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This research intends to put RL methods related to SCM to use in the management of input 

stocks. Estimating the composition of a small retailer’s inventory system, specifically to 

recharge Coke sales, the research aims to improve the forecast of merchandise, when they 

should be refilled, to fulfill client expectations. The deep Q network (DQN) algorithm is 

used to represent the objective of the study comparing the performance of the RL-based 

inventory control strategy with the classic static control method ((s, S) inventory control) 

in a numerical test. These financial parameters are determined along with other operational 

constraints, such as inventory capacity, lead time, and product order costs. The demand 

patterns between weekdays and weekends form the basis for the simulation of historical 

desire data to train DQN model. The comparison of RL-based methods in the retail industry 

supply chain is covered by this study monetarily. Consequentially, the study introduces RL-

based methods as one of the techniques in the area of improvement of retail inventory 

management practical applications with real-life supply chain examples to complement and 

prove their success. 
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1. INTRODUCTION

Within a comprehensive framework of supply chain 

management, the intricacies of the heads of inventory control 

can be viewed as a hard nut to crack. Maintaining a sustainable 

equilibrium between the unpredictability of demand 

variabilities, considering optimum operational costs, and 

optimizing resources that usually involve business operations 

is a continuous struggle. By convention, those methods that 

work well to a certain extent could, however, be insufficient in 

coping with the ability for changes in units of supply and 

demand [1, 2]. 

The lane of reinforcement learning (RL), which is one of the 

most persuasive paradigms in machine learning technology, 

appears to be about to revolutionize inventory management. 

Using RL would allow organizations to develop the niche of 

self-regulatory decision-making since computer-based 

learning would consider dynamic data and feedback as the 

base. This approach also opens the door to the equally enticing 

possibility of improving inventory level maintenance, 

processes, and supply chain efficiency. 

In particular, this paper will give a detailed insight into 

using RL in this field of study. Making use of a detailed critical 

review of the existing literature and cases from the field, our 

major objective is to find out whether or not the potential of 

supply chain management to use these algorithms in solving 

the multidimensional obstacles of inventory control is indeed 

there. 

Through our investigation of the cornerstones, uses and 

orders, and consequences of RL in this realm, the aim is to 

bring illumination to the impact of this cutting-edge method 

on supply chain management, which can be a pass way for 

firms to overcome their inefficiency, resilience, and 

competitiveness problems. 

The main focus of this work is to address the difficulty in 

predicting optimal inventory management and order timings 

in a dynamic environment. This can lead to inefficient stock 

replenishment. The main objective is to leverage the RL 

techniques, especially DQN, to optimize inventory 

management by cost minimization and stockout handling 

while adapting to changes in demand patterns. 

2. LITERATURE REVIEW

As a result of a survey, among the deep reinforcement 

learning (DRL) algorithms compared, proximal policy 

optimization (PPO) turns out to be more adaptable to different 

topologies and configurations in the supply chain inventory 

management (SCIM) environment, therefore having 

constantly higher average profits. The major drawback is that, 

in the worst-case scenario (1P3W), PPO does not produce 

positive profits. The VPG rarely converges to a global 

maximum, and the local maxima are somewhat farther from 

PPO, as the number of warehouses increases, but results are 

not bad. The A3C (asynchronous advantage actor-critic) 

algorithm has repeatedly shown the highest speed among the 

methods under study [1, 3]. 

Reward shaping potential-based is a simple and effective 

way to change the incentive structure of an MDP without 

modifying its optimal policy. Our study has shown that 

potentiate reward shaping can improve the performance of the 
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DRL algorithms that handle inventories by transferring 

knowledge from the heuristic inventory regulations. By 

leveraging the stock- and BSP-low-EW policies as teachers, 

one can improve the efficiency of DRL and make the training 

process more stable through reward shaping. The preferred 

teacher’s policy is often better than the unshaped DQN. In 

many cases, reward shaping outperforms its unshaped 

counterparts and sometimes even surpasses the teachers [2]. 

The core of Double DQN is two-fold: missed sales and 

multi-level inventory management. Enlarging the state space 

by including historical demand and inventory data results in 

better DDLS algorithm performance. Nevertheless, when the 

fixed cost is altered, the agent's ordering behavior dramatically 

differs. DDLS is ahead of most heuristics in limiting the losses 

in terms of revenue. The longer the time is given, the slower 

the convergence speed of the algorithm becomes [4, 5]. The 

paper focuses on a novel hybrid algorithm that couples 

reinforcement learning with Demand Driven Material 

Requirement Planning (DDMRP) to make better inventory 

control decisions. The environment is built for interaction by 

using the Markov Decision Process (MDP) to frame the 

inventory management problem and includes the elements of 

the DDMRP methodology. The RL algorithm, more precisely 

Q-learning, is applied to calculate the most appropriate time

and amount of a purchase. The reward function is approached

from three separate angles: inventory levels, the optimization

based on the distance where inventory is relative to an optimal

level of inventory, and the shaping function that considers

inventory levels and distances that are relative to optimal

levels of inventory [6, 7].

An investigation deals with the place of AI and ML in 

digital supply chain management and evolution inspired by 

intelligence and interpretation. [8, 9]. Deep reinforcement 

learning enabled by the proximal policy optimization method 

can act as a hub to regularize and direct the inbound and 

outbound flows and keep the business running in stochastic 

and non-stationary environments with end-to-end visibility. 

The proximal policy optimization method, which provides the 

DRL agent with the ability to remove hard-coded action space 

and significantly reduce the need for hyperparameter tuning, 

is used. The new technique is presented against the context of 

the base-stock strategy, which is widely employed in 

operations research and inventory control theory and is very 

popular [10]. 

Agents are responsible for the machine load scheduling and 

throughputs, improving the process for maximum returns. For 

example, when supplier agent gets a product delivery request 

from a customer, they assess the availability of their 

production scheduling queue and decide to accept or reject a 

request considering job price, delivery due date, 

accomplishment priorities, and expected future arrival of tasks 

by considering overall profit [11]. 

One of the RL advantages is the capability to provide near 

real-time responses based on current state data and integrated 

forecasting and optimization approaches. Nevertheless, there 

are issues such as processing complex multiple-agent systems 

and getting the best decisions in situations where there are 

multiple parties involved. The main research avenues are to 

overcome these challenges and improve the effectiveness of 

RL in logistics and SCM [12]. The RL approaches are 

endowed with the ability to handle dynamic and uncertain 

supply chain environments by learning and employing 

adaptive and situation-specific ordering techniques. The 

authors have explained different types of inventory problems, 

namely customer-driven replenishment and supplier-driven 

replenishment, which is responsible for determining the 

actions that suppliers have to follow. Furthermore, the 

classification of inventory-related publications is by 

viewpoints, instigators of players, and information exchange 

levels [13]. A paper that presents a theory of RL algorithms 

will include the fundamentals of Markov decision processes 

and the methods of doing RL, such as value-based, policy-

based, and actor-critic methods. This paper deals with the 

interplay of classical control and RL. The compliments and 

shortcomings of applying RL in process industries will also be 

researched [14]. 

The architecture functions in a GPU-parallelized ecosystem 

that embraces a single warehouse and multiple stores. This 

system has been designed to decrease computation needs 

while still accommodating the complexities of the practical 

supply chain dynamics. The system expanded the state and 

action spaces of the warehouse agent into successfully finding 

a suitable policy, even when inventory is low. This gives the 

system the authority to take decisions in the context of the 

supply chain that has a dynamic nature. This system adopts 

MARL technique in a distributed fashion, with each of the 

supply chain agents acting based on the local data. This 

distributed approach is more flexible and adaptable to the 

change of environment, making a whole reformation is not 

necessary when the system needs a change [15]. 

In realizing and improving DRL algorithms for inventory 

management, major design decisions like NN architectures 

and hyperparameter tuning must be understood and optimized. 

Make sure that DRL algorithms realistically incorporate the 

complexity of everyday inventory systems using advanced 

training algorithms and enhancing training performance. 

Model DRL policies with interpretability by creating models 

that explain why certain actions are recommended and the 

reasons, making it an intuitive step for managers to understand 

and practice in the real world [16]. 

This mapping function is thus vital to the agent’s learning 

process; it allows him to see the underlying patterns and 

relationships in the environment and, therefore, to arrive at 

optimal decisions related to the production, storage, 

and transport process. By implementing essential 

characteristics, the agent will be able to analyze the chain 

network and consume the data provided by the system so that 

the decision-making process will improve [17]. The major 

companies such as UPS and Amazon have successfully 

employed the RL algorithms on inventory management 

supplies chain. UPS, for instance, implemented an RL 

algorithm to design AI strategic plans and improve the efficacy 

of their supply chain operations. The aim is to gain AI strategic 

plans and increase the success rate of their supply chain 

operations [18]. 

This overview emphasizes the strengths and weaknesses of 

different RL algorithms applied to SCIM. PPO is powerful in 

different configurations of the supply chain; it faces some 

challenges in specific scenarios and can barely handle multi-

level inventory systems. Efficiency improvement by 

knowledge transfer in DQN is realized, but shaping policies 

are required, and scalability is limited for larger systems. 

DDLS helps reduce losses in revenue; it suffers from 

shortcomings of slow convergence and sensitivity to fixed 

costs. When combined with DDMRP, this hybrid RL approach 

enhances the decision-making for inventory control, but 

delays happen in training as complexity increases and lacks 

real-world validation. For example, RL with supplier agents, 
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which allows for the dynamic scheduling and making of 

decisions, is beset by considerable limitations when the 

environment is highly uncertain. Multi-agent reinforcement 

learning can offer flexibility toward distributed supply chains 

but has issues with scalability and computational needs. Deep 

RL leverages neural networks that enhance performance and 

interpretability for managers, yet it is sensitive and requires 

careful design to handle fluctuations in unpredictable demand 

effectively. 

3. REINFORCEMENT LEARNING AT A GLANCE

The typical scenario of RL indicating various components 

can be seen from Figure 1. The following components are the 

integral part of any RL application. 

Figure 1. Agent, environment, and state in reinforcement 

learning 

3.1 Elements of reinforcement learning 

State: In RL, state is an objective status or internal state of 

the environment in which the agent works [19]. States are 

overarching abstractions that provide the agent with the 

dynamics of the environment and allow the agent to perform 

its functions. In the case of inventory management, states 

might consist of the following variables: current inventory 

levels, demand forecasts, lead times, and so on, producing 

factors that affect the managerial decision-making process. 

Through states, RL management agents can learn a good 

control policy by establishing an association between actions 

and states that results in desired outcomes. 

Agent: The "agent" in RL is the entity where decision-

making and action are taken inside the specific environment. 

In dealing with inventory management, the agent could be a 

software system or an algorithm that is expected to make 

decisions on optimal inventory level, order quantity, and other 

related variables to ensure maximum profitability or least cost. 

The agent responds to the environment by recognizing its 

current state, performing the actions given by the policy, and 

being rewarded or penalized by feedback [20]. By trial and 

error, the system is constantly being refined, and its strategy is 

adapting to achieve goals more effectively with every turn. 

Environment: "Environment" in RL means the collection 

of goals, inputs, outputs, or whatever else makes up the outside 

environment or the problem domain with which the agent 

interacts. Inventory planning contains determinants like 

customer demand, vendor lead times, inventory limitations, 

and market factors, among other elements of the environment. 

The environment is a dynamic process that runs in time and 

depends on the state of the agent itself and other external 

factors. An agent of RL needs to manage the augmented 

surroundings when selecting buy-ins, which would entail 

lowering the costs of inventory stocks and giving customers 

the level of satisfaction, they deserve. 

Policy: In RL, a "policy" refers to an agent's strategy based 

on the observed states of the environment and involves 

selecting actions. Policies can be deterministic or stochastic, 

where in the former, the actions are specified for a fixed state, 

while stochastic governs a probability distribution over the 

possible actions. RL aims to discover a policy that produces 

the highest summed rewards throughout the learning process 

[21]. In inventory management, this policy will provide the 

agent with the rules to decide when to order the new stock, 

how much to order, and how to distribute the current stock to 

meet the client's demand while minimizing expenses. 

Algorithms: RL algorithms function as a basis of the 

computational environment, where the agents learn how to 

choose the optimal policies using interaction with the 

environment. These algorithms are cataloged by several 

classes, such as value-based methods (e.g., Q-learning), 

policy-related methods (e.g., policy gradients), and actor-critic 

methods (e.g., DQN). Each algorithm has pros and cons, so 

using them in different problems and conditions would help 

achieve the best results. RL algorithms help agents perform 

experiential learning, quickly adapt to changing conditions, 

and make sound inventory-related decisions to maximize the 

fulfillment of desired objectives. 

3.2 Types of reinforcement learning 

Figure 2 presents the taxonomy of reinforcement learning 

algorithms. 

(1) Model-free reinforcement learning

In model-free reinforcement learning, the agents learn to

obtain the maximum optimal policies by merely interacting 

with the environment without developing a model 

representing its dynamics. Such a method relies on its success 

on the circumstances in which the environment behaves in a 

complex way or is unpredictable. Regarding inventory 

management, model-free RL permits agents to acquire from 

experience via trial and error with the ultimate aim of 

developing the most suitable control strategies for performing 

this task successfully through exploitation and exploration. 

Unlike model-based RL agents that work using devised 

models, flexible model-free RL agents can update their policy 

based on current performance. Hence, they can respond to 

Unknown supply chain disruptions like demand changes and 

supply delay variations. 

(2) Model-based reinforcement learning

Model-based reinforcement learning represents learning a

model explicit to the system, which the agent employs in 

planning and decision-making. The difference between 

model-free RL, which solely works with the interaction data, 

and model-based RL, which incorporates the model of how the 

environment responds to actions as either empirical or 

predefined, is that the model-based RL incorporates the model. 

Model-based RL imbues the agents with the ability to visualize 

alternative situations, apply the what-if approach, and assess 

consequences, all in a virtual space, before executing any 
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action in the real world [22]. The AI agent can be trained to 

associate a model of inventory dynamics with the outcome of 

decision-making. In this way, agents can accurately predict the 

possible consequences and better use inventory policies, 

limiting the effects of uncertainty. 

Figure 2. Taxonomy of reinforcement learning 

(3) On-policy reinforcement learning

On-policy RL algorithms learn from the data while the

policy is updated. This implies that the agent can learn from 

its actions and experiences, thereby making small adjustments 

to its decision-making to get better with experience [22]. 

Inventory management implementations reference on-policy 

RL agents that exploit the environment actively, collecting 

data on demand, lead times, and inventory levels to fine-tune 

their strategies. Besides, the policy adjustment of on-policy 

RL agents is the change of parameters according to the current 

benefits and feedback. In turn, on-policy RL agents can deal 

with changing environments, and they can make faster and 

more rational decisions in dynamic business lines. 

(4) Off-policy reinforcement learning

The off-policy RL enables the algorithms to no longer join

the policy for exploration with the policy for learning. In doing 

that, an agent behaves like a data-generating process created 

by different policies and uses it by sampling and exploring 

[23]. The role of this process can be highly efficient compared 

to other processes. Inventory management off-policy RL 

learns compared to the previous historical analysis and other 

exploration strategies, which helps to become better explorers. 

Agents of off-policy RL having the exploration/exploitation 

decoupling are more efficient; they keep the right balance 

between acquiring knowledge about the system and using it 

for policy execution. Thus, they enable the achievement of 

more robust and adaptive inventory control policies. 

(5) Deep Q network

DQN is considered RL algorithm with a strong attribute of

deep learning and Q-function approximation for the optimal 

action-value function. In a GM environment, DQN involves 

producing agents that try to learn optimal control policy only 

from raw data like inventory level and demand forecasts. By 

using neural networks to approximate Q-values, a DQN agent 

can handle complex optimum situations with large states and 

action spaces comprehensively; thus, this DQN framework 

can be applied to an inventory management situation that 

contains multifaceted input features. 

(6) Dyna Q architecture

Dyna-Q is an interesting algorithm because it brings

together the strong points of the model-based and model-free 

approaches of reinforcement learning. At the core of Dyna-Q 

is a model of the world that is used to simulate future scenarios 

and through which the agent can learn from both observation 

and experience. This feature makes Dyna-Q use its limited 

experience wisely; it modifies the worth function based on real 

and imagined observations. Dyna-Q now became able to 

systematically generalize the knowledge across the same states 

and actions, which resulted in better decision-making skills. In 

addition, Dyna-Q enables the multi-armed bandit approach by 

balancing the trade-off between exploration and exploitation 

to enable the agents to navigate complex and uncertain 

environments. The overall Dyna-Q is a novel research 

direction in RL with an attractive structure that handles plenty 

of real-life issues. 

(7) Actor-critic methods

Actor-critic methods use both actor methods that are policy-

based (actor) and critic methods that are value-based (critic). 

This is a good combination that allows the machine to explore 

and exploit. In this case, actor-critic algorithms need to learn a 

policy function (which acts according to the selected actions) 

and a value function (which evaluates the quality of selected 

actions). The simultaneous updating of both functions by the 

actor-critic agents achieves higher efficiency and better 

performance over other single-model approaches. This 

effectiveness of actor-critic methods arises from the fact that 

they are appropriate for inventory control tasks characterized 

by adaptive and dynamic decision-making in unpredictable 

environments. 

(8) Monte Carlo methods

Monte Carlo methods are types of learning algorithms that

guess value functions by using the average of sampled returns 
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from simulated paths. In managing stock, Monte Carlo 

methods help agents find the best rules by creating many 

rounds of play with the setting and figuring out returns from 

seen rewards [23]. By taking the average of returns from many 

paths, Monte Carlo agents can guess state and action values 

better, leading to smarter choices in changing and unsure 

supply chain situations. 

(9) Temporal difference (TD) learning

TD learning is a key building block in reinforcement

learning that allows an agent to learn from sequential inputs 

by stitching together rewards that are expected to come in the 

future [23]. TD learning algorithms that choose values based 

on the difference between the current and the estimated future 

rewards can record the experience and improve the policies as 

a learning agent. The fact that temporal difference updates 

introduce exploitation-exploration balance makes TD learning 

a technique that has been so frequently used in inventory 

control applications. 

(10) Proximal policy optimization

PPO is an outstanding algorithmic method that makes

learners from trial and error more sample-friendly with each 

training and, finally, sustainable regarding stock management. 

PPO algorithms refine the playing direction singularly or 

severally but don’t exceed what a professional gamer would 

do to obtain as much reward while not getting the changes too 

big to keep the learning stable [24]. The policy of PPO aids 

this by fine-tuning the decisions with small steps up and 

simultaneously making sure that policy shifts are monitored 

and controlled. The main result is solid and firm plans for 

those helping in inventory management. This is an example 

because, in the same meaning, real-life supply networks must 

be very stable, thus leading to efficient working. 

4. REAL-WORLD APPLICATIONS

The area of inventory management and other supply chain 

management (SCM) domains, among many, is covered by 

reinforcement learning, which offers novel solutions to the 

complicated problems of decision-making [25]. In the practice 

of stock management, RL algorithms have the potential to 

establish inventory control policies flexibly by updating the 

ordering, stocking, and fulfillment procedures in real time, 

which in turn helps to minimize costs while covering 

customers’ demands. RL models, in turn, can deal with the 

changing demand patterns, the disruptions of the supply chain, 

and the limits of the inventory, leading businesses to become 

more dynamic and responsive. Beyond inventory management, 

RL holds promise in various SCM areas, including: 

(1) Supply chain optimization

RL algorithms perform unit optimization in supply chain

operations: dynamic resource allocation, resource 

management, production schedule optimization, and 

transportation logistics optimization. Real-time data and 

feedback are the basis upon which RL models can develop all 

supply chain strategies, which could then be applied to reduce 

costs, decrease lead time, or improve service levels [26]. 

(2) Demand forecasting

RL-based demand forecasting models can analyze the sales

history, market trends, and environmental factors to achieve 

accurate demand predictions [27]. They can even adjust 

forecasts on a dynamic basis depending on the changing 

market conditions, which, in turn, improve inventory 

management, production planning, and distribution strategies. 

(3) Warehouse management

RL techniques can be leveraged in warehouse management,

which includes controlling the re-supply of stock and picking 

and packing operations. RL-based warehousing management 

systems could help to improve the efficiency of order 

realization and accuracy of tasks in the chain and provide 

optimal storage utilization, which could result in better order 

processing and delighted customers. 

(4) Supply chain risk management

RL-based algorithms mitigate supply chain risks with the

help of identification processes, which can predict potential 

disruptions and optimize risk mitigation strategies in the 

process [26]. Through learning from past mistakes and 

adjusting emerging risk factors, RL has the potential to 

upgrade supply chain resilience and lessen the disturbance of 

operations from disruptions. 

(5) Transportation management

RL-based transportation management systems maximize

route designing, dispatching, and fleet operating tasks to 

decrease transportation costs and delivery performance. The 

capabilities of RL models to learn from historical data as well 

as real-time traffic conditions can assist them in routing 

optimization, fuel saving and transportation efficiency 

enhancement. 

5. CASE STUDY PROBLEM STATEMENT

5.1 Pre-work based on literature review 

When addressing the competitive choice of algorithms for 

SCIM, which is particularly important, one has to consider 

strengths and limitations with respect to the particular 

characteristics of the problem. In general, SCIM involves 

discrete decision-making, for example, the amount of stock 

order, the frequency of customer demand, and the need for fast, 

effective actions in large state spaces. Among the different 

algorithms reviewed, DQN was chosen for this study because 

it seems uniquely appropriate for such situations. DQN is 

especially apt for SCIM since it is a reinforcement learning 

algorithm that optimizes in a discrete action and reward 

environment for decisions such as when or how much stock to 

order. Again, Q-value approximation enables the model to 

learn an effective inventory policy cost-efficiently. 

In this case, DQN balanced the trade-off between inventory 

holding costs and stockout risks in fluctuating demand. The 

stabilizing of learning aided by using experience replay with 

target networks provides a robust algorithm applicable to 

environments requiring precise control over actions with 

immediate and long-term consequences, such as those in this 

paper. In contrast, PPO and A3C algorithms usually operate 

under continuous action spaces and stochastic environments. 

These make them less than ideal for SCIM, which is discrete 

in nature. Particularly, PPO, though efficient in generalization 

across various environments, converges poorly under discrete 

decision-making problems such as inventory control. The 

slower learning process, combined with the complexity of 

tuning hyperparameters, makes it less than ideal for small and 

medium retail settings, which need to make quick and 

effective decisions. Similarly, the main advantage of A3C is 

that it gives fast, on-policy updates that could receive huge 

advantages in certain environments. Still, regarding an 

inventory system, sensitivity to sparse rewards and large state 

spaces poses difficulties. The computational expense of the 
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algorithm makes it less practical for real-time applications in 

SCIM when the speed of decision-making is highly critical. 

Additionally, vanilla policy gradient (VPG), though simple 

to implement, is not well-suited for the complexities of 

inventory management. Its high variance and sample 

inefficiency make it better suited for simpler environments 

than complex multi-agent systems like supply chains. Overall, 

DQN is the best algorithm choice for SCIM in this research 

work. In a nutshell, while dealing with large states and discrete 

actions, it efficiently learns the policy that needs to be decided 

in a dynamic inventory control system. The experimentation 

shows that DQN outperformed other RL algorithms because 

of the optimal determination of inventory policies, which can 

be chosen based on certain motivating factors relative to such 

a case study. 

Experimenting with real historical sales, datasets showed 

higher effectiveness, consumer satisfaction, and revenue 

generation with the recommended technology method 

compared with the present ones. Particularly, the 

recommended strategy is to yield the legacy metrics of <5 and 

5% more inventory turnover rate and earnings than the 

heuristic method, respectively [15]. 

Inventory management at the supply chain level is all about 

optimizing stock levels in order to meet customer demands 

effectively. Conventionally, static decision rules in inventory 

control policies like (R, Q), (T, S), and (s, S) are based on 

continuous demand patterns, as shown in Figure 3, that do not 

respond to dynamic conditions as well as they are predicted to 

do. This is because such policies can very often lead to 

suboptimal management of the inventory. Thus, the company 

may either lose some sales or incur additional inventory costs. 

To overcome this shortcoming, this case study focuses on the 

RL method that is DQN and it tries to create a dynamic 

inventory control policy that is suitable for a small retail shop 

that deals with Coke. Through RL application, this work aims 

to produce dynamic inventory arrangements to create greater 

profits than those of traditional static inventory policies. 

Figure 3. Environment for case-study 

5.2 Classic inventory control policies 

Traditional inventory control policies of (R, Q), (T, S), (S, 

s), and base stock have been the norm for inventory 

replenishment based on fixed decision rules. Although these 

policies are adequate for a limited demand category, they are 

not flexible enough to fit into the changing nature of the 

market condition. The shortcomings of such static practices 

point towards a proactive and dynamic approach to inventory 

administration. 

5.3 Reinforcement learning for inventory optimization 

The RL approach offers a promising concept for building 

dynamic modeling of inventory control policies that can adjust 

to fluctuations in demand. MDP, called Markov Decision 

Process (MDP), enables RL to learn the optimal decision-

making strategies for agents within the environment through 

interaction. In the presented case study, the state, action, and 

reward which are the main components of the MDP as a means 

of modeling the inventory problem in the most effective way. 

5.4 Solving the Markov decision process 

Because model-free RL methods are based on reality and 

are therefore practical, the optimal solution of the designed 

MDP can be found by using these methods. In this regard, 

DQN, a variant of Q-learning, comes to the fore. Deep neural 

networks are used in DQN to approximate the Q-function, 

which gives rise to the efficient learning of the optimal control 

policies. Our main focus is the implementation of DQN. This 

learning tool is responsible for producing an adaptive 

inventory control policy, which computes and executes the 

optimum ordering activity based on real-time inventory 

position and future demand information, thus leading the retail 

store to profit maximization. 

5.5 Case study experimenting 

In a numerical let us introduce an experiment in which 

Classic control policies will be compared to policies learned 

by DQN for a hypothetical small retail store specializes in the 

sales of Coke. Focusing on this experiment, an assessment of 

the strategic decision-making process regarding inventory 

replenishment to meet the customer demand is focused. 

Inventory replenishment in a store involves ordering Coke 

cases, which is integer quantity and each contains 24 cans. 

Setting the context, the key financial parameters such as: a unit 

selling price of $30 a case, a holding cost of $3 a case a night, 

a fixed ordering cost of $50 an order, and a variable ordering 

cost of $10 a case are established. Moreover, some operational 

constraints such as inventory capacity of 50 cases, a maximum 

order quantity of 20 cases per order, an initial inventory of 25 

cases at the end of Sunday, and 2 days for order fulfilment lead 

time are established. 

In this experiment, the demand patterns based on a 

predefined structure: demand for Monday to Thursday will 

have a normal distribution N (3, 1.5), demand for Friday will 

have N (6, 1), and demand from Saturday to Sunday will have 

N (12, 2) are simulated. Through this, 52 samples of past data 

for 1 year to be used as a training dataset for the DQN model 

are obtained. As a yardstick, to tune the (s, S) inventory control 

policy, the same data collection as that used to train the DQN 

model is utilized. The test set scenario is the next step that 

involves DQN-learned policy and benchmark policy 

comparison. The goal of the analysis is to get knowledge on 

the comparative ability of the dynamic RL-based inventory 

control strategies and the traditional static inventory 

management, making it possible to give useful 

recommendations on supply chain optimization and 
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operational decisions in retailing operations. 

5.6 Case study methodology 

The given study applies DQN to designing a dynamic 

inventory control policy for a small retail store selling Coke. 

The implementation of DQN was necessary because static 

inventory control policies, such as (s, S), are rather ineffective 

in fluctuating demand conditions. The following methodology 

focuses on creating, through reinforcement learning, a flexible 

real-time decision-making model. The environment is 

modeled as a Markov Decision Process in which, at every 

given point in time, the state will be the current inventory, and 

based on that state, the agent chooses an action number of 

Coke cases to order earnings are considered by calculating 

rewards using profitability. Key financial factors determining 

profitability include holding costs, ordering costs, or revenue 

from sales. Its DQN uses a neural network structure with an 

input layer, two hidden layers of 64 neurons each, and ReLU 

as the activation function in the hidden layers. The network 

will be trained using the Adam optimizer with a learning rate 

of 0.001, while the discount factor γ was chosen to be 0.95 to 

balance immediate and future rewards. Finally, ε-greedy 

exploration is used, where ε starts at 1 and exponentially 

decays down to 0.1 to ensure enough exploration during 

training. 

The data used is the simulated demand patterns of a 52-

week period. The weekday demand is normally distributed by 

parameters N(3, 1.5), the Friday demand is N(6, 1), and the 

weekend demand is N(12, 2). The given financial parameters 

of the case study were: Unit selling price is $30; Holding cost 

per case per night is $ 3; Fixed ordering cost is $ 50; Variable 

ordering cost is $ 10/case. The inventory capacity is limited to 

50 cases with a maximum order quantity of 20 cases. This is 

further put to the test in the performance against the classic, 

widely used (s, S) inventory policy across key metrics: 

inventory turnover rate, stockout frequency, holding costs, 

total revenue, and overall profitability. Quantitative analysis 

may be provided regarding comparative weekly costs, profit, 

and the number of stockout occurrences, supported by 

additional statistical tests confirming the significance of the 

differences between DQN and static control policies. This 

complete setup gives clarity on the RL algorithm that has to be 

implemented, the training data, and the metrics involved in the 

evaluation. Further, analysis with full details shows the 

influence of the DQN model in improving inventory 

management. 

In the paper, we are supposed to use the DQN algorithm to 

optimize the inventory control decision. The DQN consists of 

two fully connected hidden layers of 128 neurons each, 

followed by a final layer with a number of output units 

corresponding to the action values, while the state space, with 

the representation of the inventory position and binary 

encoding of the day of the week, maps into Q-values over 

actions. The DQN is trained on a replay buffer of 500000 

experiences, with a batch size of 128. The optimizer used is 

Adam, which has a learning rate of 0.0001 while performing a 

soft update with a factor of 0.001 to ensure gradual updates of 

the target network. The exploration-exploitation trade-off is 

managed by an epsilon-greedy policy decaying the epsilon 

value from 1.0 to 0.01 over episodes. The model updates every 

four steps, and we train it over 1,000 episodes, trying to 

maximize total rewards, reflecting profit from selling units 

while minimizing holding and ordering costs. 

5.7 Experimenting with different cases 

These cases thus include eight sets of variants in the demand 

distributions for different days of the week, either over 52 

weeks (1 year) or over 104 weeks (2 years). 

Case 1: The demand from Monday to Thursday is normally 

distributed with a mean of 3 and a standard deviation of 1.5. 

On Fridays, the demand distribution is normal, with a mean of 

6 and a standard deviation of 1. In contrast, on weekends-i.e., 

Saturday and Sunday-the demand is normally distributed with 

a mean of 12 and a standard deviation of 2. 

Case 2: The demands from Monday to Thursday are 

normally distributed with mean 2 and standard deviation 1. 

Each Friday, demand is normally distributed with a mean of 4 

and a standard deviation of 2. The demand is normally 

distributed on Saturdays and Sundays with a means of 8 and a 

standard deviation of 4. 

Case 3: Monday to Thursday, demand distribution is 

Normal with a mean of 0 and a standard deviation of 1. On 

Fridays, demand distribution is Normal, with a mean of 1 and 

a standard deviation of 2. Weekend demand distribution is 

Normal, with a mean of 3 and a standard deviation of 4. 

Case 4: From Monday to Thursday, the demand is normally 

distributed with a mean of 1 and a very high standard deviation 

of 10, reflecting higher uncertainty. The demand distribution 

is normal on Fridays, with a mean of 3 and a standard deviation 

of 15. Lastly, for Saturday and Sunday, the demand is 

normally distributed with a mean of 7 and a high standard 

deviation of 20. 

The analysis for each case is for two-time sets: one set for 

52 weeks, which equals a year; another set for 104 weeks, or 

two years. 

5.8 Discussions and findings 

While it has become obvious through the case study that 

there are advantages in applying RL for optimizing inventory 

management, several practical considerations remain to be 

made when using these methods in realistic supply chains. In 

particular, data availability and quality: RL algorithms need 

data that is accurate and of high quality to train the algorithm, 

which may not always be accessible in realistic environments. 

Moreover, the computational burden of training RL models, 

especially DQN, often overwhelms small businesses due to the 

lack of advanced computing resources. Other limitations 

include scalability: this existing work considers a single 

retailer selling stock of one product in real-world applications 

where the demand is high and greatly variable for each product 

and location. Also, the integration of the RL models with 

currently established supply chain management systems 

tacitly requires real-time data exchange, which may introduce 

other operational problems. 

These challenges notwithstanding, key takeaways from this 

study present RL-based inventory systems as those that can 

offer considerable improvements in performance compared to 

traditional static approaches. Our case also proves that the RL-

driven approach can be effective in dynamic decision-making 

and demand forecasting, returning a profit of $17,202.08. 

Table 1 presents Experimental results for inventory 

management with varying demand patterns. Figures 4-11 

represent episodic rewards for inventory management with 

varying demand patterns. These findings show that RL has the 

potential to improve inventory turnover rates, decrease 

stockouts, and increase profitability; thus, it is a promising 
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direction in supply chain optimization. 

Table 1. Experimental results for inventory management 

with varying demand patterns 

Case Weeks Distribution +ve Reward Results 

1 52 

M-Th =N (3, 1.5)

F =N (6, 1)

S-Su =N (12, 2)

300 Epi $17,202.08 

2 52 

M-Th =N (2, 1)

F =N (4, 2)

S-Su =N (8, 4)

323 Epi 10165.18 

3 52 

M-Th =N (0, 1)

F =N (1, 2)

S-Su =N (3, 4)

643 Epi 407.08 

4 52 

M-Th =N (1, 10)

F =N (3, 15)

S-Su =N (7, 20)

214 Epi 11866.61 

5 104 

M-Th =N (3, 1.5)

F =N (6, 1)

S-Su =N (12, 2)

123 Epi 42416.72 

6 104 

M-Th =N (2, 1)

F =N (4, 2)

S-Su =N (8, 4)

300 Epi 16205.09 

7 104 

M-Th =N (0, 1)

F =N (1, 2)

S-Su =N (3, 4)

840 Epi -116.88

8 104 

M-Th =N (1, 10)

F =N (3, 15)

S-Su =N (7, 20)

206 Epi 24065.6 

Figure 4. Episodic rewards for Case 1 

Figure 5. Episodic rewards for Case 2 

Figure 6. Episodic rewards for Case 3 

Figure 7. Episodic rewards for Case 4 

Figure 8. Episodic rewards for Case 5 

Figure 9. Episodic rewards for Case 6 
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Figure 10. Episodic rewards for Case 7 

Figure 11. Episodic rewards for Case 8 

Future research should be done to allow the scaling of RL 

models for multiple products and retailers, as well as testing 

with real-world data in live operation environments to prove 

their performance. The examination of other RL policies can 

also be performed, such as the base stock policy or hybrid 

approaches, which may yield further optimization on diverse 

retail settings. Improvements in model convergence speed and 

efficiency in learning will finally be done to seriously allow 

the big-time involvement of RL in real time for inventory 

management systems. 

6. CONCLUSION AND FUTURE SCOPE

In the end, it is proved that inventory management through 

reinforcement learning is a profitable direction. Through the 

featuring of (s, S) policies, the supply chain performance level 

can be improved. The achieved income of $17,202.08 

reaffirms the power of RL in ensuring economic inventory 

control policies. This success is the best evidence that RL is a 

very useful method to take into consideration the complexity 

and uncertainty that exist in supply chain management. 

Moving into the future, more research and development in 

inventory optimization using RL can potentially improve 

profitability, minimize cost, and improve all-around supply 

chain performance. Along with how fast technology is 

progressing, the inclusion of RL into supply chain systems 

would be a means of achieving greater efficiency and 

competitiveness in the marketplace. This case study focuses 

on a single retailer and one product in the inventory; this 

introduces a need to work with multiple products and 

inventory levels. Real-world data might also be utilized to 

verify DRL algorithms and determine whether they improve 

the performance of existing SCIM systems in use. It could 

have different policies like base stock policy and updated 

policies for convergence and learning Q-table. 
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