 0 0 1 1 1 1 0 1 0 0 0 1 0 0 1 Cons. (30) 

10 ≥ 10 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 Cons. (31) 

0 ≥ 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 Cons. (32) 

 

 

5. RESULTS ANALYSIS  
 

This section will discuss and analyze results of the previous 

section in particular after discussing what was presented in this 

paper in general. Before starting that, it is necessary to point 

out the most important thing that was dealt with in this study 

in general, which is the formulation of the new mathematical 

model that simulates the quality-cost trade-off problem firstly, 
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and then the design of STQO to solve this problem secondly. 

Among what was discussed in this section are most prominent 

reasons that led to the distinction of this new model and the 

vantage of STQO in terms of performance and results. One of 

reasons that led to the efficiency of the new mathematical 

model presented in this paper lies in converting the project 

network into a graph. Based on this graph, all paths that form 

it are determined, starting from the first vertex (the initial event) 

and ending at the last vertex (the final event). In this regard, 

the reason for specifying all paths which form that graph is the 

lack of knowledge of working conditions on any specific path 

that necessitate the progress of the project’s completion. For 

your information, when per path of these paths is followed 

individually, the project is completed, but at varying costs 

from one path to another. Hence, the fruit of this appears 

through the formulation of the most important set of 

constraints, as shown in formula (6) above, to which the 

objective function must be subjected in that new mathematical 

model to improve the overall quality at lowest additional costs. 

After reading the STQO algorithm, it is expected that the 

reader will wonder why this algorithm was divided into two 

phases! STQO is a technique that uses a linear programming 

approach represented by the simplex method in order to solve 

the quality-cost trade-off problem. Therefore, this matter 

requires formulating the problem with a mathematical model 

firstly in order to use the simplex method secondly, which 

makes the STQO algorithm consist of a theoretical phase 

followed by a practical phase. From this principle, the role of 

the theoretical phase is highlighted through preparing the 

mathematical model for the problem in question, which 

requires focusing and looking deeply into the problem in order 

to formulate it mathematically according to the new 

mathematical model included in this study. After that, the 

second phase can be implemented, which is the practical phase 

that requires the presence of that model. The second phase is 

to work on using the “Solver” tool in the Microsoft Excel to 

obtain the final solution by using the simplex method. The 

reason for using the “Solver” tool is that it provides a lot of 

effort and time in performing calculations required by the 

simplex method, and this tool is also characterized by ease of 

use. There is no doubt that STQO’s excellence in using the 

“Solver” tool made it highly efficient in its performance, in 

addition to its choice of the simplex method for the solution, 

which enabled it to be trustworthy in terms of its numerical 

results.  

In fact, it is clear from the problem mentioned in the 

previous example that the number of decision variables in it is 

18 variables, through which the mathematical model for that 

problem is built. This number is related to the number of edges 

(activities) of the project network graph. While the number of 

constraints to which the objective function was subjected is 32 

constraints (without the non-negativity constraint), with 18 

constraints representing constraints of the permissible increase 

in quality for each activity, in addition to 14 constraints 

representing paths constraints that form the project network 

graph. It is worth noting to point out what the sign of the 

constant value of the right side in each path constraint means 

after making it in its simplest form, which starts from 

constraint (19) and ends with constraint (32). In particular, if 

the value of the right side of any of these constraints is a 

positive sign, this means that the quality of the path which has 

that constraint is less than the overall quality specified by the 

project management. Whereas if the value of this right side of 

one of constraints is a negative sign, it means that the quality 

of the path which has that constraint is greater than the overall 

quality specified previously. But if the value of that right side 

in a specific constraint is zero, this indicates that the quality of 

the path that has this specific constraint is equal to the overall 

quality required for the project. Note that what was discussed 

above is useful in guessing proceedings of action of the second 

phase of STQO algorithm. The second phase of the STQO 

algorithm was implemented to solve the problem in the 

example above by using the “Solver” tool in the Microsoft 

Excel program installed in a laptop computer manufactured by 

Acer. This laptop is from type a 3rd generation Intel® CoreTM 

i3 with a speed of 2.5GHz, and the RAM size is 4 GB DDR3 

Memory, while the hard disk size is 500 GB HDD. In general, 

one of the most important things in the performance of 

algorithms is the time it takes to solve problems for which they 

were designed. In particular, the time it took to execute the 

second phase of the STQO algorithm in solving this problem 

was 0.016 seconds on that laptop. Meanwhile, the number of 

iterations of the solution was 17 iterations by using the simplex 

method, which was used to solve this problem with the “Solver” 

tool. Furthermore, you can see the remaining details of the 

solution shown in Table 4, which represents the answer report 

after completing the implementation of the “Solver” tool in the 

Microsoft Excel program.

Table 4. The answer report after implementing the “Solver” tool 

 
Microsoft Excel 

14.0 Answer 

Report 

      

Worksheet: 

[Solver 

Application to 

Solve Example 2 - 

للإطروحة 

5والبحث .xlsx] 1ورقة  

      

Result: Solver 

found a solution. 

All Constraints 

and optimality 

conditions are 

satisfied. 

      

Solver Engine       

 Engine: Simplex LP      

 Solution Time: 0.016 Seconds.      

 Iterations: 17 Subproblems: 0      
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Solver Options       

 Max Time Unlimited, Iterations Unlimited, 

Precision 0.000001, Use Automatic Scaling 
     

 

Max Subproblems Unlimited, Max Integer 

Sols Unlimited, Integer Tolerance 1%, 

Solve Without Integer Constraints, Assume 

Nonnegative 

     

Objective Cell 

(Min) 
    Table 4(a) 

 Cell Name 
Original 

Value 
Final Value   

 D6 Total 0 3770   

Variable Cells     Table 4(b) 

 Cell Name 
Original 

Value 
Final Value Integer  

 E6 XR 0 0 Integer  

 F6 XW 0 10 Integer  

 G6 XP 0 0 Integer  

 H6 XO 0 0 Integer  

 I6 XN 0 0 Integer  

 J6 XM 0 0 Integer  

 K6 XL 0 0 Integer  

 L6 XK 0 15 Integer  

 M6 XJ 0 0 Integer  

 N6 XH 0 0 Integer  

 O6 XU 0 0 Integer  

 P6 XT 0 0 Integer  

 Q6 XF 0 0 Integer  

 R6 XS 0 0 Integer  

 S6 XD 0 0 Integer  

 T6 XC 0 0 Integer  

 U6 XB 0 0 Integer  

 V6 XA 0 0 Integer  

Constraints     Table 4(c) 

 Cell Name 
Cell 

Value 
Formula Status Slack 

 D17 = Total 0 D17=B17 Binding 0 
 D18 ≤ Total 0 D18<=B18 Not Binding 5 
 D19 ≤ Total 15 D19<=B19 Binding 0 
 D20 ≤ Total 0 D20<=B20 Not Binding 4 
 D21 ≤ Total 0 D21<=B21 Not Binding 7 
 D22 ≤ Total 0 D22<=B22 Not Binding 8 
 D23 ≤ Total 0 D23<=B23 Not Binding 3 
 D24 = Total 0 D24=B24 Binding 0 
 D25 ≤ Total 10 D25<=B25 Not Binding 5 
 D26 ≤ Total 0 D26<=B26 Not Binding 10 
 D27 ≥ Total 10 D27>=B27 Not Binding 7 
 D28 ≥ Total 25 D28>=B28 Not Binding 5 
 D29 ≥ Total 15 D29>=B29 Not Binding 5 
 D30 ≥ Total 10 D30>=B30 Not Binding 2 
 D31 ≥ Total 25 D31>=B31 Binding 0 
 D32 ≥ Total 15 D32>=B32 Binding 0 
 D33 ≥ Total 10 D33>=B33 Not Binding 15 
 D34 ≥ Total 25 D34>=B34 Not Binding 18 
 D35 ≥ Total 10 D35>=B35 Not Binding 4 
 D36 ≥ Total 0 D36>=B36 Not Binding 4 
 D37 ≥ Total 10 D37>=B37 Not Binding 11 
 D38 ≥ Total 25 D38>=B38 Not Binding 14 
 D39 ≥ Total 10 D39>=B39 Binding 0 
 D40 ≥ Total 0 D40>=B40 Binding 0 
 D9 ≤ Total 0 D9<=B9 Not Binding 4 
 D10 ≤ Total 0 D10<=B10 Not Binding 11 
 D11 ≤ Total 0 D11<=B11 Not Binding 9 
 D12 ≤ Total 0 D12<=B12 Not Binding 9 
 D13 ≤ Total 0 D13<=B13 Not Binding 3 
 D14 ≤ Total 0 D14<=B14 Not Binding 10 
 D15 ≤ Total 0 D15<=B15 Not Binding 2 
 D16 ≤ Total 0 D16<=B16 Not Binding 6 
 E6:V6=Integer      
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It is noted in Table 4 that there are three tables, which are 

very important because they show the result in a detailed and 

clearer manner. The Table 4(a) is for the value of the objective 

function, the Table 4(b) is for values of decision variables, 

while the Table 4(c) shows the state of constraints in terms of 

the amount of satisfaction, so it is called the constraint 

saturation table. In the Table 3, it is noted that there is a 

difference in terms of saturation of constraints. The reason is 

that these constraints include the dissimilarity sign with 

equality (≥,≤), as in the general formula of the new 

mathematical model, and not just equality (=). Hence the work 

of the simplex method, as known, is to achieve the objective 

function while being subject to all constraints, regardless of 

whether constraints are saturated or not if they are with one of 

signs of inequality. Based on this, lies the following 

conclusion in general, which is that STQO is concerned in 

solving the quality-cost trade-off problem within the required 

overall quality only and not more for the project or product 

when it is completed. And this is of very great importance in 

reducing additional costs required by the quality optimization 

process.  

In order to discuss results in a more precise, it is necessary 

to explain the fundamental reason for the value of the decision 

variable 𝑥6 9 = 15%, which led to the complete saturation of 

constraint (11). While the value of the decision variable 

𝑥11 13 = 10%  did not lead to the complete saturation of 

constraint (17). Why wasn't it the other way around in that 

case? Certainly, the reason for the above lies in the fact that 

the value of 𝑆6 9 = 150 €  for 𝑥6 9  is less than the value of 

𝑆11 13 = 152 €  for 𝑥11 13  as this appears in Table 2. 

Accordingly, this means that the cost of increasing the quality 

per unit of activity K is less than the cost of increasing the 

quality per unit of activity W. Therefore, meeting constraint 

(11) to the saturation limit is more important than meeting 

constraint (17) to the saturation limit. Because, according to 

the above, constraint (11) has a better effect on the final result. 

Depending on this, the quality of activity K was improved 

from 85% to 100%, while activity W was improved from 85% 

to 95% and no more. The reason lies in the fact that this new 

value for the quality of activity W after optimization represents 

the lowest possible value to meet the overall quality required 

for the project, and it was sufficient and not more, with the aim 

of not incurring more additional costs. Thus, without the 

slightest doubt, the reason is clear why values of the zero and 

non-zero decision variables became like this, which in turn 

achieved the objective function at its best value while being 

subject to constraints imposed on it. Therefore, results 

obtained by solving the mathematical model of the problem 

mentioned in the previous section indicate that the overall 

quality of the project can be optimized to at least 94%, in 

exchange for 3770 €, which is the added cost for the process 

of optimizing the overall quality. In particular, Table 5 has 

been created below to show results of the problem presented 

in the previous section more accurately and clearly. Also, 

below in Figure 3 were drawn diagrams that show the 

distribution of the cost slope 𝑆𝑖 𝑗 for all project activities as in 

Figure 3(a) and the distribution of improvement for all these 

activities shown in Figure 3(b) as well as the cost distribution 

for each activity in that project as in Figure 3(c). 
 

 

Table 5. Project costs before and after optimizing its quality 

 

 Project Overall Quality Direct Cost 
Additional Costs Due to 

the Optimization Process 
Total Cost 

Before 

Optimization 
89.83% Estimated cost Nothing As it is 

After Optimization 94% Estimated cost 3770 € Estimated cost plus 3770 € 

 
 

 
 

Figure 3. Diagrams showing the extent of activities affected 
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6. CONCLUSION  

 

It is clear that all project and product management seeks to 

complete all its tasks at the lowest possible costs, while after 

completion they are reliable and of high quality to ensure the 

highest levels of satisfaction and acceptance by customers. 

While decision makers seek to achieve their goals, they often 

reach a point where they must balance increasing quality and 

reducing additional costs, and from here arises the quality-cost 

trade-off problem. In order to direct these trade-off decisions 

towards the optimal decision, this paper presented the new 

formulation of the mathematical model for that problem, as 

well as the design of STQO, with the purpose of obtaining the 

best basic feasible solution to the quality-cost trade-off 

problem, regardless of its size. In this aspect, the cost and 

quality must be determined in the normal situation and after 

optimization for all project activities whose quality 

optimization process is required. In particular, the study 

presented in this paper is based on two main foundations with 

the aim of solving the quality-cost trade-off problem as best as 

possible in terms of the approach followed and results. The 

first is to prepare requirements of the linear programming 

approach, which is represented by formulating the new 

mathematical model of the problem. The second is to use the 

simplex method, which implemented via the “Solver” tool in 

Microsoft Excel, and accordingly STQO was designed. 

Without a doubt, the distinction of STQO in its use of the new 

mathematical model and the simplex method when 

implementing the “Solver” tool to solve the problem made it 

trustworthy in terms of the accuracy of its results and high 

efficiency in performance. In conclusion, what has been 

presented in this paper makes decision makers able to make 

optimal decisions through proper planning to achieve the 

desired results and provide funds. It is also worth noting that 

one of the most prominent contributions of this paper is that it 

is a starting point for arriving at new research ideas within the 

scope of the study it dealt with, and thus makes researchers 

able to write new papers in this field. Finally, among the 

recommendations, more future studies can be conducted to 

explore other applications in life that the mathematical model 

presented in this paper can contribute to developing.  
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