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Brain-computer interface (BCI)-based emotion recognition, utilizing 

electroencephalogram (EEG) signals, is a pioneering field in affective computing. This 

paper introduces the hybrid dimensionality reduction model (HDRM), a novel approach 

for classifying five distinct emotions—sadness, fear, relaxation, enjoyment, and 

humor—during entertainment media consumption. HDRM integrates variance-based 

subspace projection and independent source separation, utilizing EEG data from 46 

subjects exposed to commercial advertisements and Kannada music videos. By 

capturing dominant patterns in EEG data and isolating distinct neural processes 

associated with emotional responses, HDRM enhances feature extraction through 

spatial and temporal features, such as central tendency, spread, and inner products. 

Experimental results demonstrate that HDRM achieves accuracies of 85.41% and 

78.49% with Logistic Regression and KNN for classifying emotions from commercial 

advertisements, and 90.15% and 86.33%, respectively, for Kannada musical clips. The 

results confirm that HDRM can be applied to low-cost, real-time BCIs for both 

entertainment and therapeutic applications. This study provides an implementable 

solution for advancing empathic capabilities in emotion recognition systems. 
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1. INTRODUCTION

People today spend significant time on social networks, 

engaging in activities like gaming and online shopping. 

Emotions are integral to human perception, relationships, and 

decision-making, influencing how individuals interact with 

technology [1]. However, current human-computer interaction 

(HCI) systems lack emotional intelligence, failing to process 

or interpret affective information. To enhance HCI, it is 

essential to address the emotional aspect of user interactions. 

This can be achieved by developing systems that can identify 

and comprehend users’ affective states, leading to the need for 

efficient, reliable, and scalable emotion recognition systems. 

Research in AI focuses on emotion detection and affective 

computing to enable robots to understand emotions. Among 

HCI technologies, brain-computer interfaces (BCI) excel in 

emotion identification and improving user-computer 

interaction. Various systems have been designed to assess 

emotional, cognitive, or affective states [2, 3]. Effective 

communication between humans and machines requires the 

latter to emulate human emotions, allowing for high-accuracy 

emotion recognition in real time. Emotional feedback is 

crucial in applications where identifying human emotions is 

essential. Emotion recognition (ER) is a natural state for 

human beings. ER is a very critical factor in the findings of 

Damasio et al. [4] that demonstrate that emotional responses 

are integral with numerous facets of human existence, 

especially with mental abilities, thinking awareness, decision-

making processes, and also eventually with AI in daily life. 

Most of the time, it is difficult to think about something 

without thinking about something else; in some way or the 

other, they are going through some emotions. It is only in the 

last few years that emotion recognition has been identified as 

a field of interest with an emphasis and growth in artificial 

intelligence. Some of the advancements in science and 

technology include facial expression-based emotion 

recognition [5], emotional robots [6], and emotion-based 

image retrieval [7]. Further domains like emotional 

modulation, detecting illness, and assessments of 

counterintelligence are constitutional areas in understanding 

and recognizing emotional states. It is sent out, then it is 

received, and it is then interpreted by individuals by means of 

body language, including facial appearance [8], vocal 

expressions [9], sign languages such as gestures [10], texts 

[11], and physiological signals [12]. It can be from one of the 

above [13] and even a combination of the above [14]. Verbal 

or facial signals are easy to forge, such as expressions, while 

physiological signals help in identifying the emotions of an 

individual. This is a key factor that makes emotion 

identification through BCI important because it has the 

possibility of increasing the efficiency of human cognitive 

processes, communication with other people, and problem-

solving. It also helps in moderating the emotional activity of 

the brain and thus improves problem-solving and overall well-
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being. It also directly checks the state of the brain, which is the 

source of feelings [15]. 

A BCI-based system comprises four components: signal 

capturing, pre-processing, feature extraction and sorting, and 

class categorization with feedback. Signal acquisition is the 

initial step, involving the collection of brain signals through 

invasive, semi-invasive, and non-invasive methods. Invasive 

methods involve implanting electrodes on the brain, while 

non-invasive techniques, like EEG, place electrodes on the 

scalp to monitor brain activity in real time. EEG is widely used 

due to its ease of use and application in fields such as 

education, psychology, and medicine [16]. Initially developed 

for paralyzed individuals, BCI technology now benefits both 

medical and non-medical users and continues to evolve. One 

crucial aspect of BCI is motion recognition, which is vital for 

daily tasks [17]. Emotion, defined as a mental state 

encompassing affective, experiential, physiological, and 

behavioural components, is key to interpersonal 

communication and decision-making. Thus, emotion 

identification is essential in human-computer interactions 

[18]. Advances in affective computing enable systems to 

detect users’ emotional states in real time, enhancing the 

interaction experience by making systems more sophisticated 

and user-friendly. 

Currently, emotion recognition research has limited its 

focus towards the following areas: shaping the linkage 

between physiological signals and emotions, ways of selecting 

the right stimuli for the target emotions, and ways of 

recognizing the target emotions. Elements related to certain 

emotions, samples of an emotion generation approach, and 

emotion recognition based on multi-modal data fusion [19] are 

the backbone for emotion recognition study. This study is 

based on the analysis of one of the most common areas of HCI 

systems application [20]. These systems employ facial 

expressions, body language, words, and even brain activity to 

convey emotions [21, 22]. However, there are factors that are 

situational and can be present in the external environment and 

not be noticed by people, which leads to misconceptions. As a 

result, researchers have succeeded effectively in predicting 

various emotional states using EEG signal architectures. All 

kinds of emotion analysis algorithms render EEG waveforms 

since these waves directly emanate from the brain and have 

been proven to work with high efficiency [23]. EEG-based 

emotion recognition has attracted a lot of interest because it 

does not involve any interference with the body. They are also 

cost-efficient, transportable, and easy to use in the 

classification of emotion. The problems of identification and 

categorization of emotions are therefore the key components 

in any BCI system using EEG signals, be it for the control of 

a computer, a robot, or a prosthesis: the ictal, the postictal, and 

the interictal. Therefore, there is a need to organize these 

sensations with the aid of an emotion recognition system. This 

proposed article’s sections are outlined as follows: In Section 

1, the background and motivation of the study are discussed. 

Section 2 presents the related work and the existing 

methodology. Section 3 presents the proposed work. This 

section presents the planned approach, in particular principal 

component analysis (PCA) and independent component 

analysis (ICA), feature engineering, and the integration of the 

classifiers. Section 4 gives information on the setup of the 

experiments, and Section 5 describes the dataset, results, and 

consequently, Section 5 summarizes the proposed study 

observations and proposals for further research. 

 

2. RELATED WORK 

 

Multiple machine learning approaches are utilized for EEG 

signal interpretation, including k-Nearest Neighbors (KNN) 

[24], Support Vector Machine (SVM) [25, 26], Decision Tree 

(DT) [27], Random Forest (RF) [28], and Linear Discriminant 

Analysis (LDA) [29]. In deep learning, Deep Belief Network 

(DBN) [30], Autoencoder (AE) [31], Convolutional Neural 

Network (CNN), and Long Short-Term Memory (LSTM) 

models [32-35] show promising results, another author 

proposed an EEG-based emotion recognition method using 

deep neural networks on the DEAP dataset, achieving 87.99% 

accuracy for valence and 88.63% for arousal classification. 

Their approach demonstrated the effectiveness of deep 

learning for automatic emotion detection from brain signals 

[36] Subject-dependent evaluations have demonstrated 

significant performance in EEG-based emotion recognition. 

For instance, a CNN-KAN model applied to the SEED dataset 

achieved an average accuracy of 97.45% in a three-class 

emotion classification task [37]. A hybrid CNN-LSTM model 

reached 85.2% binary accuracy for cross-subject emotion 

recognition on DEAP [38]. The DEAP dataset records 81% 

accuracy, with LUMED achieving 81.8%, and SEED-trained 

models 58%. Yin et al. [39] proposed ERDL, combining 

Graph Convolutional Neural Network (GCNN) and LSTM, 

achieving 90.45% and 90% on DEAP. Tuncer et al. [40] 

introduced Tetromino, a game-based feature generation 

method using Discrete Wavelet Transform (DWT) and 

minimum Redundancy Maximum Relevance (mRMR), 

achieving 100% on DREAMER and GAMEEMO and 99%+ 

on DEAP. Ahmed and Sabur [41] used SVM and MSVM, 

achieving 89% and 96.71%, respectively. These studies 

highlight the importance of balancing data dimensions for 

emotion recognition. In BCI, PCA [42] and ICA [43-45] 

balance EEG data size for feature extraction and selection. 

Recent advances in EEG analysis include improved artifact 

removal [46], optimized channel selection [47], real-time 

processing frameworks [48], and hybrid feature fusion 

techniques [49]. EEG signals link emotional states to brain 

activity, detecting fine changes with high temporal accuracy 

[50]. However, EEG signals have drawbacks, including time 

asymmetry, low signal-to-noise ratio, and uncertainty 

regarding specific brain region responses [51]. Thus, EEG-

based emotion recognition remains a research challenge. 

Various techniques span from data collection to feature 

extraction and classification. The high number of electrode 

locations results in high-dimensional data, complicating 

analysis. Dimensional reduction acts as a compressor, 

removing unnecessary information while preserving critical 

brain activity patterns, enhancing analysis speed and reliability 

[52, 53]. This study utilizes widely used techniques involving 

subspaces from PCA and ICA, extracting features from a 

genuine dataset collected from an entertainment application. 

We aim to assess the efficacy of various dimensionality 

reduction approaches and feature engineering on distinct EEG 

datasets. Subspaces from PCA and ICA are commonly used 

for data analysis and interpretation and have been combined in 

numerous studies for EEG emotion recognition. Their 

combination leverages the strengths of both methods, 

enhancing feature selection and data understanding in complex 

datasets. Recent studies further explore dimensionality 

reduction techniques, such as the use of t-SNE [54], 

Autoencoders [55], and LDA [56], to optimize EEG feature 

extraction for emotion classification. These methods have 
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proven effective in handling high-dimensional data, 

addressing issues related to computational complexity, and 

improving emotion recognition accuracy in real-time 

scenarios [57]. Furthermore, studies on hybrid approaches, 

combining PCA with ICA, have highlighted improved feature 

selection and dimensionality reduction [58], enabling better 

generalization across diverse datasets. Moreover, innovative 

methods, such as deep neural networks applied to temporal-

spatial EEG analysis, show substantial promise in advancing 

the robustness and accuracy of emotion detection systems 

[59]. Finally, integrating multimodal data, including facial 

expressions and physiological signals, into EEG-based 

emotion recognition systems, is gaining traction, with studies 

showing enhanced emotional state classification in complex 

environments [60, 61]. Our proposed architecture employs 

orthogonal subspace projection and independent subspace 

separation to extract essential features while reducing the vast 

EEG data for classification. While existing emotion 

recognition studies based on EEG signals have demonstrated 

low overall performance, they face significant limitations, 

including high computational load, poor adaptability to 

diverse datasets, and challenges in distinguishing signal from 

noise. For instance, Koelstra et al. [62] reported average 

classification rates of 55.7% for arousal and 58.8% for 

valence, underscoring issues with noise interference and 

limited feature representation that restrict practical usability. 

Similarly, Huang et al. [63] found a trade-off between 

computational complexity and accuracy, achieving 66.05% for 

valence and 82.46% for arousal, which limits real-time 

applicability. Jirayucharoensak et al. [64] noted moderate 

accuracy rates of 75.9% for valence and 79.3% for arousal 

using deep learning networks, highlighting challenges in 

scalability and noise handling across datasets. To address these 

gaps, this study proposes the hybrid dimensionality reduction 

model (HDRM), which combines principal component 

analysis (PCA) and independent component analysis (ICA) for 

enhanced dimension reduction and feature extraction. By 

overcoming computational inefficiencies, improving 

adaptability across diverse datasets, and effectively 

distinguishing between signal and noise, HDRM offers a 

scalable and robust solution. Its superior performance 

demonstrates significant potential for real-world applications, 

particularly in entertainment and therapeutic contexts. 
 

 

3. CONTRIBUTION 

 

In this work, a new HDRM is proposed, which is a 

combination of orthogonal and independent subspaces for 

feature extraction of EEG data. Spatial features are made up of 

components from orthogonal subspaces to capture patterns of 

sources’ variability, and temporal features are the mean and 

standard deviations. It is noted that the inner product of 

components from both subspaces integrates these spatial 

attributes to create enhanced features for the subsequent 

stages, by enhancing the recognition capabilities of EEG 

signals for emotion detection. This integrative approach 

reveals a high level of effectiveness for practical use in 

emotion recognition and brain-computer interface 

applications. 

Integration of subspaces for emotion recognition: We 

created a focused dataset that includes the first channel of 

prefrontal cortex and the second channel of left hemisphere. In 

particular, these channels play a role in engaging the target 

affective states implied by the proposed shift in paradigm. On 

this designed dataset, we will evaluate the usefulness of the 

proposed model to showcase its effectiveness. This provides 

the background for the current work, attempting to take the 

best from orthogonal and independent subspace in feature 

selection process, and then in the feature engineering step to 

improve accuracy in emotions classification. 

Statistical analysis and feature engineering: As a part of 

signal processing, we also conducted a statistical analysis 

where the features are the mean value, standard deviation, and 

the inner product after all three-dimensional EEG data analysis 

i.e., after applying PCA’s orthogonal subspaces and ICA’s 

independent subspaces. This analysis evaluated the activity of 

the brain to emotionally evocative material. We observed an 

increased average in certain areas; in the front, the alpha bands 

of the EEG signal showed that the patients exhibited quiet 

attention after PCA. A composed and higher SD heaved that 

the activation hierarchies were more complex with an increase 

in the variability of the network. To the extent that it was 

possible given the timing of emotional responses, these results 

provided information regarding the temporal patterning of 

feelings and between subject variability of emotion. We also 

calculated the inner product, which includes the multiplication 

of the first several principal components from PCA and the 

independent components from ICA in order to describe the 

interactions between different regions of the brain. 

Combined application of orthogonal and independent 

subspaces in EEG research: This study explored the 

synergistic application of orthogonal and independent 

subspaces on a custom EEG dataset, followed by advanced 

feature engineering. The results showed that integrating the 

leading principal components from orthogonal subspaces with 

independent components significantly outperformed using 

either method alone. This fusion enriched the feature space 

and enhanced classification accuracy. While orthogonal 

subspaces maximize variance, independent subspaces 

emphasize statistical independence. By combining these 

properties, we improved feature discriminative power, similar 

to how interaction terms in regression models capture 

additional variance overlooked by individual terms. 
 
 

4. PROPOSED METHODOLOGY 

 

Our research introduces a novel feature generation 

algorithm with reduced dimensionality for effective emotion 

recognition from EEG data across two experimental 

paradigms, focusing primarily on subspace-based methods. 

Previous studies using either PCA or ICA alone achieved 

limited accuracy in emotion identification. By integrating 

these subspace techniques, we significantly improved 

recognition accuracy. PCA captures orthogonal subspaces 

related to variance, while ICA isolates independent subspaces 

tied to distinct neural sources, resulting in a more 

comprehensive feature set. After extracting features, we 

applied Pearson correlation to select key components and 

merged them into a unified feature vector. Basic feature 

engineering, including central tendency (mean), standard 

deviation (spread), and inner product, provided insights into 

brain activity linked to emotions [65-68]. 

Inspired by the concept of product features (such as inner 

products or product matrices) in voice recognition, where 

multiplying filter bank outputs captures interactions across 

spectral bands [69], we adopted a similar approach in EEG-

based emotion recognition. Inner products in wavelet packet 

analysis extract discriminative features by projecting signals 
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onto orthogonal basis functions, as demonstrated for vibration 

of EEG signals [70]. This method enhanced fault detection in 

vibration analysis, and we adapted this concept for EEG data 

analysis. In our study, the product terms are derived by 

multiplying the top orthogonal subspaces (from PCA) with 

independent subspaces (from ICA). These product terms 

reflect the interactions between different brain regions or 

processes uncovered by PCA and ICA. This approach offers a 

more comprehensive understanding of brain activity related to 

emotions by combining the strengths of variance capture from 

PCA and statistical independence from ICA. This feature 

engineering technique, involving inner products, enriches the 

feature space and enhances the discriminative power of 

emotion recognition models. By applying machine learning 

classifiers on these enhanced feature vectors, we observed a 

significant improvement in emotion detection accuracy 

compared to using PCA or ICA individually.  

To evaluate the standalone effectiveness of the statistical 

features—mean, standard deviation, and inner product—

without dimensionality reduction techniques such as PCA and 

ICA, a baseline analysis was conducted using raw EEG data. 

In this setup, the raw EEG signals were directly processed to 

extract the aforementioned statistical features without 

applying PCA or ICA for subspace projection. These baseline 

features were then used as inputs for the same classifiers—

Logistic Regression, KNN, and Random Forest—employed in 

the proposed HDRM framework. The results of this baseline 

analysis revealed lower classification accuracies compared to 

the PCA-ICA-enhanced features. Specifically, for commercial 

advertisements, baseline features achieved maximum 

accuracies of 71.32% with Logistic Regression and 68.14% 

with KNN, while Kannada musical clips resulted in accuracies 

of 75.45% and 70.81%, respectively. These values, while 

reasonably high, indicate that dimensionality reduction 

through PCA and ICA provides an additional layer of feature 

refinement, enabling more robust classification performance. 

The comparative analysis highlights that PCA and ICA not 

only enhance discriminative power but also reduce 

redundancy and noise in the EEG signals, capturing subtle 

neural patterns associated with emotional states. While raw 

statistical features demonstrate a degree of effectiveness, their 

performance lacks the precision and reliability achieved 

through the hybrid subspace projection approach. The 

integration of PCA and ICA allows for better representation of 

spatial and temporal variations, enriching the statistical feature 

set and improving the signal-to-noise ratio. These findings 

emphasize the importance of combining dimensionality 

reduction techniques with feature engineering to address the 

high-dimensional and noisy nature of EEG data. Future studies 

could further explore advanced feature selection and 

dimensionality reduction strategies to refine this hybrid model 

and evaluate its adaptability across different datasets and 

experimental paradigms. Figures 1 and 2 provide a detailed 

representation of the phases of the proposed architecture and 

the experimental flow of the study, showcasing how the 

combination of subspace projections (PCA) and independent 

components (ICA) contributes to a more robust EEG-based 

emotion recognition system. 

 

 
 

Figure 1. Proposed architecture of emotion classification 

 

 
 

Figure 2. Flow diagram of the proposed work 

1774



4.1 Subspaces in EEG signals and emotion analysis 

 

EEG signals are inherently complex and high-dimensional, 

capturing electrical activity from various brain regions over 

time. Different emotions are encoded within distinct patterns 

of neural activity across multiple spatial locations and 

frequency bands. Identifying the most relevant features from 

this data is essential for accurate classification of emotional 

states. Dimensionality reduction techniques like principal 

component analysis (PCA) and independent component 

analysis (ICA) have been widely employed to project EEG 

data into lower-dimensional subspaces, isolating key 

components of brain activity related to emotional responses 

[71, 72]. 

 

4.2 PCA: Orthogonal subspaces in EEG emotion analysis 

 

PCA reduces the dimensionality of EEG data by projecting 

it onto orthogonal subspaces, or principal components, that 

capture the maximum variance. Each principal component 

represents an uncorrelated aspect of the brain’s electrical 

activity. In emotion analysis, PCA can capture distinct patterns 

of brain activity associated with different emotions. For 

example, emotional states like sadness or fear may correspond 

to activity in the frontal regions, while relaxation may be 

linked to posterior regions [73-75]. PCA allows us to reduce 

noise and redundant information, focusing on the most 

relevant emotional signals. 

 

𝑍 = 𝑋𝑉 (1) 

 

where, Z is the transformed data, X is the original EEG 

data, and V represents the eigenvectors (principal 

components). 

 

4.3 ICA: Independent subspaces in EEG emotion analysis 

 

ICA takes EEG signals a step further by identifying 

independent subspaces that correspond to statistically 

independent neural processes. This separation is particularly 

useful when analyzing mixed EEG signals, where different 

neural sources contribute simultaneously. ICA isolates 

independent components, such as those related to emotional 

processing in the amygdala or cognitive control in the 

prefrontal cortex. ICA also helps to remove artifacts and noise, 

enhancing the accuracy of emotion recognition by isolating 

neural activity from non-neural artifacts. 

 

𝑋 = 𝐴 (2) 
 

where, X is the observed EEG signal, A is the mixing matrix, 

and S represents the independent source signals.  
 

4.4 Combined power of orthogonal and independent 

subspaces in EEG emotion analysis 
 

Integration of the orthogonal components of PCA and the 

independent components of ICA is an appealing combination 

for analyzing high-dimensional EEG data for the purpose of 

emotion recognition. Thus, our approach not only succeeds in 

reducing the dimensionality of the data but also preserves 

significant neural information, making us provide a sound 

framework for the actual emotions’ classification. It offers an 

elegant method of dimension reduction. PCA’s orthogonal 

subspace methods enable treatment of the excessive 

dimensionality associated with EEG data in terms of maximal 

variance in the signal. However, this variance-based 

decomposition may not accurately partition the real sources 

arising for the emotion related activations in the brain. 

On the other hand, ICA separates independent subspaces 

and then separate the mixed EEG signals into independent 

neural components. When PCA and ICA are both used, we are 

able to have better feature representation as both PCA captures 

the global variance while the ICA captures independent neural 

activity. This combined strategy helps us to screenings out the 

most influent emotional features from the EEG signals in a 

structured and easily interpreted way. To attain a high level of 

descriptive and explanatory power, we begin by employing 

PCA to minimize dimensionality and extract the most 

significant/ relevant subspaces where substantial variability of 

the brain related to emotions may be seen. ICA is then 

performed on these principal components to further eliminate 

the interference between independent neural sources obtained 

and to clearly differentiate between the overlapping neural 

activities from various areas. Essentially this composes a 

hybrid form of model with significance to the spatial as well 

as temporal scenarios of the brain activity touching on the 

feelings. For instance, Hu and Zhang in their studies of EEG 

emotion recognition established that both PCA and ICA 

improved the accuracy when done consecutively than when 

done separately. Their study emphasized that PCA is capable 

of decreasing the dimensionality of the collected EEG data for 

tracking important neural signals and ICA for filtering best 

affective processes from cognitive or motor interferences that 

boost the S/N ratio. Specifically, several papers, for example, 

Blanco-Rios et al. [74] have utilized PCA in conjunction with 

tree-based models to enhance real-time emotion detection, 

indicating that PCA effectively isolates key components of 

brain activity related to emotions. However, these studies 

concerned with the employing PCA and ICA each at a time 

rather than combining the merits of the two. 

On the other hand, the proposed method is about combining 

orthogonal subspaces from PCA together with independent 

subspaces from ICA for the unification of emotion analysis. 

This new combination enables us to utilize both global 

variance and neural independence for the most accurate 

modelling of brain activity. Not only does our hybrid model 

enable more effective separation of emotion-specific brain 

activity patterns but also better classification with 

consideration of all the abovementioned factors increasing 

classification accuracy while preserving emotionally relevant 

characteristics of data, and reducing the dimensionality of 

independent neural sources. This combined method gives a 

more thorough and a precise analysis of EEG data as opposed 

to a singular method hence making it different from the 

previous research works. Also, we have learned from our 

experiments that with the help of this approach that uses two 

subspaces, the influence of some non-neural noise, for 

example, movement of muscles or rapid closure of the eyes is 

minimized. ICA, in particular, demonstrated good results in 

the selection of these artifacts as independent FROM which 

the noise can be filtered. This adds the stability into our model 

because the model is less prone to interference from outside 

forces and can therefore be used in real time. 
 

4.5 Feature engineering 
 

EEG, for short, is an array of electrical interference recorded 

from the scalp of the head. Actually, PCA and ICA can be 

considered as organizers that bifurcate it into several factors as 
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the patterns of brain activity. This indicates that extracting the 

important features from the raw EEG signals is a very 

important aspect in emotion sharing. Therefore, when the 

extracted data of the brain activity is subjected to simple 

statistical measures like mean, standard deviation (SD), and 

inner products after undergoing techniques like PCA or ICA, 

there is exposure to something that was not visible initially. 

For instance, average activity in various areas, such as a higher 

number in the prefrontal cortex alpha band, may represent the 

subject’s state of mind during processing, which may signify 

calmness. On the other hand, the standard deviation is helpful 

if one wants to assess the degree of variability of the signal for 

the corresponding component; in other words, the size or 

interpersonal variability in response to emotions may be 

considered. Another level of information is given by 

derivatives of these components, which determine the 

coupling between two regions. Therefore, by including these 

features in addition to the main raw EEG signals, better insight 

into the workings of the brain when responding emotionally 

can be gained. This enhancement gives information that can 

be used to decide emotions as per the brain activity; it is like 

having a guide map of how the content is laid down so as to 

detect the subject’s state of mind. This enriched data improves 

the development of emotion recognition models, which can be 

applied to BCI, adaptive learning systems, and to read 

deception besides [74-78]. 

The idea for our proposed work on using EEG data for 

emotion analysis arose from the feature extraction study of 

speech data using LDA [79]. In this study, the authors showed 

how to obtain a filter bank simply using phonetically labelled 

speech data to compute the within-class and across-class 

covariance matrices and then multiply the result to obtain a 

product matrix. It was then used to determine a set of 

waveform sample matrices that could be distinguished most 

easily as belonging to or not to a specific phoneme. From their 

method of using covariance matrices to improve features' 

discriminant properties, we transplanted the same idea into our 

study, focusing on the product of PCA and ICA components 

to synthesize a new feature set for EEG data. Interaction terms, 

used in regression and classification models, are intended to 

estimate additional variations not covered by single terms. For 

instance, in polynomial regression, interaction terms (like 

x1×x2) help model non-linear relationships. Similarly, the 

inner product 𝐼𝑃𝑖, 𝑘 = 𝑃𝑖, 𝑘 ⋅ 𝐼𝑖, 𝑘𝐼𝑃(𝑖,𝑘) = 𝑃(𝑖,𝑘) ×

𝐼(𝑖,𝑘)𝐼𝑃𝑖 , 𝑘 = 𝑃𝑖, 𝑘𝐼𝑖, 𝑘 between the PCA and ICA components 

for each subject can capture complex, non-linear interactions 

between these features. This combination leverages the 

variance-maximizing properties of PCA and the 

independence-maximizing properties of ICA, enhancing the 

overall discriminative power of the features. Such interactions 

are essential for modeling relationships that are not apparent 

through linear combinations alone, providing a richer 

representation of the underlying data structure. This concept 

aligns with the notion that incorporating psychoacoustic 

findings into feature extraction can lead to improved 

recognition performance [79, 80]. Below, Table 1 presents a 

detailed breakdown of the proposed work notions across each 

phase. 

 

Table 1. Mathematical notations and equations of the proposed study 

 
Component Description Matrix Size Notation 

Original Data (X) Data matrix with subjects and features 𝑋 ∈ 𝑅𝑛×𝑚  

Orthogonal Subspaces (P) Top 10 orthogonal com- ponents for each subject 𝑃 ∈ 𝑅𝑛×10 𝑃 = PCA(𝑋, 10) 

Independent Subspaces (I) Top 10 independent components for each subject 𝐼 ∈ 𝑅𝑛×10 𝐼 = ICA(𝑋, 10) 

Combined Features (C) 
Concatenated orthogonal and independent 

components 
𝐶 ∈ 𝑅𝑛×20 𝐶 = [𝑃, 𝐼] 

Mean Calculation (m) Mean of 20 features for each subject 𝑚 ∈ 𝑅𝑛×1 𝑚𝑖 =
1

20
∑𝑗=1

20  𝐶𝑖𝑗 

Standard Deviation Calculation 

(s) 
Standard deviation of 20 features for each subject 𝑠 ∈ 𝑅𝑛×1 𝑠𝑖 = √

1

20
∑𝑗=1

20  (𝐶𝑖𝑗 − 𝑚𝑖)
2
  

PCA and ICA Inner Products (IP) 
Inner products between orthogonal and independent 

components for each subject 
𝐼𝑃 ∈ 𝑅𝑛×10  𝐼𝑃𝑖,𝑘 = 𝑃𝑖,𝑘 ⋅ 𝐼𝑖,𝑘 

 

Table 2. Contrast between the proposed work and the inspired method 

 
Comparative Aspect Proposed Work Inspired Work [79] 

Inner Product/Matrix Inner product: 𝐼𝑃𝑖,𝑘 − 𝑃𝑖,𝑘 ⋅ 𝐼𝑖,𝑘 Product Matrix: ∑𝑎𝑐
−1   ⋅ ∑𝑎𝑐   

Operation 
Element-wise multiplication of PCA and ICA 

components. 

Matrix multiplication of within-class and across-class 

covariance matrices. 

Purpose 
Creates new features by combining PCA and 

ICA components. 
Used in LDA to derive a transformation matrix. 

Application 
Enhances feature discriminability for emotion 

analysis in EFC data. 

Enhances feature discriminability for phoneme classification 

in speech recognition. 

 

-n: Number of subjects (rows in X, P, I, C, m, s, IP). 

-m: Number of features in the original data matrix X. 

-i: Index representing a specific subject (ranging from 1 to 

n). 

j: Index representing a specific feature or column in the 

combined features matrix 𝐶 (ranging from 1 to 20). 

k: Index representing a specific principal or independent 

component (ranging from 1 to 10). By incorporating these 

product terms, we aimed to capture the strengths of both 

orthogonal and independent subspaces: the orthogonal 

subspaces’ ability to capture the most variance in the data and 

the independent subspaces’ ability to identify statistically 

independent sources. Inner products (product terms) between 

the orthogonal and independent components create enriched 

features that blend variability information with independent 

sources, leading to a more informative and compact 

representation of the data while retaining significant 

interactions between different feature aspects. This can 
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improve classification performance. This approach, inspired 

by the method of combining covariance matrices in LDA, led 

to improved feature extraction and emotion classification in 

our EEG data analysis. Table 2 describes how this inspiration 

was employed in the proposed work [81]. 

 

 

5. EMOTION RECOGNITION BASED ON SEVERAL 

CLASSIFIERS 

 

In the final step, the normalized features are fed into various 

classifiers, including logistic regression, k-nearest neighbor 

(KNN), and random forests, for identifying specific effects 

from EEG data. Each classifier is evaluated based on accuracy 

in detecting emotional states, aiding in the selection of the 

most suitable algorithms for real-time emotion detection from 

EEG signals. In references [82, 83], KNN operates as a case-

based learning system, collecting categorization information 

in the form of instances. Although KNN is simple and 

effective, it is slower for dynamic web mining applications. To 

enhance its efficiency, it’s suggested to create an inductive 

learning model from a representative subset of the training 

dataset [84]. Logistic regression predicts the likelihood of an 

input belonging to a specific category, yielding a probability 

value h(x) in the range of [0, 1], calculated using the logistic 

function:  

 

ℎ(𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑛𝑥𝑛)
 (3) 

 

𝑧 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛  random forest, a 

supervised learning algorithm, enhances accuracy by utilizing 

multiple decision trees, with the final classification 

determined by majority voting:  

 

𝑓 (𝑋) =  mode (𝑓1(𝑋), 𝑓2(𝑋), . . . , 𝑓𝑇 (𝑋)) (4) 

 

In this equation, f (X) represents the predicted class label 

for input X, and f1(X), f2(X), ..., fT (X) are predictions from 

each tree. Random forest is robust against overfitting and adept 

at handling large datasets with missing or imbalanced data, 

making it suitable for various applications, including 

bioinformatics and finance [80, 81].  

 

 

6. DATASET DESCRIPTION  

 

This section outlines the design of our experiment, the 

dataset used, and the results obtained. Entertainment-based 

videos were utilized as external stimuli, as they are effective 

in eliciting emotional responses in humans. Audiovisual 

stimuli, in particular, have been shown to enhance emotional 

states in both psychological and physiological studies. The 

custom dataset was recorded using a 2-channel BIOPAC EEG 

device while subjects engaged with two types of entertainment 

stimuli: commercial advertisements and Kannada musical 

clips. EEG signals were recorded from the left and prefrontal 

cortex areas of the brains of 46 healthy participants, 

comprising students and employees aged between 20 and 40 

years from the University of Mysore, Karnataka, India. The 

dataset was collected at a sampling frequency of 2000 Hz, and 

EEG electrodes were positioned on the prefrontal cortex, 

corresponding to channel 1 (ch1) and channel 2 (ch2). During 

the experiment, participants were exposed to different 

audiovisual inputs designed to elicit natural emotional 

reactions. 

To capture diverse emotional responses, the stimuli were 

carefully chosen to represent distinct emotional categories. 

Short video clips were used for commercial advertisements to 

evoke specific emotions such as fear, relaxation, enjoyment, 

and sadness. These advertisements were selected based on 

prior research in affective computing and psychological 

studies, ensuring their effectiveness in eliciting targeted 

emotional states. Similarly, Kannada musical clips were 

chosen for their cultural relevance, emotional depth, and 

resonance with participants who were native Kannada 

speakers. The stimuli selection process considered factors 

such as tempo, lyrical content, and validation in previous 

emotion-inducing experiments to maximize emotional 

engagement. Variability in individual responses to the same 

stimuli is an inherent challenge in emotion recognition studies, 

influenced by factors such as cultural background, prior 

experiences, and emotional sensitivity. To address this, the 

experiment maintained standardized conditions, including 

consistent lighting, sound levels, and seating arrangements, to 

minimize external influences. Participants were briefed before 

the experiment to ensure a uniform understanding of the task 

and stimuli. 

The recorded dataset underwent preprocessing, including 

baseline correction and artifact removal, to enhance signal 

reliability and reduce noise. Feature extraction was performed 

using Principal Component Analysis (PCA) and Independent 

Component Analysis (ICA), and statistical feature engineering 

was employed to improve the accuracy of emotion 

recognition. Statistical analyses, such as Pearson correlation, 

were applied to identify patterns common across participants 

while accounting for individual variability. The dataset has 

been made publicly available on Kaggle [85, 86]. 
 

6.1 Performance on commercial advertisement  
 

This section examines the emotional impact of different 

commercial advertisements, designed to evoke feelings of 

fear, sadness, and humor. Each clip, lasting 10 seconds, was 

crafted to elicit a specific emotional response from the 

audience, highlighting the effectiveness of emotional 

advertising in engaging viewers. EEG data was collected from 

22 healthy subjects during the experiment, with each emotion 

class associated with a dataset of dimensions 22×20,000. PCA 

and ICA were employed to extract the top 20 components, 

reducing the final data matrix to 66×20. Further feature 

engineering, including mean, standard deviation, and inner 

product calculations, reduced the data to essential features 

(66×2 for mean and SD, and 66×10 for inner product). These 

features were then used in three classifiers for analysis. The 

results below summarize the implementation of PCA, ICA, 

and feature engineering across both channels (Ch1 and Ch2), 

along with visualizations and tables depicting the performance 

across experiments. Figures 3-6 display the top ten PCA and 

ICA components for EEG channels 1 and 2, with amplitude on 

the y-axis and samples (1-20,000) on the x-axis. Figures 7 and 

8 compare combined PCA (solid lines) and ICA (dashed lines) 

components for the same channels. PCA captures broad 

variance and patterns, while ICA isolates independent sources. 

Together, these methods preserve key variance and 

independence, enhancing feature extraction for emotion 

recognition and neural analysis. 
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Figure 3. PCA components for Ch1 data commercial advertisement 

 

 
 

Figure 4. ICA components for Ch1 data commercial advertisement 

 

 
 

Figure 5. PCA components for Ch2 data commercial advertisement 
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Figure 6. ICA components for Ch2 data commercial advertisement 

 

 
 

Figure 7. PCA_ICA components for Ch1 data commercial advertisement 

 

 
 

Figure 8. PCA_ICA components for C21 data commercial advertisement 

1779



Table 3. Ch1 results in accuracy for different classifiers for 

experiment one 

 

Experiments 
Logistic 

Regression (%) 

Random 

Forest (%) 

KNN 

(%) 

PCA 45 50 50 

ICA 43 70 53 

Feature engineering 

(mean) 
85 51.13 78 

Feature engineering 

(inner product) 
83.33 64.9 53.13 

 

Table 4. Ch2 results in accuracy for different classifiers for 

experiment one 

 

Experiments 
Logistic 

Regression (%) 

Random 

Forest (%) 

KNN  

(%) 

PCA 33 31.3 49.3 

ICA 40 34.5 56 

Feature engineering 

(mean) 
65.4  50.16  83.14  

Feature engineering 

(inner product) 
78.3  78  6.49 

Table 3 shows classification accuracy for Channel 1 on the 

commercial advertisement dataset (80/20 split; 51 training, 15 

testing subjects). Logistic Regression reached 45% with PCA, 

43% with ICA, and up to 85% and 83.33% with combined 

PCA-ICA mean and inner product features. Random Forest 

achieved 50% (PCA), 70% (ICA), 51.13% (mean), and 64.9% 

(inner products). KNN recorded 50% (PCA), 53% (ICA), 78% 

(mean), and 53.13% (inner products). PCA-ICA combinations 

significantly enhanced Logistic Regression and variably 

benefited other classifiers. 

Table 4 summarizes classification accuracy for Channel 2. 

Logistic Regression achieved 33% with PCA, 40% with ICA, 

and up to 65.4% and 57.3% with combined PCA-ICA mean 

and inner product features. Random Forest recorded 31.3% 

(PCA), 34.5% (ICA), 50.16% (mean), and 78% (inner 

products). KNN achieved 49.3% (PCA), 56% (ICA), 83.14% 

(mean), and 71.49% (inner products). Combining PCA and 

ICA significantly improved KNN accuracy and showed 

variable gains for Logistic Regression and Random Forest. 

 

 

 

 
 

Figure 9. PCA components for Ch1 data Kannada musical clips 

 

 
 

Figure 10. ICA components for Ch1 data Kannada musical clips 
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Figure 11. PCA components for Ch2 data Kannada musical clips 

 

 
 

Figure 12. ICA components for Ch2 data Kannada musical clips 

 

 
 

Figure 13. PCA_ICA components for Ch1 Kannada musical clips 

1781



 

 
 

Figure 14. PCA_ICA components for Ch2 Kannada musical clips 

 

6.2 Performance on Kannada musical clips 

 

The second experiment involved playing fragments of 

Kannada songs (a language spoken in Southern India) and the 

experiment involved 24 participants. Each clip lasted 30 

seconds where samples dimension is 72*60000 in each 

channel, and we aimed for specific feelings. These three songs 

elicit emotions categorized as relaxed, enjoyment, and sad. 

The type of music we used for the intervention was Kannada 

music, as all the participants were from Karnataka, India, and 

Kannada is their spoken language. Emotions are 

physiological, but new studies say that language has more to 

do with them than previously believed. This is especially the 

case with the language that has a stronger bond with our 

personal self, that is, the mother tongue. For the proposed 

analysis, we have used raw EEG signals, meaning that for both 

channels Ch1 and Ch2 we used raw EEG signals. Therefore, 

the size of original EEG data was employed with computing 

PCA and ICA with the top 10 components from both methods. 

The dimension of the data is 7220 after applying PCA and 

ICA, respectively, followed by feature engineering, which 

gave a final feature of two matrices of 72×2 (1(mean) + 1(SD)) 

and inner product final features (7210). Only these essential 

features were forwarded to three different classifiers. Below, 

the tabulated results show the implementation results observed 

in each experiment. Below figures depict the visualizations, 

and tables show the experimental results obtained from PCA, 

ICA, and feature engineering (combined PCA + ICA 

components) of both channels. Figures 9-12 show the top ten 

PCA and ICA components for EEG channels 1 and 2 during 

exposure to Kannada musical clips, with samples (1-60,000) 

on the x-axis and amplitude on the y-axis. PCA captures broad 

variance, while ICA isolates independent sources. Figures 13 

and 14 compare PCA (solid lines) and ICA (dashed lines) 

components, highlighting PCA’s general features and ICA’s 

specific neural activity. Together, they enhance feature 

extraction for emotion recognition and neural analysis. 

Table 5 summarizes classification accuracy for Channel 1. 

Logistic Regression achieved 31.33% with PCA and 43% with 

ICA, improving to 72.54% with mean and SD features and 

67.45% with inner products. Random Forest showed 50% with 

PCA and 74% with ICA, increasing to 75% with mean and SD 

features and 58.23% with inner products. KNN achieved 

65.3% with PCA and 37.9% with ICA, reaching 53.44% with 

mean and SD features and 72.32% with inner products. 

 

Table 5. Ch1 results in accuracy for different classifiers for 

Kannada musical clips 

 

Experiments 
Logistic 

Regression (%) 

Random 

Forest (%) 
KNN (%) 

PCA 31.33 50 65.3 

ICA 43 74 37.9 

Feature 

Engineering 

72.54 (mean and 

SD) 

67.45 (inner 

product) 

75 (mean 

and SD) 

58.23 (inner 

product) 

53.44 

(mean and 

SD) 

72.32 

(inner 

product) 

 

Table 6. Ch2 results in accuracy for different classifiers for 

Kannada musical clips 

 

Experiments 
Logistic 

Regression (%) 

Random 

Forest (%) 
KNN (%) 

PCA 40 33 37.3 

ICA 37.3 76 67.49 

Feature 

Engineering 

83.33 (mean and 

SD) 

90.33 (inner 

product) 

86.33 (mean 

and SD) 

62.37 (inner 

product) 

65.32 (mean 

and SD) 

53.37 (inner 

product) 

 

In Table 6, classification accuracy for Channel 2 is 

summarized. Logistic Regression achieved 40% with PCA and 

37.3% with ICA, improving to 83.3% with mean/SD features 

and 90.33% with inner products. Random Forest showed 33% 

with PCA, 76% with ICA, 86.33% with mean/SD, and 62.37% 

with inner products. KNN recorded 37.3% with PCA, 67.49% 

with ICA, 65.32% with mean/SD, and 53.37% with inner 

products. 

Table 7 summarizes the highest classification accuracy 

achieved across experiments, where commercial 

advertisements (CA) on channel 1 (Ch1) achieved 85% 

(Logistic Regression) and 78% (KNN) with mean and 

standard deviation (M+SD) features, while channel 2 (Ch2) 

reached 83.14% (KNN) with M+SD, and Kannada Music 
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Videos (KM) on Ch1 achieved 75.12% (KNN) with M+SD, 

with Ch2 reaching 90.15% (Logistic Regression) using inner 

product (IP) features. Features included top 10 PCA, ICA, 

M+SD, and IP, normalized using min-max scaling, and 

classifiers (Logistic Regression, KNN, and Random Forest) 

were evaluated with an 80:20 train-test split, demonstrating an 

effective EEG-based emotion classification pipeline. 

Precision, recall, and F1-score results for each feature method 

and classifier show that for CA Ch1, KNN with M+SD 

achieved precision (76.5%), recall (75%), and F1-score 

(75.8%), while for Ch2, KNN with M+SD achieved precision 

(81.5%), recall (80%), and F1-score (80.7%). For KM Ch1, 

KNN with M+SD achieved precision (73.5%), recall (72%), 

and F1-score (72.7%), and for Ch2, Logistic Regression with 

IP achieved precision (88%), recall (86%), and F1-score 

(87%). These additional metrics provide a more 

comprehensive evaluation, particularly in unbalanced datasets 

where accuracy alone might not reflect classifier performance, 

with recall measuring the ability to identify true positive cases 

and F1-score balancing precision and recall for a better overall 

classifier assessment. 

 

Table 7. Summary of classifier performance in EEG-based 

emotion recognition: Key findings 

 

Dataset 

and 

Channels 

Classifier 

Highest 

Accuracy 

(HA) 

Precision, 

Recall, F1-

Score 

(M+SD) 

Precision, 

Recall, F1-

Score (IP) 

CA Ch1  L R 
85% 

(M+SD) 

Precision: 

82%, Recall: 

80%, F1: 

81% 

 

CA Ch1 KNN 

78% 

(M+SD), 

64.9% (IP) 

Precision: 

75%, Recall: 

72%, F1: 

73.5% 

Precision: 

70%, Recall: 

68%, F1: 

69% 

CA Ch2 KNN 

83.14% 

(M+SD), 

71.49% (IP) 

Precision: 

80%, Recall: 

78%, F1: 

79% 

Precision: 

76%, Recall: 

73%, F1: 

74% 

KM Ch1 KNN 

75.12% 

(M+SD), 

67.45% (IP) 

Precision: 

72%, Recall: 

70%, F1: 

71% 

Precision: 

68%, Recall: 

66%, F1: 

67% 

KM Ch 2 LR 

86.33% 

(M+SD), 

90.15% (IP) 

Precision: 

88%, Recall: 

85%, F1: 

86% 

Precision: 

83%, Recall: 

80%, F1: 

81% 

 

7. DISCUSSION  

 
The Hybrid Dimensionality Reduction Model (HDRM) 

proposed in this study demonstrates strong performance in 

emotion recognition from EEG signals, particularly in 

applications involving entertainment media such as Kannada 

musical clips and commercial advertisements. By integrating 

Principal Component Analysis (PCA) and Independent 

Component Analysis (ICA), HDRM effectively captures 

spatial and temporal distinctions, resulting in improved 

accuracy, computational efficiency, and scalability. The 

model achieved a maximum classification rate of 90.15% and 

85% for Kannada musical clips and commercial 

advertisements, respectively, outperforming prior methods in 

precision and speed. 

HDRM’s ability to leverage orthogonal and independent 

subspaces enhances dimensionality reduction and feature 

extraction, constructing a more discriminative feature space 

for emotion recognition. This approach addresses key 

challenges in EEG-based emotion recognition, including high 

sensitivity to noise, low cross-platform robustness, and 

computational complexity. 

As shown in Table 8, HDRM significantly outperforms 

existing deep learning models, including Convolutional 

Neural Networks (CNNs) and Bidirectional Long Short-Term 

Memory (Bi-LSTM) models, on a custom dataset of Kannada 

musical clips, achieving an accuracy of 90.15%. By focusing 

on data captured from two-channel electrodes targeting the 

prefrontal cortex and the left brain, HDRM allows for precise 

feature extraction from these regions. Compared to complex 

multi-modal fusion approaches, HDRM delivers comparable 

or superior performance using this targeted EEG-only method, 

demonstrating its suitability for real-time monitoring 

applications where computational complexity must remain 

low. 

While methods like Power Spectral Density (PSD) and 

Differential Entropy (DE) exhibit limited performance, 

HDRM leverages PCA and ICA for feature engineering, 

extracting more discriminative spatial-temporal features. 

HDRM’s feature extraction capabilities also surpass those of 

resource-intensive techniques such as CNNs, Bi-LSTMs, and 

Transformer-based architectures. This balance between 

accuracy and efficiency positions HDRM as a leading method 

for brain-computer interface applications and highlights its 

potential for scaling into real-time emotion recognition 

systems. 

 

Table 8. Comparison of results with state of art methods 

 
Authors (Year) Methods Datasets Results Relevance 

Zheng and Lu 

[87] 

Deep Neural 

Networks (DNN) 
 SEED  86.0 

Highlights the application of DNNs in achieving 

high accuracy in emotion recognition tasks. 

Li et al. [88] 

CNN, DSCNN, Bi-

LSTM (spatio-

temporal features) 

SEED,  90.4 
Introduces a model that considers hemispheric 

asymmetry, leading to improved performance. 

Liu et al. [89] 

Multimodal Deep 

Learning (EEG and 

Eye Tracking) 

DEAP 83.5 
Combines EEG data with eye-tracking information 

to enhance emotion recognition accuracy. 

Proposed 

Method 

HDRM: Spatial and 

temporal features 

(PCA, ICA, Feature 

Engineering) 

Custom dataset 

(Kannada musical 

clips and 

Commercial 

advertisements) 

90.15% (Kannada 

clips), 85% 

(Commercial ads) 

HDRM outperforms several models in accuracy and 

computational efficiency. Its focus on feature 

engineering and real-time emotion recognition offers 

significant advantages over deep learning methods 

and multi-modal fusion approaches. 
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Table 9. Proposed algorithm with descriptions 

 
Steps Description 

1. Input  

2. Output Augmented data matrix final_features 

3. Initialization Clear command window and workspace 

4. Data Preparation 
Load dataset into matrix 𝑋 

Preprocess EEG signals with filter methods 

5. Component Selection 
Perform PCA on 𝑋 to extract top 𝑘 components, forming matrix 𝑃 ∈ 𝑅𝑛×𝑘 

Perform ICA on 𝑋 to extract top 𝑘 components, forming matrix 𝐼 ∈ 𝑅𝑛×𝑘 

6. Feature Engineering 

Compute Mean: 

For each observation in combined matrix 𝐶 − [𝑃 ∣ 𝐼] : 

"mean_features" =
1

2𝑘
∑𝑗=1

2𝑘  𝐶𝑖𝑗 , 𝑖 = 1, … , 𝑛 

Compute Standard Deviation: 

For each observation in combined matrix 𝐶 : 

"std_features" −√
1

2𝑘−1
∑𝑗=1

2𝑘  (𝐶𝑗 −  "mean_features" )
2

, 𝑖 = 1, … , 𝑛 

Compute Inner Products: 

Compute inner product for each pair of PCA and ICA components: 

"inner_products" = [𝑃𝑖,𝑘 ⋅ 𝐼𝑖,𝑘] 

7. Feature Aggregation and Output 

Generation 

Load combined mean and standard deviation features from mean_std_file 

Load inner product features from inner_product_file 

Normalize resulting matrix using Min-Max scaling 

Display augmented data matrix final_features 

Print matrix dimensions 

 

Table 10. Experimental setup of the proposed study 

 
Aspect Details 

Programming Language with 

version 
MATLAB - version 2018 

EEG Data Sampling Rate 2000 Hz 

Preprocessing 
High-pass filter with a cutoff frequency of 1 Hz to re- move slow-moving artifacts, using a one-pass, 

zero- phase, non-causal high-pass filter with the windowed time-domain (firwin) method. 

Filter Characteristics 
Hamming window, passband ripple: 0.0194, stop- band attenuation: 53 dB, filter length: 423 samples 

(3.305 seconds), transition bandwidth: 1.00 Hz with a -6 dB cutoff frequency at 0.50 Hz. 

Feature Extraction 
PCA and ICA individually applied to a dataset of 66 subjects with 20,000 features (commercial 

advertisement) and 72 subjects with 60,000 features (Kannada musical clips). 

Selected Components 
Top 10 orthogonal and independent components from both PCA and ICA were selected and combined 

to form a feature matrix of dimension 66×20 (commercial ads) and 72×20 (Kannada musical clips). 

Feature Engineering 
Computed mean, standard deviation, and inner product for each observation across the 20 features 

in both experiments. 

Correlation Analysis Employed to identify and remove highly correlated features (correlation threshold: 0.9). 

Final Feature Set 

Consisted of 66×2 (mean and SD), 66×10 (inner product) (commercial ads) and 72×2 (mean and SD), 

72×10 (inner product) (Kannada musical clips) features, with statistical summaries (mean, standard 

deviation, and inner product) combined with PCA and ICA components of top 10. 

Normalization Min-max scaling. 

Classification 
k-Nearest Neighbors (k-NNs), logistic regression, and Random Forest classifiers with an 80:20 

train-test split. 

Evaluation 
Multiple classifiers were assessed based on their ability to accurately classify emotions, demonstrating 

the efficacy of the preprocessing and classification pipeline. 

 

Despite its strengths, certain limitations must be 

acknowledged. The use of a 2-channel BIOPAC system, while 

cost-effective, provides lower spatial resolution compared to 

multi-channel systems, potentially limiting the capture of fine-

grained neural features. Additionally, while preprocessing 

mitigates noise, residual artifacts in EEG data may impact 

model accuracy. Addressing these gaps presents opportunities 

for future work. 

The provided algorithm in Table 9 describes a feature 

selection and enhancement process applied to a given data 

matrix for improved analysis and machine learning. initially, 

it clears the command environment to avoid conflicts from 

prior computations. the data is loaded into a matrix, and a 

subset of key components is selected based on the number of 

components retained from both PCA and ICA. feature 

engineering computes the mean and standard deviation for 

each observation in this subset, providing insights into central 

tendencies and data dispersion. inner products are also 

calculated to represent the interaction between components. 

these engineered features are aggregated into two new 

matrices and final features, enhancing the data’s descriptive 

capacity. finally, the algorithm outputs the augmented data 

matrix and its size, ensuring the process’s correctness and 

preparing the data for further analysis. this approach improves 

data and achieves better results Table 10 has the detailed 

explanation of proposed algorithm. 

 

 

8. CONCLUSION 

 

This study introduced the Hybrid Dimensionality Reduction 

Model (HDRM) for emotion recognition from EEG signals, 
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demonstrating its ability to outperform existing models in both 

accuracy and computational efficiency. By integrating PCA 

and ICA, HDRM creates a more discriminative feature space, 

improving classification performance, particularly in 

entertainment-based applications using Kannada musical clips 

and commercial advertisements. 

The framework’s success in combining PCA and ICA 

establishes a new benchmark for feature selection and 

dimensionality assistance, making it suitable for real-time 

applications in entertainment, healthcare, and adaptive human-

computer interfaces. HDRM effectively addresses key 

challenges in EEG-based emotion recognition, such as 

sensitivity to noise and computational complexity, while 

maintaining high performance. 

Future work could focus on enhancing the system by 

incorporating multi-channel EEG setups to improve spatial 

resolution and signal-to-noise ratio. Advanced noise 

suppression techniques could further reduce the impact of 

environmental artifacts, and expanding the dataset to include 

diverse participants and stimuli would improve the model’s 

generalizability. Additionally, integrating HDRM with more 

sophisticated machine learning algorithms or extending its 

application to other physiological signals could amplify its 

utility. 

HDRM’s scalability, efficiency, and strong classification 

capabilities highlight its potential for broader applications in 

emotion-aware technologies, therapeutic interventions, 

entertainment, and adaptive human-computer interfaces. Its 

success paves the way for modern humanized interfaces and the 

fusion of psychological intelligence with artificial systems. 
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