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Stress is a very common form of mental disturbance that can arise due to various 

challenges encountered in daily life. Stress has become a widespread concern in today's 

society. Therefore, it becomes increasingly important to identify and manage stress for 

the mental as well as physical well-being of an individual. This paper focuses on 

leveraging deep learning techniques for stress identification by analyzing 

Electroencephalogram (EEG) data. The approach presented in this paper makes use of 

a hybrid deep learning model, which is a combination of Convolutional Neural 

Networks (CNNs), Bidirectional Long Short-Term Memory (BiLSTM), and Gated 

Recurrent Units (GRU). Simultaneous Task EEG Workload (STEW) dataset was used 

which includes 14-channel EEG recordings from 48 participants collected at 128 Hz 

before and after a 2.5-minute SIMKAP test, along with corresponding self-reported 

stress ratings on a 0-9 scale. Use of the Adam optimizer provided the highest accuracy 

of 85.31%. The key contribution of this paper involves the identification of a reduced 

set of 8 channels - comprising 6 fixed and 2 variable channels selected from the standard 

14 channelled EEG setup. This reduction helps in reducing hardware complexity and 

enhancing user comfort. 
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1. INTRODUCTION

A student might start experiencing stress as early as in 

school, due to various factors such as scoring good grades, 

peer pressure, and parental expectations along with balancing 

extracurricular activities. Over the years, an increase in stress 

due to academics has been observed, especially among 

adolescent high-school students, with 57.9% of teenagers 

reporting high stress and 40% experiencing very high stress 

[1]. 

The transition from high school to college may change the 

set of responsibilities, but it also introduces new academic 

pressures and many students may feel overwhelmed by the fact 

that they have to search for internships and build an 

exceptional resume. In a study carried out on 336 university 

students in India, around, 48.80% of participants felt that they 

experience academic stress at an average to a high level [2]. 

When a student further enters the corporate world, the stress 

that they experience only seems to increase and worsen their 

mental health. High occupational stress symptoms were 

reported among the teaching professionals (73.3%) and 

marketing professionals (83.3%) suffering from moderate to 

critical levels of stress [3]. In today’s hectic and competitive 

life, individuals fail to recognize that they are experiencing the 

effects of stress not just on their mental but physical state too. 

If stress is left unmanaged it might lead to health issues like 

cardiovascular problems, diabetes, and cancer along with 

psychosocial issues such as depression and anxiety [4]. 

Due to these critical changes in the brain over a long period, 

the chances of abnormal cell growth increases [4]. Hence, it 

becomes really important for us to manage stress to avoid its 

long-term effects on our mental, emotional, and physical 

health. 

The coping mechanism of every individual with stress 

varies, and researchers need to develop an assessment tool that 

will be able to record and evaluate the stress levels in every 

individual. Traditionally, measurement of stress has relied 

more on subjective methods, particularly by using self-report 

tools but these methods provide relatively little information 

compared to physiological stress indicators [5]. The four most 

common ways for capturing physiological signals in response 

to produced stimuli for recording and collecting human stress 

levels are Electromyography (EMG), Electrooculography 

(EOG), Electroencephalography (EEG), and 

Electrocardiography (ECG) [5]. 

(EEG) is a non-surgical, easy-to-work-on, and relatively 

inexpensive method that can be used for measuring the 

electrical impulses of the brain through the Central Nervous 

System (CNS) by the placement of a helmet or a cap with 

multiple electrodes on the scalp [6]. The EEG signal has been 

extensively employed to detect and analyse human stress [7], 

especially in relation to the frontal lobe [8]. 

As EEG offers real-time, dynamic views of brain activity, it 

helps in studying mental states, like wakefulness, sleep, 

relaxation, or stress and therefore, it is preferred by researchers 

[9, 10]. 
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Figure 1. Processing 

 

EEG signals undergo preprocessing to eliminate 

undesirable noise and artifacts like eye movements, blinks, 

muscle movement, sweat, etc. [9, 11, 12]. Moreover, feature 

extraction is performed to highlight the key attributes of EEG 

signals [12]. These features are then used to classify the stress 

level, as low, medium, or high. The model architecture is a 

hybrid design combining Conv1D for spatial feature 

extraction, BiLSTM for capturing bidirectional temporal 

dependencies, and GRU layers for efficient sequential 

learning. It includes dropout layers to mitigate overfitting and 

a fully connected output layer utilizing SoftMax activation for 

stress classification into three levels. 

EEG data is high-dimensional, as there are multiple 

channels from which the data is extracted. The models 

developed by researchers might suffer from overfitting. The 

approach presented in this research paper performs feature 

extraction and aims to use data from only 8 channels (6 fixed 

channels and 2 variable channels) instead of all 14 channels, 

hence reducing the complexity for classification. The model 

was trained using 8 specific channels, which previously 

emerged as superior in distinguishing mental stress as they are 

located on the frontal and central lobes. Lastly, a comparative 

study was conducted to identify the optimizer that yields the 

best results.  

The major contributions of this study are: 1) Reduce the 

number of channels used for processing. 2) Build a hybrid 

model for accurate classification of stress.  

The structure of this paper is described below: 

Section 2 provides an overview of the dataset used. 

Section 3 reviews and discusses research and findings that 

has been conducted on EEG-based stress detection. 

Section 4 describes the methodology in detail along with the 

channel selection and comparison of different optimizers. 

In Section 5, the implications of the research have been 

discussed. 

To conclude, Section 6 presents the final remarks of the 

paper. 

Figure 1 illustrates the processing involved in analysing 

EEG signals. 

2. RELATED WORK 

 

A substantial amount of research has been undertaken using 

machine learning algorithms like Support Vector Machine 

(SVM), K-Nearest Neighbour (KNN), Decision Tree, K-

Means Clustering etc. [13, 14], which have shown good 

results. Deep learning is capable of handling complex datasets 

and achieving higher accuracy, which is why this study 

focuses on these algorithms for better results. The DEAP 

dataset has been thoroughly explored in previous studies but 

contains a relatively small number of subjects, making it 

unsuitable for deep learning algorithms. Therefore, the focus 

was shifted to the STEW dataset, which has more data points, 

making it a better fit for deep learning models. 

Wen and Aris [15] emphasized on classifying human stress 

levels using EEG signals by analyzing the Theta/Beta ratio, 

which is associated with stress responses. 

Their innovative method involved collecting brain signals 

from 50 university students under three experimental 

conditions — a resting state as the base, exposure to a 360-

degree horror VR video and in the end completion of an IQ 

test as a cognitive stressor. After every session, the participants 

were given a brief time to rest and during which the induced 

stress was recorded. The authors then performed pre-

processing to eliminate noise and artifacts, using a band-pass 

filter and applying Welch’s Fast Fourier Transform (FFT) 

algorithm to extract the Power Spectral Density (PSD) of the 

Theta and Beta frequency bands. The processed data was 

further analyzed utilizing machine learning techniques which 

were K-Means clustering to group participants into three 

classes: low, moderate and high stress. The clustering 

outcomes were subsequently input into a SVM classifier for 

stress classification. They were successfully able to prove that 

the Theta/Beta ratio effectively distinguishes between relaxed 

and stressed states, with SVM achieving an overall 

classification accuracy of 90%. 

AlShorman et al. [16] analyzed a method for stress 

recognition using EEG signals from the frontal lobe. In their 

study, they induced stress in 14 healthy male university 

students through the Cold Pressor Stress (CPS) test, where 
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participants immersed their hands in ice water. EEG data was 

collected using a 128-channel system and pre-processed to 

remove noise and artifacts using notch filters and Independent 

Component Analysis (ICA). They evaluated the Power 

spectral density using Fast Fourier Transform and for the 

classification of stress levels, they used two machine learning 

classifiers, SVM and Naive Bayes in two modes: subject-wise 

and mixed. Subject-wise classification achieved an impressive 

accuracy of 98.21%, while mixed classification reached 90% 

accuracy. 

Tahira and Vyas [17] have come up with a hybrid deep 

learning model which integrates CNN and BLSTM detecting 

stress using EEG signals. Their research used the Physio net 

EEG dataset in which 19 channels were pre-processed using 

Discrete Wavelet Transform (DWT). CNN was employed for 

feature extraction and further classification of stress conditions 

was done using BiLSTM. Features were automatically 

extracted using CNN, while BLSTM was employed for 

classifying stress levels. Their hybrid model obtained a 

remarkable accuracy of 99.20%. The model built, was further 

validated using stratified tenfold cross-validation, yielding a 

classification accuracy of 98.10%. 

Jawharali and Arunkumar [9] have presented an approach 

in which they have mainly focused on removal of 

Electrooculography (EOG) artifacts to enhance the accuracy 

for predicting human stress levels using an Artificial Neural 

Network (ANN) model. In their research, they have 

implemented a two-step process for EOG artifact removal. 

First, they perform EOG noise detection using an 

autoregressive model and then EOG noise correction through 

inverse filtering. This preprocessing method filters out the 

EOG noise from the EEG signals to a great extent. The authors 

have then extracted time-domain features—Simple Square 

Integral (SSI), Integrated EMG (IEMG), Waveform Length 

(WL), and Difference of Absolute Standard Deviation Value 

(DASDV)—to effectively classify stress. Their study used 

ANN to categorize stress levels into low, medium, and high, 

obtaining an accuracy of 91.12%. 

The research conducted by Gonzalez-Vazquez et al. [18] 

measured mental stress levels in participants using EEG 

signals and a video game. The game was about controlling a 

car to avoid obstacles and the difficulty level kept increasing 

as the game progressed. They collected data from 19 

participants using an 8-channel device which was processed 

utilizing a Recurrent Neural Network with GRUs to categorize 

stress into four levels–Low (0), Moderate (1), Intermediate (2), 

High (3). They cleaned the EEG data using techniques like 

filtering, normalization, and data segmentation and then for 

training the Adam optimizer and a categorical cross-entropy 

loss function were employed, achieving up to 94% accuracy 

for individual participants. 

Tarun et al. [19] have used facial images to detect stress by 

analyzing expressions associated with stress, such as fear, 

sadness, and anger. The dataset, comprising 71,000 facial 

images representing seven emotions (happy, sad, angry, 

neutral, fear, disgust, and surprise), was pre-processed using 

resizing, normalization, and data augmentation to ensure 

consistency. The authors developed a CNN model for 

automatic feature extraction from these images and classify 

them into respective emotion categories. The CNN model was 

trained using the Adam optimizer and classification outputs 

were derived using fully connected layers with activation 

functions like SoftMax. Their model has achieved an accuracy 

of 85%, which is better as compared to previously explored 

methods like KNN (77.27%). The performance metrics 

achieved are as follows—precision is 81.82%, recall is 

90.00%, and F1-score is 85.71%. 

From the above study, it is evident that EEG-based stress 

detection has been minimally explored using deep learning 

approaches. The few studies that do implement deep learning 

rely on small-scale or self-curated datasets, lacking public 

availability (Table 1). This paper addresses that gap by using 

a larger publicly available STEW dataset. Most of the study 

done for classification of stress level used a single model on 

smaller datasets while, the proposed hybrid approach takes an 

advantage of the properties of each deep learning model i.e.; 

CNN, BiLSTM and GRU which results in improved accuracy 

of the hybrid model for larger dataset. 

 

Table 1. Literature review table 
 

References Algorithm 

Used Results 

[15] 

K-Means 

Clustering, 

SVM 

Accuracy = 90% using 

Theta/Beta for stress 

detection 

[16] 
SVM, Naive 

Bayes (NB) 

Subject-wise classification 

accuracy = 98.21%; Mixed 

classification accuracy = 90% 

[17] CNN, BiLSTM Accuracy = 99.20% 

[9] ANN Accuracy = 91.12% 

[18] 
RNN with 

GRUs 

Accuracy = 94% for stress 

classification from 8 channels 

[19] CNN Accuracy = 85% for stress 

detection using facial images 
 

 

3. MATERIAL AND METHODS 

 

3.1 Dataset 

 

This study focuses on identifying user stress levels using the 

STEW dataset. The STEW dataset consists of 48 participants, 

where each participant took a SIMKAP test spanning 2.5 

minutes each to induce stress. EEG signals were taken using 

the Emotiv EPOC device. The sampling frequency was 128 

Hz. The dataset consists of 14 channels, each corresponding 

to AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and 

AF4, respectively. The STEW dataset consists of 2 sets of 

files, one before the candidates underwent the SIMKAP test 

indicated using subno_lo.txt file and the other after the 

candidates were subjected to the SIMKAP test indicated using 

subno_hi.txt file. (e.g., sub02_lo.txt for subject 2 at rest and 

sub22_hi.txt for subject 22 after the multitasking test). The 

rows represent the EEG signals and columns represent the 14 

EEG channels. A ratings.txt file is provided that states each 

user’s respective stress levels on a scale of 0 to 9 before and 

after the conduct of the test [20]. 

In the STEW dataset, fifty male graduate students 

participated, all of whom reported no history of neurological 

or psychiatric disorders and had taken part in any prior EEG 

experiments. Data was found to be incomplete for two 

subjects; hence, data from only 48 subjects out of 50 has been 

curated in the STEW dataset. By selecting a uniform 

participant group, the dataset controls for demographic factors 

such as age, gender, education level that could otherwise 

introduce variability [21]. 

  

1814



 

3.2 Methodology 

 

This section outlines the methodology employed for EEG 

based stress detection, detailing the data preprocessing, feature 

extraction and model architecture used to classify stress levels 

accurately. 

Step 1: Data preprocessing: 

Data preprocessing of STEW dataset is essential to filter 

noise, remove artifacts, and retrieve relevant features for stress 

classification. 

The raw EEG data is imported, and a bandpass filter is 

utilized which permits signals within the designated frequency 

and attenuates signals outside 3 Hz to 40 Hz. The method 

makes use of Butterworth Filter to get rid of phase distortion. 

Step 2: Feature extraction and signal decomposition: 

This methodology incorporates the Discrete Wavelet 

Transform for feature extraction. DWT is used in signal 

processing to decompose a signal into its frequency 

constituents and allows the analysis of features at different 

scales. 

To decompose the EEG signals into wavelet coefficients 

(detailed and approximation coefficient) and allow the 

analysis of features at different scales, DWT using db4 

wavelet is employed. 

DWT decomposes the signal into distinct frequency 

components one approximation and several detail coefficients 

which correspond to low and high-frequency components 

respectively. At all decomposition levels, every channel 

produces independent features for the approximation and 

detail coefficients. 

The foremost benefit of using the multiple decomposition 

levels of DWT is that the signal being examined can be 

assessed within various frequency bands. As each level 

provides a unique resolution of a signal, there is a growing 

need for understanding different aspects of brain activity. 

a. Approximation Coefficients (Low frequency 

components): At higher levels, approximation coefficients 

approximate some general coarse behaviour of an EEG signal. 

They characterize slow, large-scale brain waves which are 

often linked with the deeper mental states of an individual, 

such as being relaxed or tense. 

b. Detail Coefficients (High frequency components): Detail 

coefficients represent high-frequency oscillations or rapid 

fluctuations, which actually reflect changes in brain activity 

that are more immediate, fine-grained. These represent faster 

cognitive processes, for example attention or alertness, and are 

relevant in stress detection as well. 

Figure 2 demonstrates how EEG signals are decomposed 

into different frequency bands using DWT. Each band 

represents the different brain activity and mental states. This 

decomposition helps extract features from EEG signals for 

stress detection. 

Along with features extracted using DWT, the statistical 

features are also computed. Statistical Features (from Filtered 

Signal): Mean, Variance, Kurtosis, Skewness. 

The aforementioned statistical features provide further 

insight into the shape and distribution of EEG signals that 

might not be obtained by the DWT coefficients. These features 

significantly contribute to the comprehensive representation of 

the signal, which is pivotal for detecting patterns associated 

with different stress levels. 

The third crucial feature that is computed is Beta Power. 

Using the periodogram, the power spectral density (PSD) of 

the signal is calculated. Beta power is computed as the sum of 

the PSD values in the 13-30 Hz range (frequencies associated 

with stress and alertness). For each channel, the Beta Power is 

a key feature for classification. 

Step 3: Model architecture and its functionality 

The architecture being developed is a hybrid model that 

combines CNN, BiLSTM, and two layers of GRU description 

of which is given below: 

a) 1D Convolutional Layer: This layer facilitates the 

extraction of local features of EEG signals (Time series data). 

128 filters of kernel size 1 are employed which helps to learn 

the temporal features and introduce non-linearity through 

ReLU activation function. MaxPooling1D layer downsamples 

the convolution output, reducing its spatial dimensions. In this 

scenario, pool size of 1 is used which does not actually down 

sample the data but prepares it for subsequent layers. A 

dropout layer of 0.2 is implemented to avoid overfitting by 

randomly omitting 20% of neurons during the model training 

process. 

 

 
 

Figure 2. Decomposed EEG signal 
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Figure 3. Methodological framework 

 

b) BiLSTM Layer: The number of LSTM units used in this 

model is 64 which are used to capture long-term dependencies 

in the time series data. Additionally, this layer processes the 

input sequence bidirectionally, both forward and backward. 

c) Bidirectional GRU Layer 1: This layer is just like an 

LSTM but using the GRU which is more computationally 

efficient as well as applicable to sequential data like EEG. The 

number of GRU units used in this model is 64, in addition to 

this return_sequences=True makes the output sequence to 

return into the next subsequent layer. 

d) Bidirectional GRU Layer 2: This is another GRU layer 

with the number of units 32 instead of 64. 

In this layer, the value of return_sequences=False, 

indicating that only the final output of the sequence is passed 

to the next layer, rather than the full sequence. In the final 

recurrent layer, it is conventional to only need the final 

representation of the sequence for classification of stress. 

Dropout of 0.5 is implemented in order to mitigate overfitting 

by randomly deactivating 50% of the available GRU units. 

e) Dense Output Layer: This is the final layer with 3 units, 

one for each stress levels low, medium and high, and Softmax 

activation is employed which converts the model’s output into 

probabilities for each class. This layer outputs the predicted 

probability distribution across the three stress levels.  

By leveraging DWT for feature extraction, statistical 

measures for enhanced signal representation and a hybrid deep 

learning model, this approach ensures effective classification 

of stress levels. The integration of CNN, BiLSTM and GRU 

optimizes feature learning, enhancing the model's robustness 

and performance. 

 

3.3 Functionality 

 

This section describes the functionality of the hybrid deep 

learning model, detailing how EEG features are processed, 

classified and mapped to stress levels based on beta power 

distribution. Figure 3 depicts the consolidated workflow of the 

model and its functionality. 

a) The input given to the deep learning hybrid model is 

the features that are extracted using DWT, Statistical 

features and the Beta Power. These features form a 

feature matrix for each EEG signal file. Prominent 

feature that is used for stress classification in 3 levels 

low, medium, high is Beta Power. 

b) The CNN is used for spatial patterns extraction across 

the EEG channels. The convolutional filters traverse 

through the feature matrix to detect the localized 

patterns in beta power, including associations amongst 
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channels or the presence of separate regional activity. 

These might represent changes in the distribution of 

beta power specific to stress conditions across various 

brain regions. It would be a set of feature maps that 

emphasize these spatial relationships as the output of 

this layer. Pooling is also used which helps in size 

reduction of feature maps, holding the most important 

features, which makes further computations faster. 

c) BiLSTM captures temporal dependencies in the beta 

power sequence. The beta power values sequence is 

processed in both forward and backward directions to 

incorporate past and future context. Stress patterns are 

typically influenced by consistent trends and variations 

in beta power, here BiLSTM identifies those 

bidirectional temporal patterns, which helps in 

improving the model’s understanding of time-

dependent stress indicators. The output is the overall 

representation of both directions, offering the detailed 

and richer temporal context. 

d) GRU layers process and summarize the temporal 

features found by BiLSTM. The first GRU layer will 

process the output of the BiLSTM to detect simple 

temporal dynamics. The second GRU layer will extend 

the output of the first layer to detect higher-order 

temporal patterns. GRUs make use of gating 

mechanisms (update and reset gates) to selectively 

retain or forget information, focusing on the most 

stress-relevant patterns. 

e) Fully Connected Dense Layers take the refined 

temporal and spatial features and transform them to 

output stress level predictions. The last GRU layer 

generates a feature vector which summarizes what was 

learned about spatial and temporal patterns. Dense 

layers map that vector to the three stress categories 

(low, medium, high). The last dense layer makes use of 

the Softmax activation function for producing 

probabilities for each class. 

f) Label Assignment and Categorization of file: For each 

EEG file, the average beta power across all channels is 

calculated and stress levels are categorized using 

percentile-based thresholds that dynamically adapt to 

dataset’s distribution: 

Low Stress: Beta power<33 percentile. 

Medium Stress: 33rd percentile ≤ Beta power < 66th 

percentile. 

High Stress: Average beta power > 66 percentile. 

g) Training Process: The model updates its weight to 

reduce categorical cross-entropy loss, which quantifies 

the difference between predicted probabilities and the 

actual labels. 

Optimization techniques like Adam, SGD, RMSProp, 

Momentum, AdaGrad, AdaDelta optimizer update the 

model's parameters to enhance classification accuracy. 

To enhance model performance and avoid overfitting the 

model is trained with early stopping and learning rate 

reduction. 

By leveraging CNN for spatial feature extraction, BiLSTM 

for bidirectional temporal analysis and GRU for refined 

sequential learning, the model effectively categorizes stress 

levels. Adaptive percentile-based labelling and optimization 

techniques ensure robust training and accurate stress 

classification. 

 

 

4. EXPERIMENTAL RESULTS 

 

This section includes performance metrics, results, and 

comparison of various optimizers evaluated on the hybrid deep 

learning models (CNN, BiLSTM, GRU). It also discusses the 

experimental results obtained by performing the channel 

selection method. 

 

4.1 Model performance metrics 

 

Table 2 and Table 3 showcase the model metrics obtained 

for the above hybrid model implemented on the STEW 

dataset. The accuracy obtained for the above implemented 

model is 85.31%. 

 

Table 2. Confusion matrix 

 
Class Low Stress Medium Stress High Stress 

C1 96070 125 19011 

C2 548 71054 5202 

C3 19251 1177 75577 

 

Table 3. Model metrics and results for STEW dataset using 

14 channels 

 
Class Precision Recall F1-Score Support 

C1 0.83 0.83 0.83 115206 

C2 0.98 0.93 0.95 76804 

C3 0.76 0.79 0.77 96005 

Macro 

Average 
0.86 0.85 0.85 288015 

Weighted 

Average 
0.85 0.84 0.84 288015 

 

where, C1, C2, C3 depict Low, Medium, and High stress class 

respectively. Support represents the number of actual 

instances for each class in the dataset, indicating how many 

samples belong to each class. 

Below are the set of formulae used for calculation: 

Accuracy: (CP+CN)/Total samples 

Precision: CP/ (CP+IP) 

Recall: CP/ (CP+IN) 

F1-Score: (2 ×PR)/ (P+R) 

where, CP: Correct/True Positive; CN: Correct/True Negative; 

IP: Incorrect/False Positive; IN: Incorrect/False Negative; 

Macro-Average calculates the overall precision and recall by 

averaging them across all classes. 

 

4.2 Channel selection 

 

An experiment was performed to simplify the electrode 

usage during EEG signal acquisition. The model was trained 

using data from 8 channels only. The following six channels 

['AF3', 'FC5', 'F8', 'AF4', 'P7', 'F7'] were fixed [22]. To 

determine the two most effective additional channels, the 

remaining 8 channels from the original 14-channel dataset 

were paired with the six channels. Figure 4 depicts the channel 

vs. accuracy graph derived from various channel 

combinations. Channel Mapping: 1: AF3, 2: F7, 3: F3, 4: FC5, 

5: T7, 6: P7, 7: O1, 8: O2, 9: P8, 10: T8, 11: FC6, 12: F4, 13: 

F8, 14: AF4. The channels are mapped to numerical indices 

(e.g. AF3:1) and are referenced by these indices for ease of use 

in Table 4. 
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Figure 4. Channel combination vs. accuracy graph 

 

Table 4. EEG channel combinations 

 

A [1, 4, 13, 14, 6, 2, 3, 5] 

B [1, 4, 13, 14, 6, 2, 3, 7] 

C [1, 4, 13, 14, 6, 2, 3, 8] 

D [1, 4, 13, 14, 6, 2, 3, 9] 

E [1, 4, 13, 14, 6, 2, 3, 10] 

F [1, 4, 13, 14, 6, 2, 3, 11] 

G [1, 4, 13, 14, 6, 2, 3, 12] 

H [1, 4, 13, 14, 6, 2, 5, 7] 

I [1, 4, 13, 14, 6, 2, 5, 8] 

J [1, 4, 13, 14, 6, 2, 5, 9] 

K [1, 4, 13, 14, 6, 2, 5, 10] 

L [1, 4, 13, 14, 6, 2, 5, 11] 

M [1, 4, 13, 14, 6, 2, 5, 12] 

N [1, 4, 13, 14, 6, 2, 7, 8] 

O [1, 4, 13, 14, 6, 2, 7, 9] 

P [1, 4, 13, 14, 6, 2, 7, 10] 

Q [1, 4, 13, 14, 6, 2, 7, 11] 

R [1, 4, 13, 14, 6, 2, 7, 12] 

S [1, 4, 13, 14, 6, 2, 8, 9] 

T [1, 4, 13, 14, 6, 2, 8, 10] 

U [1, 4, 13, 14, 6, 2, 8, 11] 

V [1, 4, 13, 14, 6, 2, 8, 12] 

W [1, 4, 13, 14, 6, 2, 9, 10] 

X [1, 4, 13, 14, 6, 2, 9, 11] 

Y [1, 4, 13, 14, 6, 2, 9, 12] 

Z [1, 4, 13, 14, 6, 2, 10, 11] 

A1 [1, 4, 13, 14, 6, 2, 10, 12] 

 

Among all the channel subsets, subset D ['AF3', 'FC5', 'F8', 

'AF4', 'P7', 'F7', 'F3', 'P8'] demonstrated the highest accuracy 

of 74.94% making it an optimal combination of 8 channels for 

channel reduction. 

The channel reduction experimentation revealed that the 

reduced subset of 8 channels predominantly lie in the frontal 

lobe region. This further supports the relevance of channel 

selection, as the frontal lobe region plays a key role in the 

stress detection. The frontal lobe region is commonly captured 

across various EEG datasets making the selected channels 

broadly applicable across various experiments. 

 

4.3 Optimizers comparison 

 

A comparative analysis of the various optimizers used 

during the model-building process is listed below. Table 5 

represents the various optimizers used, the arguments used for 

each respective optimizer and the accuracy obtained. 

A comparative study demonstrates that the Adam optimizer 

achieved the highest accuracy of 85.31% for the model built 

on the 14-channeled STEW dataset. In contrast, SGD, 

RMSProp, Nadam and Adagrad showed a significant decline 

in accuracy. Adadelta has showcased a further greater loss in 

accuracy in comparison to Adam optimizer. 

 

4.4 State of the art  

 

As shown in Table 6, the proposed CNN-BiLSTM-GRU 

hybrid model outperforms approaches like standalone LSTM, 

2D-CNN-LSTM, achieving an accuracy of 85.31%. This 

performance boost is likely due to the effective combination 

of spatial (CNN) and temporal (BiLSTM, GRU) feature 

extraction. 

Table 5. Optimizers comparison 

 
Optimizer Arguments Used Accuracy 

Adam 

Rate of 

Learning=0.001, 

β₁ = 0.9, 

β₂ = 0.999, 

epsilon = 1e-07, 

Ema momentum = 

0.99 

85.31% 

SGD 

Rate of Learning = 

0.0005,  

momentum = 0.9, 

nesterov = True 

79.91% 

RMSProp 
Rate of 

Learning=0.0005 
79.80% 

Nadam 

Rate of Learning = 

0.001, 

β₁ = 0.9,  

β₂ = 0.999, 

Weight Decay = 

1e-5, 

Epsilon = 1e-7 

79.77% 

Adagrad 
Rate of Learning = 

0.0005 
79.43% 

Adadelta Default value  71.90% 

Adadelta 
Rate of Learning = 

0.0005 
71.85% 

 

Table 6. State of the art works for stress detection 

 
Model Dataset Accuracy 

LSTM DEAP 72 % 

2D-CNN-LSTM STEW 72.55% 

CNN-BiLSTM-

GRU Hybrid model 
STEW 85.31% 

 

 

5. DISCUSSION 

 

In this study, a hybrid model using CNN, GRU and 

BiLSTM was utilized to categorize the stress levels into low, 

medium and high using EEG signals. The hybrid model was 

built on the 14-channeled STEW dataset. The hybrid model 

achieved an accuracy of 85.31% with the Adam optimizer 

performing the best in comparison to other optimizers like 

SGD and RMSProp. Furthermore, channel reduction was 

applied to identify a subset of 8 channels to reduce the signal 

acquisition complexity. 

The stress detection model classified incorrect stress levels 

for certain subjects. The predicted stress level did not align 
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with the self-reported ratings provided by the subjects. The 

ratings that are stored in the ratings.txt file consist of stress 

levels in the range of 0 to 9 that each subject felt. The classified 

stress levels did not match the corresponding self-reported 

stress levels. For instance, a self-reported rating of 7 or 8 

which typically indicates a high stress level in the range of 0 

to 9 was classified as medium stressed by the model. 

The discrepancy in the evaluation of stress levels could 

occur because of several reasons. One possible reason is the 

variation in personal stress thresholds among individuals. The 

stress threshold for certain subjects can be high and can be low 

for others. This variation can lead to varying self-reported 

ratings. Furthermore, the self-reported ratings capture the 

emotional aspects of stress which may not be reflected in EEG 

signals. 

EEG-based stress detection projects also face discrepancies 

due to data deficiencies across all available datasets, including 

a limited number of subjects, which hampers the ability to 

generalize the results. Moreover, EEG datasets are often 

inaccessible due to privacy and security concerns as doctors 

and institutions are often reluctant to share such data. In the 

future secure and ethical frameworks for sharing medical data 

must be established.  

 

 

6. CONCLUSIONS 

 

Life today has become increasingly competitive and fast-

paced across all age groups. While it is not possible to 

eliminate stress, this research aims to make early detection of 

stress easier. 

The developed hybrid model integrates CNN, BiLSTM, and 

GRU layers to extract both spatial and temporal features from 

EEG signals, attaining an accuracy of 85.31% in stress 

classification. The research focuses on reducing the number of 

EEG channels to 8 specific ones—6 fixed and 2 variables, to 

enhance the performance of the model. The combination of 

traditional tools with AI techniques will be very helpful for 

healthcare professionals for early detection of stress. 

One of the major future directions for using this study could 

be using wearable EEG devices to detect real-time stress in 

clinics and workplaces to test and monitor in natural 

environments. With the reduced number of EEG channels 

required for stress detection and the optimized model 

developed in this research, the overall setup becomes more 

efficient, portable, and cost-effective for practical deployment. 

Also, developing personalised stress detection models that 

learn from every individual's baseline and detect stress in a 

user-specific manner could be a good application. Lastly, 

integrating stress detection into mobile health and wellness 

applications. 

These advancements could have a widespread global impact 

in today’s world where mental issues like depression and 

anxiety are prevailing. By integrating AI into stress 

management, doctors around the world will have a reliable 

method to detect stress, hence contributing to better mental 

health and well-being. 
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NOMENCLATURE 

 

BiLSTM Bidirectional Long Short-Term Memory 

CNN Convolutional Neural Networks 

DWT Discrete Wavelet Transform 

GRU Gated Recurrent Unit 

 

Greek symbols 

 

β₁ Beta 1, Dimensionless 

β₂ Beta 2, Dimensionless 
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