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The identification of electrical and mechanical parameters is a crucial step in the modeling 

and control of industrial electric motors. Incorrectly identified parameters or those 

estimated with considerable error can lead to instability or biased control of the system. In 

this paper, we present a study to identify the electrical and mechanical parameters of an 

induction motor (IM) using two recent metaheuristic techniques: the Slim Mold Algorithm 

(SMA) and the Equilibrium Optimizer (EO). A hybrid algorithm, the Equilibrium 

Optimizer-Slim Mold Algorithm (EOSMA), combining the advantages of both techniques, 

is proposed and compared to other methods to demonstrate its effectiveness. The 

identification of the IM parameters is based on the optimization (minimization) of an 

objective function, which measures the error between the electrical quantities (stator 

current and motor speed) obtained from the simulation of a mathematical model and those 

measured during an experimental test. The results show that the electrical parameters 

identified by the hybrid EOSMA algorithm are more accurate than those obtained with the 

other two techniques in terms of convergence and precision, thus validating the 

effectiveness of the hybrid method. 
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1. INTRODUCTION

The IM is the most powerful and least expensive electrical 

machine on the market. It is an essential element in factories. 

The percentage of IM use in factories compared to other 

motors has reached around 80%. This prompted researchers to 

design a control unit based on the frequency converter control 

model [1]. In the control unit, the parameters of the IM must 

be known in order to diagnose its malfunctions. For this 

reason, researchers estimate IM parameters using a variety of 

methods, aiming to achieve accurate results. 

A standard testing technique that involves direct current, 

no-load, and blocked rotor tests was introduced [2]. However, 

this method has a high error rate in estimating IM parameters, 

is time-consuming, and requires specialized calibration 

devices [3]. To address these challenges, a technique based on 

the Gauss-Seidel method that utilizes nameplate data to 

estimate IM parameters without interrupting the motor's 

operation was proposed [4-6]. Nevertheless, this technique is 

prone to errors, as IM parameters can vary due to operational 

conditions, temperature, and magnetic flux. To improve 

parameter estimation accuracy, the Iterative Least Squares 

(RLS) technique was introduced [7]. RLS is known for its ease 

of implementation, speed, and efficiency. It operates by 

minimizing the difference between real and estimated values. 

The impact of different environmental conditions on IM 

parameters was also studied using the RLS technique [8]. In 

recent years, various metaheuristic techniques have been 

explored for estimating IM parameters. One technique 

combines numerical procedures and dimensionless analysis 

using Thevenin theory [9]. Another approach utilizes a particle 

swarm optimization algorithm and approximates rotor 

parameters as a function of speed [10]. An improved moth 

flame optimization algorithm was also developed [11]. A 

method that employs the Quantum Particle Swarm 

Optimization algorithm was proposed as well [12]. 

Additionally, linear induction motor parameter estimation 

based on the gray wolves optimization algorithm has been 

suggested [13]. Several methods based on the Kalman filter 

have been proposed to estimate IM parameters, although they 

are sensitive to the estimation of the initial state [14, 15]. 

Numerous researchers have applied different optimization 

algorithms using manufacturer’s data sheets to estimate IM 

parameters [16-20]. In the last three years, new algorithms 

have emerged and been applied in various studies [11, 21, 22], 

including the EO and SMA algorithms used in variable 

neighborhood search for job shop scheduling problems [23], 

and in solving inverse kinematics and engineering design 

problems [24]. Recent work has applied modern EO and SMA 

algorithms to estimate IM parameters [25, 26]. These 

algorithms demonstrated faster convergence and higher 

accuracy compared to the PSO algorithm, which they 

outperformed in various evaluation scenarios. 

In this paper, we contribute to identifying the electrical and 

mechanical parameters of IM based on experimental data of 

current intensity and speed, using a hybrid metaheuristic 
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algorithm that combines two algorithms: the EO and SMA. 

This combination, referred to as EOSMA, was introduced in 

2022. The EOSMA algorithm has achieved great success and 

yielded better results in various research fields, but its 

application in estimating the parameters of IM has been 

limited. Therefore, in this work, we validated the EOSMA 

algorithm in estimating IM parameters by comparing it with 

the EO and SMA algorithms. The EOSMA algorithm 

produced more accurate results than both the EO and SMA 

algorithms, and it was characterized by rapid convergence and 

precise outcomes. 

The following sections make up the organization of this 

work: Section 1 presents IM modeling. Section 2 provides a 

description of the new algorithms EOSMA, EO, and SMA. 

Section 3 provides a description of how to estimate IM 

parameters using algorithms EOSMA, EO, and SMA. Section 

4 shows the results of estimating the IM parameters and 

comparing algorithm EOSMA with algorithms EO and SMA. 

 

 

2. MODEL OF THE INDUCTION MOTOR 

 

Modeling the IM is necessary to estimate its parameters. 

Therefore, a model closely matching the real IM was used, as 

validated in the frequency domain using the modified Park 

model SSFR [27]. Nonlinear mathematical equations were 

used for modeling an IM with reference to the rotor (d, q) axes. 
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Then the machine's nonlinear equations can be written as 

follows: 
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where, 𝑅𝑟𝑅𝑠 rotor resistance and stator resistance,𝐿𝑠𝐿𝑟  stator 

inductance and rotor inductance. 

It can be done to complete the motor's differential equations 

with the movement equations expressed by (4) and (5). 
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where, j represents the moment of inertia of the IM under 

study, 𝐶𝑒𝑚  its electromagnetic torque, F its viscous friction, 

𝐶𝑟 its load torque. 

Figure 1 illustrates the mathematical model of a three-phase 

IM in the dq reference frame. The model was developed using 

the Simulink environment and is based on the dynamic 

equations of the motor transformed into the rotating reference 

frame. The three-phase voltages (Va, Vb, Vc) are converted 

into dq components using the Park transformation, which 

simplifies the analysis by reducing the system to two 

dimensions. The model includes both the electrical circuits of 

the motor and the mechanical equations that relate the 

generated torque to the rotor dynamics. A small simulation 

time step (0.0001 s) is used to ensure high accuracy in the 

transient response analysis. 

 

 
 

Figure 1. Simulink block diagram of the IM [27] 

 

2.1 SMA 

 

SMA is a new algorithm based on metaheuristics proposed 

by Li et al. [28]. Slime mold is a living organism that thrives 

in cold and humid environments. It spreads and reproduces in 

areas with abundant food. Slime mold moves toward food by 

detecting its scent, thereby spreading and enveloping itself 

around the food source. A mathematical model corresponding 

to this natural phenomenon was simulated using three different 

equations. 
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where, 𝑖  is the number of iterations, 𝑥(𝑖+1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   represents the 

position of the new mold particle, 𝑥𝐵⃗⃗⃗⃗  is the location with the 

currently identified high concentration of food odors, 𝑙𝑏   it 

symbolizes the lower limits, 𝑢𝑏 it symbolizes the upper limits, 

𝑥𝑓(𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑥𝑗(𝑖)⃗⃗ ⃗⃗ ⃗⃗  ⃗  it is two randomly selected individual mold 

locations. 𝑟𝑎𝑛𝑑 and 𝑟 is a variable number from 0 to 1, 𝑣𝑎⃗⃗⃗⃗  is 

a variable number in the interval [-d,d], 𝑣𝑏⃗⃗⃗⃗  decreases linearly 

from 1 to 0, d is defined as follows: 
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where, 𝑚𝑎𝑥_ 𝑖 is the number of maximal iterations. 𝑤⃗⃗  is the 

transfer coefficient from the mold particle to the food location, 

and this factor changes from particle to particle depending on 

the value of the target function. 𝑤⃗⃗  is defined on: 
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where, 𝑛 = 1,2, . . . , 𝑚. 
𝑚 is the number of mold particles, 𝑟 is a random numerical 

variable between 0 and 1, 𝐵𝑓 represents the best value of the 

objective function for each iteration, 𝑤𝑓 represents the worst 

value of the objective function, 𝑠(𝑛) represents the value of the 

objective function for each mold particle, 𝑆𝐼𝑑𝑥 represents the 

sequence of sorted objective function values. 
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tanhq s FI

n
= −  (9) 

 

where, 𝐹𝐼  represents the optimal value of the objective 

function calculated over all iterations. The transmission and 

spread of slime mold is based on three different equations: 

When 𝑟𝑎𝑛𝑑 ≺ 𝑧, one equation is used. 

When 𝑟 ≺ 𝑞, another equation is used. 

When 𝑟 ≥ 𝑞, a third equation is used. 

It is set to z= [0.03 – 0.06] range in the SMA. 

 

2.2 Equilibrium optimizer algorithm 

 

The EO algorithm is inspired by modern physics and is 

based on the principle of balancing mass and volume, as 

proposed in recent research [29]. The concept is described by 

the following equation. 
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where, 𝑐1⃗⃗  ⃗  represents the updated solution, 𝑐0⃗⃗  ⃗  represents the 

preceding solution, 𝑐𝑒𝑞⃗⃗ ⃗⃗  ⃗  indicates the best solution, 𝐹  is a 

coefficient applied to weigh local and global search efforts. 𝑗  
represents the density development rate in the test volume, 𝛾 

is the variable of probability numbers in [0, 1]. v=1 indicates 

unity of volume. There are five candidate solutions in the 

balance basin. The four most intriguing solutions discovered 

thus far are listed below, with the second representing the 

central location (average concentration) of these four 

contender solutions, as illustrated: 
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where, 𝐴1∈[1,2] and 𝐴2 [1,2] represent the fixed global search 

force coefficient. The larger 𝐴1 ∈[1,2] the greater the 

exploration capacity and the lower the exploitation capacity, 

and vice versa. The 𝐽  value is expressed as: 
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where, 𝑟1  and 𝑟2  are probability numbers in [0,1] and where  

𝑗𝑝=0.5 is the random probability of generation. 

 

2.3 Proposed a new hybrid metaheuristic algorithm 

EOSMA, for IM parameters identification 

 

The EOSMA algorithm is a recently proposed method 

representing a hybrid of the SMA and EO algorithms. This 

hybrid algorithm was developed to enhance the performance 

of metaheuristic solutions, aiming to achieve high 

convergence speed and solution accuracy. By integrating the 

strengths of SMA and EO, the algorithm provides a robust 

approach for finding optimal solutions. It employs strategies 

that accelerate the convergence process, enabling it to reach 

optimal solutions in a shorter time while maintaining high 

accuracy in solving complex problems. Additionally, EOSMA 

combines global search mechanisms (exploration) with 

focused search mechanisms (exploitation), ensuring 

comprehensive coverage of the search space and improving 

solution quality. The algorithm operates using mathematical 

equations derived from the unique features of SMA and EO, 

performing heuristic searches through iterative steps where 

solutions are gradually refined through the interaction of both 

algorithms’ components [23]. 
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where, 𝑥(𝑖)⃗⃗ ⃗⃗⃗⃗  is the location of the equilibrium point, 𝑥𝑒𝑞(𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is a 

solution chosen at random from the equilibrium pool with 
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equal probability, 𝑥𝑒𝑞,1(𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is the best solution in the 

equilibrium pool, the best position found so far, and z is an 

empirical value obtained through experiments, r is a random 

number vector in the range [0,1]. The H vector is defined by: 
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where, 𝑎  is population size, y indicates the number of 

dimensions, k=0.2 is an settable variable, to ensure that the 

searches are not spoiled, the limits of the search operator are 

updated by Eq. (15) each time the location is updated: 
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𝑈𝐵 symbolizes the upper limits. 

Table 1 shows the organizational structure for the 

programming algorithm EOSMA, which is a hybrid 

metaheuristic algorithm that combines the two algorithms, EO 

and SMA. 

 

Table 1. Organizational structure for the programming 

algorithm EOSMA 

 
Algorithm of EOSMA 

Initialize the parameters 𝑧, 𝑞, 𝐴1, 𝐴2, v, jp, pop, var, 𝑚𝑎𝑥_ 𝑖; 
Initiate search agent locations 𝑥(𝑎)⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑎 = 1,2, . . . , 𝑝𝑜𝑝); 

Initialize the objective function S of 𝑥 ; 

Initiate the equilibrium pool 𝐶𝑒𝑞,𝑝𝑜𝑜𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗; 

While 𝐼 ≤ 𝑚𝑎𝑥_ 𝑖 
verify the limit by Eq. (15); 

evaluated the objective function S; 

      Preserve the best solutions compared to the previous iteration; 

      Sort the objective function s; 

      Updating Bf, wf; 

Evaluated the w by Eq. (8). 

Updated the equilibrium pool 𝐶𝑒𝑞,𝑝𝑜𝑜𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗; 

     determine the values of adaptative variables 𝑖, 𝑎, 𝑣𝑏, 𝑞; 
  Updating random values 𝑟1𝑟2, 𝑟, 𝑣𝑎, 𝑣𝑏, 𝛾 ; 
For 𝑎 = 1 to 𝑝𝑜𝑝; 

If 𝑟𝑎𝑛𝑑 ≺ 𝑧 

Updating 𝑥(𝑎)⃗⃗ ⃗⃗ ⃗⃗  ⃗ utilizing the EO operator;  

Else    

                    For 𝑦 = 1 to 𝑣𝑎𝑟 

                           If 𝑟(𝑎, 𝑦) ≺ 𝑞(𝑎); 

Updated 𝑥(𝑎,𝑦)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   by the 2nd equation in Eq. (15); 

Else 

Update 𝑥(𝑎,𝑦)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   by the 3rd equation in Eq. (15); 

end if 

end for 

end if 

end for 

verify the limit by Eq. (15); 

      evaluated the objective function S; 

If 𝑟𝑎𝑛𝑑 ≺ 𝑘 

Updated 𝑥  by the 1st equation in Eq. (13); 

Else 

Updated 𝑥  by the 2nd equation in Eq. (13); 

And if 

𝑖 = 𝑖 + 1; 

end while 

return 𝑥𝐵⃗⃗⃗⃗   and its objective function; 

 

 

3. PARAMETERS IDENTIFICATION OF IM WITH 

EOSMA 

 

3.1 The procedure of parameters identification of IM 

 

The EOSMA algorithm operates in the context of the 

mathematical model of an IM by first initializing a set of 

random solutions, where each solution represents a random set 

of parameters for the model. These parameters are used to 

calculate the motor’s outputs, such as current intensity and 

speed, which are then compared to experimental data using an 

objective function designed to minimize the difference 

between the calculated and experimental values. Based on the 

performance of each solution relative to the objective function, 

the algorithm simulates the behavior of slime molds, where 

better-performing solutions move toward more promising 

regions of the search space, while poorly performing ones 

move away. This iterative process continues across 

generations until the algorithm converges on the optimal set of 

parameters, ensuring the model closely matches the 

experimental data. 

The Figure 2 shows the process of identifying IM 

parameters. The procedure begins with the experimental 

testing of the IM, where stator currents and speed are 

measured. Next, a mathematical model of the IM is developed 

to simulate its behavior based on the given input parameters. 

The experimental and simulated data are then compared, and 

the difference between the two is calculated. To minimize this 

discrepancy, the EOSMA algorithm is applied for parameter 

identification, optimizing the IM parameters to improve 

accuracy. Finally, an objective function is used to evaluate the 

precision of the model by assessing the computed errors. This 

systematic approach ensures a reliable and accurate 

identification of the IM parameters. 

 

 
 

Figure 2. Blocks in the MI parameters identification 

procedure 

 

We now proceed to the task of determining the parameters 

of the IM represented by the set of differential equations 

defined in: 
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where, 𝑥𝑒𝑠𝑡 is the variable vector of the mathematical model 

of the IM. F function represents a mathematical model of the 

IM. 𝑃𝑒𝑠𝑡  represents the identification of the parameters of the 

IM.  
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We can identify the optimal parameter vector 𝑃𝑒𝑠𝑡̂  based on 

the following equations: 
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𝑆(𝑃𝑒𝑠𝑡̂) represents the objective function. 

 

3.2 The IM experiments tests 

 

The characteristics of the IM used in the experiment are 

shown in Table 2. 

Table 3 summarizes the main parameter settings used for 

the SMA, EO, and EOSMA algorithms. To ensure a fair 

comparison, the population size and number of iterations were 

kept consistent across all three algorithms, set to 200 and 300, 

respectively. Each algorithm also includes specific parameters 

relevant to its design: for SMA, the parameter z was set to 0.03 

as recommended in the original study; EO uses a control 

parameter jp, set to 0.5 based on prior literature. For EOSMA, 

the hybrid algorithm, we introduced the parameter k, which 

was empirically tuned, and the optimal value was found to be 

k = 0.2 based on validation performance. 

 

Table 2. Characteristics of the IM used in the experiment 

 
Parameter Value 

P nominal power 1 KW 

V nominal voltage 380 V 

𝐼𝑁nominal current 2.5 A 

𝐹𝑆 the feed frequency 50 HZ 

COS∅ power factor 0.83 

𝑁𝑁 the nominal speed 2780 tr/min 

The coupling ∆ 

 

Table 3. Parameters of the algorithms 

 
Algorithms SMA EO EOSMA 

Number of population 200 200 200 

Number of iterations 300 300 300 

z 0.03 / / 

jp / 0.5 / 

k / / 0.2 

 

Table 4 shows the search limits of the algorithm. Search 

limits are set for each parameter to ensure accuracy in the 

search. These limits were chosen based on the induction motor 

data plate. 

 

Table 4. The research space of optimized parameters by the EOSMA, EO, and SMA algorithms 

 
 𝑹𝑺(Ω) 𝑹𝒓(Ω) 𝒍𝑺(𝑯) 𝑴(𝑯) 𝒍𝒓(𝑯) J (kg.𝒎𝟐) F (𝑵𝒎/𝒔) 

lb 10 5 0.001 0.5 0.001 0.0001 0.0001 

ub 30 20 0.5 4 0.5 0.1 0.1 

 

 
   

Figure 3. Experimental tests of IM data extraction 

 

Figure 3 illustrates the experimental setup used to extract 

current and speed data from a no-load  IM. The IM was 

powered by a stable three-phase 380 V supply and operated 

under no-load conditions. The experiments were conducted in 

a laboratory environment at a constant ambient temperature of 

approximately 28°C. Voltage stability was maintained 

throughout the tests using a regulated power source.  The 

current was measured using a cathode-ray oscilloscope 

connected in series with a 1-ohm resistor, while motor speed 

was measured using both a tachometer and the oscilloscope. 

The acquired current and speed signals were transferred to a 

computer in Excel format for further processing and analysis 

in MATLAB.  The experimental data obtained from this setup 

was matched with the mathematical model to accurately 

estimate the parameters of the  IM. 

 

 

4. RESULTS AND DISCUSSION 

 

The table shows the results of the IM parameters obtained 

from the algorithms  EOSMA, EO, and SMA. The results of 

the algorithm EOSMA are very accurate  compared to the other 

algorithms, EO and SMA, because the objective function of 

EOSMA is better than EO and SMA, as shown in Table 5. 

  

767



 

Table 5. Identified parameters of IM with EO SMA EOSMA 

algorithms 

 
Algorithms 

Parameters 
SMA EO EOSMA 

𝑳𝒔(H) 0.059 0.077 0.056 

𝑳𝒓(𝑯) 0.045 0.026 0.043 

M (H) 1.69 1.62 1.66 

𝑹𝑺(Ω) 24.076 24.073 24.075 

𝑹𝒓(Ω) 14.01 13.13 1 3.51 

J(kg.𝒎𝟐) 0.0008913 0.0008911 0.000795 

f(𝑵.𝒎. 𝒔) 0.00027082 0.00027084 0.00024 

Objective function 4.003 3.102 0.8 

 

Figure 4 presents the progression of the objective function 

over successive iterations for the EOSMA, EO, and  SMA 

algorithms. It is evident that EOSMA achieves convergence 

by approximately the 40th iteration, compared to the EO 

algorithm, which converges around the 60th iteration, and the 

SMA algorithm, which converges by the 80th iteration. These 

results clearly indicate that EOSMA not only converges more 

rapidly but also achieves superior objective function values. 

This comparison underscores the effectiveness of EOSMA in 

terms of both convergence speed and solution quality. The 

hybridization of SMA and EO successfully combines the 

strengths of both algorithms—balancing exploration and 

exploitation—to produce more accurate and efficient 

optimization outcomes.  From a computational standpoint, 

while EOSMA may incur a slightly higher processing cost due 

to the integration of two algorithmic frameworks, its 

accelerated convergence often offsets this overhead. In 

practice, the algorithm requires fewer iterations to reach 

optimal or near-optimal solutions, which can lead to 

significant time savings overall. Therefore, despite its 

marginally higher computational demand, EOSMA proves to 

be a robust and efficient choice, particularly for applications 

that demand high precision and rapid convergence. 

 

 
 

Figure 4. Objective function 

 

 
 

Figure 5. Stator phase resistance 

 
 

Figure 6. Stator inductance 

 

Figures 5-11 show the changes in IM parameters as a 

function of iterations. EOSMA, EO, and SMA search for IM 

parameters in the research space indicated in Table 4. At the 

beginning of the iteration, the algorithms provide random 

parameters, and the error rate of the parameters is large. After 

80 iterations, the parameters begin to converge to the correct 

results. After the research is completed. We conclude that 

algorithm EOSMA obtained better and more accurate results 

because the objective function EOSMA is minimized 

(objective function EOSMA: 0.8). 

 

 
 

Figure 7. Rotor inductance 

 

 
 

Figure 8. Rotor phase resistance 

 

 
 

Figure 9. Mutual inductance 
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Figure 10. J moment of inertia of the IM 

 

 
 

Figure 11. Coefficient of friction f 

 

Figures 12 and 13 illustrate the evolution of angular velocity 

and current intensity over a short time interval. The upper 

curve shows a rapid increase in angular velocity, stabilizing 

around 300 rad/s, indicating efficient dynamic system 

performance. The lower curve displays damped oscillations in 

the current signal, reflecting transient behavior due to 

electromagnetic interactions. These results contribute to 

understanding the system’s dynamic response and evaluating 

its accuracy. 

 

 
 

Figure 12. Experimental speed 

 

 
 

Figure 13. Experimental stator current 

 

 
 

Figure 14. IM stator current obtained from simulation and 

experimental with identified parameters based on EOSMA 

 

 
 

Figure 15. IM speed obtained from simulation and 

experimental with identified parameters based EOSMA 

 

Figure 14 shows the difference (error) between the current 

intensity obtained from the mathematical model of the IM and 

the experimental model of the IM. Likewise, Figure 15 shows 

the difference (error) between the speed obtained from the 

mathematical model of the IM and the experimental model of 

the IM. These results obtained with precision prove by 

evidence the usefulness and validation of the EOSMA 

algorithm for the identification of the IM parameters. 

 

 

5. CONCLUSION 

 

In this research, the parameters of the IM were estimated 

based on experimental data regarding current intensity and the 

speed of the IM, using a recent algorithm known as EOSMA. 

The EOSMA algorithm is a hybrid approach that is 

distinguished by its accuracy and speed of convergence, as 

demonstrated in several recent studies. Therefore, we tested it 

for estimating IM parameters and compared its performance 

with the EO and SMA algorithms. The EOSMA algorithm 

outperforms the EO and SMA algorithms based on the 

objective function indicating the error between the current 

speed obtained from the mathematical model and those 

obtained from the experimental data. 
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