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The rapid growth of plant disease has influenced the economy of the developing nation by 

minimizing crop productivity. Conventional plant disease categorization approaches were 

hard to implement and consumed more time for processing, which made the classification 

task more complicated. Moreover, due to the increasing global population, implementing 

advanced technology in the field of agriculture is essential to guarantee continuous food 

supply for future generations. Currently, to perform plant disease detection, deep learning 

approaches are implemented since they offer more accurate detection outcomes within a 

short duration. However, they demand for huge volume of data and resources for 

processing. Therefore, it is essential to design an effective model to offer generalized 

outcomes in plant disease classification and to overcome the complexities of the classical 

networks. Initially, the raw plant leaf images are collected from the standard resource. Later, 

the collected images are offered to the designed Transformer-based Recurrent Residual U-

Net (Trans-R2UNet) to perform plant disease segmentation. Then, the segmented images 

are subjected directly to the classification system. Here, the classification is carried out 

using the Gabor Dilated Convolutional Neural Network with Spatial Attention (GDCNN-

SA). The proposed GDCNN-SA achieved CSI values of 37.14 and an accuracy of 98.55%. 

But, the existing GDCNN had 10.79 CSI values and 82.02% accuracy. Further, the proposed 

Trans-R2UNet had 0.268 accuracy in segmentation, thus significantly improving disease 

detection. The experimental evaluation demonstrated that the designed system obtained 

superior results in classifying the plant disease. Overall, the proposed work promotes 

sustainable environmental modeling and data-driven environmental assessments. 
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1. INTRODUCTION

Globally, agriculture plays a fundamental role in food 

production and economic stability. In the developing nation, 

agriculture is considered the backbone that holds a major part 

of the economy [1]. Yet, the productivity of the crops is 

affected by the occurrence of various plant diseases. Therefore, 

this article proposes enhanced deep learning framework-based 

leaf segmentation and plant leaf disease detection. Plant 

diseases degrade the crop yield and quality, thus resulting in 

high economic losses and food shortages. Hence, timely 

prediction of plant disease is essential to improve control 

measures. Despite advances in technology across multiple 

areas, farmers frequently depend on irrelevant disease 

identification techniques, including manual examination [2]. 

The farmer's experience-aided technique has major drawbacks. 

This approach could assist an agriculturalist in recognizing 

common plant diseases [3]. Yet, it is unsuccessful in 

recognizing novel and unidentified diseases of plants. The 

delay in detecting multiple plant diseases will influence crop 

production [4]. Currently, agricultural practices in both rural 

and urban areas have improved due to the integration of 

advanced technology that assists in overcoming the challenges 

faced by the classical approaches [5]. 

Moreover, the utilization of advanced image processing and 

identification approaches has offered multiple ways to detect 

plant disease at the beginning stage [6]. Furthermore, various 

Computer-Aided Diagnosis (CAD) applications were 

generated to address the shortcomings faced by the traditional 

classification models and to maximize the competence of the 

system in disease categorization [7]. In addition, numerous 

approaches were implemented to perform accurate plant 

disease classification. In recent days, deep learning-based 

approaches have gained more popularity in automatic plant 

disease classification. 

Among other deep learning techniques, neural networks are 

broadly employed in certain tasks, including object detection 

and image processing [8]. However, the existing plant disease 

classification works struggled to handle the presence of 

background noise in raw leaf images, including lighting 

variations, complex textures, and occlusions. The 

environmental noises and unwanted artifacts degrade the 

classifier’s performance. Therefore, precise segmentation of 

the diseased regions is fundamental to upgrade the efficiency 

of the classifier. By isolating the affected areas, segmentation 

aids in capturing the disease-specific patterns while reducing 
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the influence of irrelevant background information. In the 

prevailing works, UNet semantic segmentation was used to 

perform precise damage detection in plant images. 

Utilizing deep learning-based approaches, especially CNN, 

has presented superior and exact disease classification 

outcomes. Moreover, deep learning-based approaches assist in 

tackling the limitations of standard agricultural practices and 

enhance the productivity of the cultivated crops [9]. Since the 

texture, color, and dimension vary from plant, the efficiency 

of the classification models is minimized [10]. Some existing 

work utilized hyperspectral imaging to capture detailed 

spectral information, enhancing plant disease detection. 

Further, hyperspectral data aids in improving the efficiency of 

early disease stress detection [11, 12]. The prior studies were 

inadequate to handle diverse plant specifies. Also, some 

existing frameworks failed to support real-time applicability 

due to the high computational complexity. 

Hence, a unique deep-learning framework is generated to 

perform accurate plant disease classification. The 

contributions presented by the suggested disease classification 

system are discussed below, 

 To design an effective system for plant disease 

classification by exploiting the advantages of deep 

learning approaches. The key function of this model is 

to determine plant disease at the beginning stage and to 

boost the yield of the crop cultivated on the field, which 

gradually improves the economy of the nation. 

 To construct an innovative disease segmentation 

system labeled Trans-R2UNet by incorporating the 

functions of the transformer with the R2UNet to 

determine the disease-affected region within the given 

input images. 

 To build an effective plant disease classification model 

GDCNN-SA by establishing dilated and spatial 

attention connection to the GCNN model. This model 

employs the segmented images attained from the 

Trans-R2UNet to produce the disease's classified 

results. 

The proposed method introduces a novel plant disease 

classification approach using GDCNN-SA and Trans-R2UNet 

segmentation. The proposed method improves feature 

extraction by integrating Gabor filters and spatial attention 

mechanisms, thus increasing classification accuracy. Likewise, 

the proposed Trans-R2UNet localizes disease regions in a 

precise manner. The proposed method rectifies challenges, 

such as poor feature representation, computational complexity, 

and inefficiencies in real-time applications. 

The layout of the introduced classification network is 

outlined here. Initially, the recent investigation based on plant 

disease classification is given in Section 2. The overall 

description of the designed classification system is described 

in Section 3. The execution stage of the implemented model is 

described in Section 4. Lastly, the outcomes and conclusion 

are explained in Sections 5 and 6 

 

 

2. LITERATURE SURVEY 

 

In recent years, many researchers implemented various 

studies to detect plant diseases. Plant diseases can occur due 

to various environmental reasons. Essentially, air pollution-

related stress causes premature leaf aging, thus affecting the 

performance of disease detection [13]. Also, climate change 

affects temperature and humidity, which directly influence 

plant disease occurrence [14]. Additionally, some studies 

established air quality monitoring to analyze how pollution 

influences plant disease distribution [15, 16]. To ensure food 

security and environmental sustainability, an efficient plant 

disease detection framework is important. In this section, 

numerous related studies are investigated according to their 

contribution to plant disease classification. 

 

2.1 Related works 

 

The YOLO-Enhanced Rat Swarm Optimizer-Red Fox 

Optimization-ShuffleNetv2 (YR2S) model builds upon 

YOLOv7 by integrating preprocessing and tuning techniques, 

where PCFAN generates feature maps from input images 

during preprocessing [17]. The disease-affected region within 

the images was determined by employing the FCN-RFO. 

Additionally, Shuffle Net with ERSO was employed to tune 

the classification procedure. Moreover, the competence of this 

designed system was evaluated using a standard leaf dataset. 

The disease area segmentation helped to improve the 

model’s performance. Thus, the developed model had 99.69% 

accuracy. The simulation results demonstrated that this 

designed technique was more effective in offering accurate 

leaf disease detection outcomes than standard models. 

However, this framework had high computational time, thus 

affecting the model's reliability. Also, this model struggled to 

detect objects from complex scenarios. 

An innovative model named Cascading Autoencoder with 

Attention Residual U-Net (CAAR-UNet) was proposed for 

early-phase plant disease detection and categorization, 

demonstrating superior performance over conventional 

methods by accurately identifying four disease variants [18]. 

Moreover, this model has enhanced crop productivity as well 

as attained greater accuracy in detecting crop disease at the 

beginning stage. Thus, the applied model obtained mean pixel 

accuracy and weighted mean intersection over the union of 

95.26% and 0.7451, respectively. Nevertheless, this approach 

incurred considerable training time owing to the lack of 

sufficient network functionalities. Further, this model had a 

class imbalance problem. 

An XAI-aided technique was developed for plant disease 

categorization, demonstrating improved accuracy in 

identifying various plant ailments [19]. In addition, this model 

has determined 38 variants of plant diseases with greater 

accuracy and precision. Thus, the developed approach 

obtained accuracy, precision, and recall of 99.69%, 98.27%, 

and 98.26%, respectively. Moreover, these findings were 

further evaluated using the Local Interpretable Model-agnostic 

Explanations (LIME) system. This approach promoted global 

food security. However, this framework was inadequate to 

handle diverse plant species. Further, this model had memory 

and resource requirement issues. 

The innovative multi-class plant disease categorization 

framework utilizes CNN technology to accurately classify 

various plant diseases [20]. Moreover, the competence of the 

designed model was evaluated using a few estimation 

measures. According to the resultant values, the 

EfficientNetB3-Adaptive Augmented Deep Learning (AADL) 

system has exceeded classical models with respect to accuracy 

and F1-score. Thus, the developed model had 98.71% 

accuracy and 98.72% f1-score. Here, the inclusion of transfer 

learning improved the model's performance. Nevertheless, this 

framework had a high misclassification rate owing to the 

artifacts and noises. Also, this model required a massive 
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amount of annotated datasets. 

An automated deep learning model was developed for 

monitoring plant leaf damage and disease, employing a multi-

stage approach for disease classification [21]. Moreover, the 

competence of the introduced system was estimated by 

investigating the obtained outcomes over numerous standard 

approaches. Thus, the developed approach obtained efficiency 

and accuracy of 97% and 99%, respectively. The evaluation 

outcome revealed that the designed approach has attained 

greater effectiveness in classifying plant diseases and 

suggested effective measures for improving crop productivity. 

This framework offered effective treatment options regarding 

the severity of the damage. However, this framework failed to 

extract the subtle feature representations. Further, this 

framework struggled to identify the small objects. 

A two-stage deep learning model quantifies crop disease 

from corn field imagery, where SegNet, UNet, and 

DeepLabV3+ networks first isolate leaves from complex 

backgrounds then precisely locate disease lesions [22]. Finally, 

the severity assessment was done. This framework had 0.9422 

mean weighted intersections over union (mwIoU), showing 

the model’s supremacy. However, this model was ineffective 

owing to the over-fitting problems. 

An optimized watermelon scion leaf segmentation 

framework was proposed, combining the Hungarian algorithm 

with information theory to select optimal features through a 

re-ranking scheme [23]. An improved Mask2Former network 

efficiently segmented the watermelon scion leaf with high 

accuracy. This approach had recall of 99.21%. But this 

framework was inadequate to adapt to the real-time 

segmentation in dynamic field conditions. 

An automated pipeline based on segmentation neural 

networks was developed for leaf spot severity scoring in 

peanuts [24]. Here, the neural network was used to identify the 

infected leaf surface region and dead leaves via plot-level 

cellphone imagery. This model had 0.996 root mean square. 

This approach significantly improved the segmentation 

efficiency. However, this approach had a maximum error rate. 

The model combines Lite-SRGAN and Lite-UNet to 

achieve early, precise segmentation and localization of plant 

leaf diseases, where Lite-SRGAN enhances image resolution 

for accurate detection [25]. Similarly, the Lite-UNet was used 

to segment and localize the plant leaf disease-affected region. 

Finally, the convolutional neural network was used to classify 

the leaf diseases with 99.76% accuracy. This approach had 

better efficiency. However, this framework was insufficient to 

capture subtle disease symptoms. 

The three-dimensional analysis method detects plant stress 

from a single RGC image by identifying boundaries between 

individual leaves [26]. Thereafter, deep neural networks and 

3D reconstruction were employed to detect the plant stress 

effectively. This approach had 22.86% precision. This 

approach had low time complexity. However, this framework 

had poor detection outcomes. 

 

2.2 Problem statement 

 

The detection of plant disease is crucial for improving crop 

productivity which causes a major impact on the economy. 

Crop loss can be prevented by the timely identification of 

disease and ensures a stable food supply. Various advanced 

methods were developed in the earlier research which 

achieved the best performance in identifying the plant disease 

accurately. However, the three are the research gaps in the 

existing methodologies and are listed here. 

 

Table 1. Features and challenges of existing plant disease classification model 

 
Ref Methodology Features Challenges 

Madhurya and 

Jubilson [17] 
YOLOv7 

It effectively detects the spot where the disease 

symptoms occurred. It achieves high precision value. 

It faces difficulties in detecting 

objects from the complex 

environment. 

Abinaya et al. [18] CAAR-UNet 

This model is capable of capturing the informative 

features from the given images. It offers robust 

performance in plant disease detection. 

It has a class imbalance issue, which 

tends to classify the different number 

of samples. 

Nigar et al. [19] MobileNetV2 
It achieves higher classification performance. 

It is more adaptable and sustainable. 

It consumes a huge source of 

computation resources. 

Adnan et al. [20] CNN 
It has the capability to automatically identify the 

unique feature without the need for manpower. 
It requires large labeled data. 

Polly and Devi [21] YOLOv8 
It performs real-time detection from crop leaf images. 

It improves flexibility. 

It is hard to identify the small object 

with low contrast in the image. 

 

 The effectiveness of the classical strategies is 

minimized due to the problem that is created in the pre-

processing and feature extraction phase. Thus, this 

work initiated the advanced deep learning techniques 

that effectively perform both feature extraction and 

detection. 

 Further, some prevailing segmentation models were 

ineffective in handling the plant species with different 

leaf structures, textures, and disease symptoms. Also, 

the segmentation model that is suitable for multi-modal 

inputs remains under explored. Hence, the proposed 

Trans-R2UNet was generalized well enough to adapt to 

multiple plant species while maintaining accuracy. 

Further, the proposed Trans-R2UNet proficiently 

supports multi-modal scenarios regarding disease area 

segmentation. 

 Many prior models are computationally intensive, 

limiting their applicability in real-time agricultural 

scenarios. By using GDCNN-SA, the proposed work 

designs a lightweight system suitable for deployment in 

field conditions without compromising accuracy. 

 Because of the non-uniform and complicated 

background, the traditional methods need improvement 

in real-world detection. To address these shortcomings, 

this work proposed a deep learning methodology with 

an added mechanism to categorize the plant leaf disease 

effectively. 

 The earlier methods face difficulties in handling the 

variation in plant disease because of the low-quality 

and noisy images. These issues are solved using the 
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proposed deep learning model to increase detection 

accuracy. 

The advantages and disadvantages of the classical plant 

disease classification techniques are discussed in Table 1. 

 

 

3. ARCHITECTURAL VIEW OF ADVANCED PLANT 

DISEASE CLASSIFICATION MODEL 

 

3.1 Proposed plant disease classification model 

 

The occurrence of plant disease in the cultivation field will 

affect the productivity of the crops. Currently, various kinds of 

research have been implemented by integrating the concept of 

artificial intelligence for detecting diseased plants as well as 

classifying the variants of plant diseases. 

Deep learning, a variant of artificial intelligence is 

extensively employed in image processing, because of its 

efficiency in analyzing huge volumes of input information, 

which is essential for disease classification. Thus, a novel plant 

disease classification system is designed by exploiting the 

advantages of deep learning. Here, the plant leaf images 

accumulated from the internet resources are employed 

throughout the training and testing phase. At the beginning 

stage, the collected images are offered to the designed Trans-

R2UNet model. The Trans-R2UNet is constructed by 

incorporating the functions of the transformer with the 

R2UNet to determine the disease-affected region on the plant 

leaf, which is essential for accurate classification. Later, the 

segmented images are provided to the introduced GDCNN-SA 

to classify plant diseases. The GDCNN-SA is built by 

establishing a dilated and spatial attention connection to the 

GCNN model. Additionally, the capability of the suggested 

classification model is investigated by analyzing the resultant 

values with the standard classification networks. The pictorial 

view of the designed plant disease classification system is 

represented in Figure 1. 

 

 
 

Figure 1. Deep learning-based plant disease classification 

system 

 

3.2 Dataset considered for analysis 

 

The required plant leaf images for categorizing plant disease 

are accumulated from the Plantify Dr Dataset, which can be 

viewed through 

“https://www.kaggle.com/datasets/lavaman151/plantifydr-

dataset”. It comprises nearly 125,000 plant images that are 

collected from ten variants of plants. The collected images are 

preserved in the jpg format and consumed nearly 2.77GB of 

storage space. The sample images from the given dataset are 

shown in Figure 2. 

 

 
 

Figure 2. Sample images garnered from the given dataset 

 

High-quality images ensure efficient feature extraction for 

plant leaf segmentation and plant disease classification. 

 

 

4. TRANS-R2UNET WITH SPATIAL AND GABOR 

ATTENTION FOR PLANT DISEASE 

CLASSIFICATION 

 

4.1 Trans-R2UNet-based segmentation 

 

Plant disease segmentation is performed to determine the 

disease-affected region within the given images. Here, plant 

disease segmentation is executed on the designed Trans-

R2UNet. Trans-R2UNet is developed by integrating the 

functions of the transformer layer with the R2UNet. R2UNet 

[27] is an innovative model that is widely employed to execute 

segmentation tasks. The plant leaf segmentation helps to 

enhance disease-affected regions. In the proposed work, the 

transformer aids in capturing global contextual information. 

The proposed Trans-R2UNet improves segmentation accuracy 

by combining recursive residual learning and U-Net structure. 

The R2UNet employs the functions of the deep residual 

network, Recurrent CNN (RCNN), and UNet. The RCNN is a 

beneficial model that has offered superior outcomes in the 

field of object detection by employing diverse benchmarks. 

Moreover, the function of the Recurrent Convolution Layer 

(RCL) is executed based on discrete time steps, which are 

defined on the basis of RCNN. Let us assume an input 

𝑐𝑎within the 𝑎𝑡ℎlevel of the Residual RCNN (RRCNN) unit 

and a pixel placed (𝑜, 𝑘)on the given input within 𝑙𝑡ℎfeature 

map on RCL. The outcome of the RRCNN 

model(𝑃𝑜,𝑘,𝑙
𝑎 )during the time step 𝑦is expressed via Eq. (1). 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ), ,
1

Y Yg o k t o ka g t

okl l a l a lP y e c y e c y n=  +  − +  (1) 

 

In Eq. (1), the input offered to the classical convolutional 

layers and 𝑎𝑡ℎ RCL layer is indicated as 𝑐𝑎
𝑔(𝑜,𝑘)

(𝑦) 

and 𝑐𝑎
𝑡(𝑜,𝑘)(𝑦 − 1) . The weight of classical convolutional 

layers and 𝑙𝑡ℎ feature map of the RCL layer are represented as 

 
Collected plant images 

Developed Trans-R2UNet-aided plant 

disease segmentation system 

Transformer R2UNet 

Developed GDCNN-SA-aided plant disease 

classification model 

GCNN 

Dilation and spatial 

attention connection 

is given to GCNN 

Disease classified 

outcome 

Segmented images 
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g

le and 
t

le . 

The constant value is mentioned as 𝑌. The bias function is 

denoted as 𝑛𝑙. Further, the outcome achieved from the RCL

layer is provided to the ReLU activation function 𝑔 as derived 

using Eq. (2). 

( ) ( )( ) ( )( ), , , ,, max 0,a a

a a o k l o k lG c e g P y P y= = (2) 

Here, the outcome attained from 𝑎𝑡ℎ  layer of the RCNN

block is expressed as 𝐺(𝑐𝑎, 𝑒𝑎) . In R2UNet, the RCNN’s

outcome is fed into the residual blocks and the outcome 

attained from the RRCNN unit 𝑐𝑎+1 is achieved by Eq. (3).

( )1 ,a a a ac c G c e+ = + (3) 

Here, the input offered to the RRCNN unit is represented as

ac . The weight factor is illustrated as ae . Moreover, the 1+ac

sample is employed as the input information for the sampling 

layers within the encoding and decoding blocks of the R2UNet. 

Additionally, the segmentation efficiency is improved by 

integrating   a   transformer   layer   into   the   R2UNet.   The 
transformer layer [27] employs a multi-head self-attention 

(MHA), Layer Normalization (LN), and Multi-Layer 

Perceptron (MLP) layers to process the given input 

information. The function executed on the transformer layer 

is given in the below equations. 

( )( )1 1 1i i is Msa Ln x x− − −= + (4) 

( )( )1 1i i ix Mlp Ln s s− −= + (5) 

where, 𝑖 ∈ {1, … 𝐿} 

In this designed Trans-R2UNet, the accumulated plant leaf 

images are considered as the input to determine the disease-

affected regions within the plant leaf and the segmented 

outcome is then forwarded to further processing. The pictorial 

view of the designed Trans-R2UNet-aided plant disease 

segmentation network is given in Figure 3. 

The segmented images highlight the regions of interest, 

thereby capturing the disease-relevant features effectively. 
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4.2 Gabor convolutional neural network 

GCNN [28] is designed by embedding Gabor filters with the 

DCNN model. The main function of the Gabor filter in GCNN 

is to encode the orientation data within the learned filters as 

well as integrate the scale data into diverse layers of the 

network. By performing this function, the GCNN improves the 

corresponding convolution features and offers a few feature 

maps that hold both the orientation and scale data. The GCNN 

is numerically described using Eq. (6). 

( ), iG GConv G V= (6) 

Here, the term iV defines the thi Gabor filter, which is 

upgraded during the procedure of back-propagation and the 

term 𝐺defines the feature map. Moreover, the channels 𝐺̂ are 

achieved by employing Eq. (7). 

( ) ( )

, ,

1

ˆ
M

m m

i l i y l

m

G G V =

=

=  (7) 

In Eq. (7), the term m  describes the 𝑚𝑡ℎ  channel of the

input feature map 𝐺  and Gabor filter 𝑉𝑖,𝑦 . The term 𝐺̂𝑖,𝑙

indicates the 𝑙𝑡ℎ  orientation response offered by 𝐺̂ . The

symbol ⊗ defines the convolution operator. The architectural 

view of GCNN is presented in Figure 4. 

Figure 4. Architectural view of GCNN 

4.3 Developed plant disease classification network: 

GDCNN-SA 

Plant disease classification is performed on the developed 

GDCNN-SA model by considering the segmented images 

obtained from the Trans-R2UNet as input information. The 

GDCNN-SA is designed by establishing a dilated and spatial 

attention connection to the GCNN model. Dilation connection 

[29] utilizes a dilated convolution layer, which allows the

model to boost the receptive field by preserving a stable count

of parameters. The inclusion of dilation and spatial attention

connection enhances feature representation. By establishing a

dilation connection, the classification system can understand

the complicated relations within the given data. The numeric

form of the dilation convolution is given in Eq. (8).

( ) ( )( ) ( )
1

0

k

g f g u

u

H f v h f f i v
−

− 

−

=  =  (8) 

In Eq. (8), the term g describes the dilation factor, as well 

as the filter size is indicated as𝑘. Here, 𝑣 indicates the dilation 

rate, ℎ denotesthe input factor, and 𝑓 depicts the dilated 

convolution operation. Additionally, a spatial attention [30] 

connection is given to the GCNN. The prime function of 

spatial attention is to localize the essential information from 

the feature map. The spatial attention is evaluated by 

implementing the average and max pooling functions to the 

feature map. Further, the resultant feature maps are combined 

to attain an efficient feature descriptor. Later, a convolution 

layer is implemented on the resultant feature descriptor to 

create the spatial attention map 𝑍𝑑(𝐺) ∈ 𝑇𝐽×𝐸as defined in Eq.

(9) and Eq. (10).

( ) ( ) ( )( )( )9 9 ;d pool poolZ G Conv Ag G Mx G   =   (9) 

( ) ( )( )9 9 ;s d

d Ag MxZ G Conv G G   =   (10) 

Here, the terms𝐺𝐴𝑔
𝑠  𝑎𝑛𝑑 𝐺𝑀𝑥

𝑑 denote the average and max

pooling functions. Eq. (10) represents the multi-layer 

architecture, where the average and max pooling operations 

are applied layer-wise. In Eq. (9), 𝐴𝑔𝑝𝑜𝑜𝑙(𝐺)  and

𝑀𝑥𝑝𝑜𝑜𝑙(𝐺) represent the direct average pooling and max-

pooling operations, respectively. The symbol𝜎 indicates the 

sigmoid activation function and the term 𝐶𝑜𝑛𝑣9×9  indicates

the convolution function with filter demission 9 × 9 . By 

integrating spatial attention, the classification system can 

focus on a particular region within the segmented images 

assisting in improving the classification rate. Therefore, by 

employing the dilation and spatial attention connection the 

disease classification can offer a more accurate classification 

outcome. The diagrammatic view of the designed GDCNN-

SA-aided plant disease classification system is offered in 

Figure 5. 

Figure 5. GDCNN-SA-aided plant disease classification 

system 

4.4 Social benefits of the proposed work 

The proposed work ensures early and accurate plant disease 

detection, thus aiding in preventing large-scale crop losses. 

Timely interventions for crop protection help to improve 

overall yield. Further, precise plant disease identification 

reduces unnecessary pesticide use. Overall, the proposed AI-

driven disease detection upgrades precision farming strategies 

and a sustainable environment.
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5. RESULTS AND DISCUSSIONS

5.1 Simulation setup 

The designed GDCNN-aided plant disease classification 

system was implemented in Python. Furthermore, the 

efficiency of the designed classification and segmentation 

models was evaluated by comparing them with a few 

segmentation techniques like YOLOv7 [17], CAAR-UNet 

[18], and YOLOv8 [21], UNet [31] and classification models, 

such as CNN [20], VGG-16 [32] and GDCNN. 

5.2 Resultant segmented image attained by the suggested 

trans-R2UNet model 

The resultant segmented images produced by the introduced 

Trans-R2UNet system over traditional segmentation models 

are shown in Figure 6. 

In Figure 6, the sample image outcomes of the proposed 

Trans-R2UNet are presented to showcase the model’s 

reliability and efficiency. Here, the performance of the 

proposed Trans-R2UNet is evaluated by comparing it with the 

existing segmentation tools, such as UNet, YOLOv7, CAAR-

UNet, and YOLOv8. Based on the ground truth images, the 

disease-affected area is segmented by using the segmentation 

algorithms. In the proposed Trans-R2UNet, the inclusion of 

transformer functions aids in segmenting the disease-affected 

region accurately. Thus, the resultant segmented images 

proved that the proposed Trans-R2UNet proficiently isolates

the affected area in the leaves.  

5.3 Segmentation performance evaluation 

The effectiveness of the designed Trans-R2UNet model is 

monitored by employing a few statistical measures. The 

evaluation of the designed Trans-R2UNet system over 

traditional segmentation models is presented in Figure 7. 

Evaluating the segmentation performance is essential to ensure 

the competence of the introduced system in detecting the 

disease-affected areas from the given plant leaf images. Figure 

8(a) showed that the introduced model achieved an accuracy 

of 62.5%, 33.33%, 15.55%, and 10.63%, which is more 

effective than UNet, YOLOv7, CAAR-UNet, and YOLOv8. 

The transformer mechanism effectively captures long-range 

dependencies and aids in separating the diseased and healthy 

regions. The attention mechanism in the transformer helps to 

handle the complex or overlapping regions. According to the 

attained segmentation outcome, it is clear that the designed 

Trans-R2UNet can provide more precise segmentation results 

than standard models. 

5.4 Classification performance estimation 

Plant disease classification efficiency of the developed 

GDCNN-SA framework is estimated by considering hidden 

neuron count from 20 to 100. The attained results over 

classical models are given in Figure 8. Performance evaluation 

by varying the hidden neuron count is effective in 

understanding the complex relations within the data and 

handling problems related to overfitting. 

Original image Ground truth image UNet [31] YOLOv7 [17] CAAR-UNet [18] YOLOv8 [21] Trans-R2UNet 

Figure 6. Resultant segmented images produced by the designed Trans-R2UNet system 
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Figure 7. Segmentation performance evaluation based on (a) Accuracy, (b) Dice coefficient, and (c) Jaccard 

(a) 

978

(b) 



(c) 

(d) 

979

(e) 



(f) 

(g) 

Figure 8. Classification performance analysis based on (a) Accuracy, (b) CSI, (c) F1-score, (d) MCC, (e) Precision, (f) 

Prevalence, and (g) Sensitivity 

From Figure 8(b), the CSI value of the developed GDCNN-

SA framework has exceeded classical models like VGG-16 

[32], MobileNetV2, CNN, and GDCNN by 60.96%, 63.43%, 

61.44%, and 70.36%, while taking the hidden neuron count of 

20. The proposed GDCNN-SA obtained CSI values of 36.10,

37.14, 35.77, 30.73, and 31.19 with 20, 40, 60, 80, and 100

number of hidden neurons, respectively. However, the

traditional GDCNN achieved CSI values of 10.79, 28.14,

22.27, 22.73, and 16.78 with 20, 40, 60, 80, and 100 number

of hidden neurons, respectively. The existing works struggled

to handle multiple plant species.

The performance of the proposed GDCNN-SA is improved 

due to the utilization of the Gabor filter. The Gabor filter plays 

a prime role in feature extraction. The Gabor filter 

significantly captures texture-based features, which are crucial 

for plant disease classification. Further, the Gabor filter 

captures edge, shape, and texture variations in leaf images. 

The Gabor filter extracts spatial frequency information by 

applying multiple scales. Moreover, the Gabor filter is 

specially designed to handle different plant species. Based on 

the classification outcome, the developed GDCNN-SA 

framework offered superior performance in classifying plant 

disease variants than standard techniques. 

5.5 ROC curve-based efficiency estimation 

The ROC curve of the designed GDCNN-SA framework 

across standard approaches is presented in Figure 9. The ROC 

curve assists in determining the best framework by offering a 

comparative analysis over traditional approaches. The optimal 

model is determined by considering the AUC value, and the 

framework with a greater AUC value is chosen. From Figure 
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9, the developed GDCNNN-SA has attained an AUC value of 

88.45%, which is greater than other conventional systems 

including VGG-16, MobileNetV2, CNN, and GDCNN. The 

Gabor filter has beneficial characteristics, such as multi-scale 

representation and enhanced feature extraction Thus, the 

evaluation outcomes demonstrated that this introduced system 

achieved superior efficiency than classical approaches in 

classifying plant diseases. 

 

 
 

Figure 9. ROC curve-based performance analysis 

 

5.6 Summary 

 

The proposed work aims to develop an AI-driven solution 

for early plant disease detection to reduce crop losses and 

improve food security. The motivation behind the research is 

to address the inefficiencies in traditional methods like poor 

accuracy and environmental interferences. The scope of the 

proposed work in real-time agricultural applications is to 

ensure precise disease identification across diverse plant 

species. The objective of the proposed research is to integrate 

GDCNN-SA and Trans-R2UNet segmentation for superior 

feature extraction and plant disease classification. 

Policy suggestions: Policymakers promote AI-based plant 

disease detection through smart farming infrastructure and 

real-time monitoring tools to upgrade agricultural 

sustainability. 

Future recommendations: The proposed work will expand 

in the future by incorporating multimodal data, such as thermal 

imaging and hyperspectral imaging. Also, real-world 

deployment will be optimized through edge computing and 

mobile-based applications. 

 

 

6. CONCLUSION 

 

An effective plant disease classification model was 

designed by exploiting the merits of deep learning. This 

introduced model has employed plant leaf images taken from 

internet sources. In the beginning, the accumulated images 

were given to the designed Trans-R2UNet to determine the 

disease-affected area from the given images. In addition, the 

segmented images were given to the developed GDCNN-SA 

system for disease classification. Furthermore, various 

evaluation measures were performed to estimate the 

competence of the designed system. According to the 

evaluation results, the generated GDCNNSA framework was 

10.87%, 12.06%, 11.11%, and 16.49% superior to classical 

models like VGG-16, MobileNetV2, CNN, and GDCNN 

respectively, regarding accuracy. The proposed GDCNN-SA 

achieved an accuracy of 98.55% with 20 hidden neurons, 

whereas the existing CNN had 83.15% accuracy with 20 

hidden neurons. Hence, the simulation results concluded that 

this suggested system was more effective in classifying plant 

diseases with classification accuracy. 
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