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A compliant-base robotic manipulator presents an important control complication in the 

areas of aerospace, construction, and automation, resulting in a low ability of positioning 

because of the flexibility of the base, which is inherent. This study proposes an Adaptive 

Feedback Linearization (AFL) control scheme enhanced with a Function Approximation 

Technique (FAT) and a robust sliding term for base-induced disturbance rejection. 

Dynamics regarding the system have been defined using the Euler-Lagrange method, 

considering the base movement as the disturbance external to the system. The adaptive 

refinement of control law employs Chebyshev polynomial approximators, minimizing 

tracking error and control efforts. Closure of the Lyapunov theory renders stability under 

closed-loop conditions. Simulations have been done on a 2-DOF (degrees-of-freedom) 

manipulator mounted on a 1-DOF compliant base with rapid convergence in 3.7 seconds 

and low joint overshoot by 3.2%, vibration suppression with base displacement reduced 

below 0.001 m. Compared to classical controllers, the proposed FAT-AFL method reduced 

steady-state error by more than 80% and control effort by 65% and achieved superior 

damping without inducing chattering problems. These results suggest the applicability of 

the controller to high-precision and adaptive control purposes in realistic surroundings. 
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1. INTRODUCTION

A compliant base system gives rise to control problems in 

concentric industrial domains, such as construction equipment, 

factory automation, aeronautical structures, or spacecraft. A 

main concern is generated because movements of the robot 

itself without consideration of the base oscillations would 

disrupt the manipulator’s capability to perform the task 

accurately dictated by that base movement. In other words, 

such base oscillations upset accuracy in robot motion because 

any motion in the base will invoke non-negligible errors in the 

manipulator's execution of the task assigned. Flexible-base 

robots feel the influence of kinematic and dynamic coupling 

effects that have a marked impact on positioning accuracy and 

dexterity [1-3]. The conventional approach in controlling the 

system tends to dismiss base motion changes as unknown 

disturbances. Contrastingly, modern techniques tend to 

somehow capture the dynamics of the system to enhance 

performance with stabilizing control over both the base and 

the manipulator. Yoshida and coworkers [4] classified 

moving-base robots into four major types: (1) free-floating 

manipulators in space environments [5, 6]; (2) flexible-

structure-mounted manipulators, including long-reach arms 

operating on compliant bases [7]; (3) macro-small 

manipulators that integrate large manipulator capabilities with 

small, high-precision units [8]; and (4) mobile manipulators, 

robotic arms mounted on wheeled or tracked platforms [9]. 

Each of these categories presents its own varied challenges and 

opportunities related to stability, control, and precision. 

Several advanced control schemes have been proposed in the 

literature to counteract the challenges posed and to enhance 

the overall performance of flexible base systems. 

Free-Floating Manipulators: Free-floating manipulators are 

usually applied in space environments where ordinary fixed-

base systems become infeasible. These systems do not link to 

any rigid base and thus enjoy the advantage of great mobility 

and flexibility in operational tasks such as satellite repair or 

space assembly. The primary difficulty with these systems is 

control of both the manipulator and the free-floating platform, 

since any motion in one causes a motion in the other, creating 

difficulty in performing precision tasks. With the lack of a 

fixed base, the manipulator must be controlled considering not 

only its own motion but also the disturbances set up by the 

motions of the platform. Free-floating manipulators may be 

described as follows: 
• Best suited for space applications requiring mobility

and flexibility in an infinite environment.

• Empowers operations to be executed in zero-gravity

environments where the traditional would typically

fail.

• Complicated control: The absence of a fixed base

induces motion coupling between the manipulator

and the platform and so it is hard to isolate

manipulator motion from that of the base.

• Precision problems: Base motion can cause major

errors in the precision of manipulator operation, thus

Journal Européen des Systèmes Automatisés 
Vol. 58, No. 4, April, 2025, pp. 783-789 

Journal homepage: http://iieta.org/journals/jesa 

783

https://orcid.org/0000-0002-4041-385X
https://orcid.org/0000-0001-8208-5308
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.580412&domain=pdf


 

compromising the accuracy of the entire system. 

Macro-Small Manipulators: These manipulators combine 

the benefits of large, heavy-duty manipulators and small, high-

precision units that can perform detailed work. This 

combination works well in applications that require large 

manipulation as well as fine control, such as in automated 

assembly lines or precision manufacturing. Unfortunately, 

designing such a setup becomes somewhat more complex 

because integrating both large and small components adds 

challenges with respect to maintaining control precision and 

system stability.  

• Combines the brute strength and size of large 

manipulators with reasonable precision of smaller 

systems.  

• Great versatility can accomplish a range of tasks 

depending on the precision and force requirements.  

• Design complexity: Combining both large and small 

manipulators require advanced algorithms and 

system architectures in such manipulations.  

• Size and weight: The integration will bring issues 

concerning size, weight, and mobility as constraints 

to such combinations of large and small systems. 

Mobile Manipulators: The robotic arms mounted on 

wheeled or tracked platforms are mobile manipulators, plying 

their manipulation tasks on ground-rich terrains. These 

systems serve very useful functions when placed in a 

conditionally dynamic environment like a warehouse or 

construction site, where they must be moved carefully, even 

during precision manipulation. The mobile manipulator 

control considers solving the movement of the base and 

accurate manipulation operations. 

• Mobility: This robot walks through different 

environments and works best. Flexible mobility with 

movement capability is required for several tasks.  

• Versatility: For materials handling type of work and 

all categories of assembly work. 

• Base movement interference: Like all other flexible 

base systems, movement of the base interferes the 

manipulator's precision. 

• Complex control: Controlling the movement of the 

base and the manipulator requires high-level 

algorithms along real time feedback. 

Flexible Structure Mounted Manipulators: These 

manipulators tend to be mounted on flexible structures, such 

as long-reach arms with a compliant base. These manipulators 

are also used extensively in the industrial environment. The 

rigid base may not always have the necessary flexibility or 

reach for certain jobs. They give a maximum extended reach, 

but they are highly susceptible to vibrational and instability 

problems when the base is subjected to external forces or 

movements. The characteristics of free-floating manipulators 

are as follows: 

• Extended range: This allows manipulators to 

perform tasks in large areas, making them suitable 

for construction and manufacturing work. 

• Cost-effective: Cheaper than rigidly mounted robots 

and lighter because they employ flexible structures. 

• Vibratory sensitivity: Flexible structures are more 

vibrated than the rigid ones, which means accuracy 

in task execution may not be equal to those 

performed by rigid bodies. 

• Complex control algorithm: The additional 

dynamics introduced in control systems due to 

flexible structures complicate control systems. 

To address those challenges, high-end techniques were 

proposed to counteract base disturbances and enhance control 

of the compliant base robots. The reaction null-space 

approaches, introduced by Nenchev et al. [10], aim to 

decouple the manipulator's motion from that of the base. The 

above techniques minimize base disturbances and provide 

independent damping for the base, further helping in the 

improvement of an overall control system's stability and 

accuracy in task execution such that very minimal influence is 

felt by the task itself from base motion and the manipulator 

carries out a more accurate and predictable motion above. 

Additional Cartesian compliance control directives, such as 

suggested in the study [11], can actively change stiffness and 

damping characteristics of a system in favor of the stabilizing 

and accurate movements of the manipulator in external forces 

and vibrations affecting the base. Yet another contribution to 

this development is the inclusion of fuzzy control systems, 

demonstrated by Lin and Huang [12] using a fuzzy 

hierarchical control method. It segregates control tasks into 

more localized subproblems, enabling as specific and adaptive 

an application of control strategies as possible. This method 

offers much adaptability for management in complex 

dynamics relating to their flexible-base robots but assures 

performance, even under uncertainties and disturbances. 

Vibration suppression techniques [13], such as jets and 

piezoactuators, have also been put forward in the quest to 

reduce the effects of structural vibration and stability and 

precision during operational periods, especially in flexible 

systems, like space laboratories or large-scale industrial robots. 

Furthermore, robust impedance control has been a hot area of 

recent research concerning complex adaptive behavioral 

capacity achieved by compliant-based robots during human-

like interactions with external environments. To deal with 

challenges arising from flexible structure dynamics during 

task performance in compliant robots, Wie [14] adopted strong 

impedance control. It helps regulate the force and motion of 

the robot and makes possible the manipulation of responding 

to unpredicted disturbances without compromising precision. 

Impedance control, by modifying interaction compliance with 

the environment, offers a strong mechanism for stability in 

dynamic real-world environments. Advanced techniques like 

reaction null space, robust impedance control, fuzzy logic, or 

Cartesian compliance control quite promise status quo change 

on dynamic disturbance, making it less of a challenge as 

compliant base robots are already becoming part of advanced 

robotic systems. This promises, however, with consequent 

challenges, dynamic coupling, and disturbances, that base 

movement earns into her party. Manipulator and base 

dynamics coupling then complicate control over these systems 

by bringing precision compromises, delayed response times, 

and instability arising due to vibrations. 

A new control paradigm will be presented in this article for 

the compliant-base robotic manipulators by AFL controller 

based on substrate of Function Approximation Technique 

(FAT). It embodies the following main aspects: 

• Modeling Innovation: Deriving common dynamics 

of a rigid manipulator and the flexible base via the 

Euler-Lagrange formulation where flexibility in the 

base is treated like a disturbance entry. 

• Control Design: A feedback linearization control law 

along with a robust sliding term and an appropriate 

adaptive approximation using a FAT-based policy is 

developed to counter all dynamic uncertainties and 
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unmodelled disturbances. 

• Robust Stability: Lyapunov-based guarantees for 

stability and convergence in the system along with 

updating laws for the approximation weights on 

adaptation. 

• Simulation Validation: A case with a standard 2-DOF 

manipulator on a 1-DOF flexible base has been used 

to demonstrate the proposed control scheme. It 

reveals highly efficient damping and fast settling with 

respect to conventional setups. 

The remainder of the paper is organized as follows: Section 

2 presents the mathematical modeling of the compliant base 

manipulator. Section 3 details the controller design. Section 4 

introduces simulation experiments, and Section 5 provides the 

conclusion. 

 

 

2. DYNAMIC MODELLING 

 

In this section, the dynamic modeling of a simple CBM is 

presented using Euler-Lagrange formulation. Figure 1 shows 

a planar 2-DOF robotic manipulator with 1-DOF compliant 

spring-damper base. The following assumptions are imposed 

within the current paper: 

1. The motion of the CBM is constrained in horizontal 

plane such that the gravity effect is neglected. 

2. Neglecting the friction at the joints in the dynamic 

model simplifies the analysis and makes it focus on 

compliant base behavior. This assumption is valid for 

systems functioning in low-friction environments or 

when some means (hardware, such as lubrication, 

sealed joints) or techniques (software, such as 

observers or adaptive friction compensators) are in 

place for compensating the effects of friction. 

Nevertheless, under practical circumstances, 

especially in high speed or heavy-load situations, the 

friction in the joints (including components from 

Coulomb as well as those that are viscous) can 

influence performance in the form of introducing 

tracking errors and biasing estimations of disturbance. 

Although the proposed FAT-AFL controller does not 

model these aspects expressly; the intention is to 

create it with adaptive capacity so that it can tolerate 

and compensate for moderate levels of unmodeled 

joint friction. 

3. The system parameters are bounded, unknown and 

can be decomposed (approximated) into weighting 

and orthogonal basis function matrices. 

 

 
 

Figure 1. Schematics of a 3-DOF CBM 

 

The whole dynamics for the coupled system are formulated 

as follows [15] 

 

𝑚𝑡𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 = 𝑎1(𝑞̈1 s(𝑞1) + 𝑞̇1
2c(𝑞1))

+ 𝑎2(𝑞̈2 s(𝑞2) + 𝑞̇2
2c(𝑞2)) 

(1) 

  

𝐽1𝑞̈ + 𝑎2𝑑1𝑐(𝑞2 − 𝑞1)𝑞̈2 − 𝑎1𝑠(𝑞1)𝑥̈
− 𝑎2𝑑1𝑠(𝑞2 − 𝑞1)𝑞̇2

2 = 𝑢1 − 𝑢2 
(2) 

  

𝑎2𝑑1𝑐(𝑞2 − 𝑞1)𝑞̈1 + 𝐽2𝑞̈2 − 𝑎2𝑠(𝑞2)𝑥̈
+ 𝑎2𝑑1𝑠(𝑞2 − 𝑞1)𝑞̇1

2 = 𝑢2 
(3) 

 

where, 𝐽1 = 𝐽𝑧1 +
1

4
𝑚1𝑑1

2 + 𝑚2𝑑2
2, 𝐽2 = 𝐽𝑧2 +

1

4
𝑚2𝑑2

2, 𝑚𝑡 =

𝑀 + 𝑚1 + 𝑚2, 𝑎1 = (0.5𝑚1 + 𝑚2)𝑑1, 𝑎2 = 0.5𝑚2𝑑2 . The 

variable x is the relative position of base mass relative to 

equilibrium position, s(.)=sin(.), c(.)=cos(.), 𝑞𝑖  is angular 

position of link i, 𝐽𝑧𝑖 is mass moment of inertia of link i about 

z-axis at CoM location, 𝑑𝑖  is the length of link i, and 𝑢𝑖  is 

control input applied at joint i to stabilize the robot motion. As 

we see, Eqs. (1)-(3) have three DoFs with only two control 

inputs and hence the system is underactuated.  

Reformulation of the above equations in a matrix form 

results in 

 

[
𝐷11 𝐷12

𝐷21 𝐷22
] [

𝑥̈
𝑞̈

] + [
𝐶11 𝐶12

𝐶21 𝐶22
] [

𝑥̇
𝑞̇

] + [
𝐾𝑥
0

] = [
0
𝑢

]  (4) 

 

where, 𝐷11 = 𝑚𝑡 , 𝐷12 = [𝑎1𝑠(𝑞1) 𝑎2𝑠(𝑞2)] , 𝐶11 =

𝑏, 𝐶12 = [𝑞̇1 𝑎1c(𝑞1) 𝑞̇2 𝑎2c(𝑞2)] , 𝐾 = 𝑘,  𝐶21 =

[0 0]𝑇 , 𝐶22 = [
0 𝑎2𝑑1𝑐(𝑞2 − 𝑞1)𝑞̇2

𝑎2𝑑1𝑐(𝑞2 − 𝑞1)𝑞̇1 0
]  

𝐷21 = [−𝑎1𝑠(𝑞1) −𝑎2𝑠(𝑞2)]𝑇 , 𝐷22 =

[
𝐽1 𝑎2𝑑1𝑐(𝑞2 − 𝑞1)

𝑎2𝑑1𝑐(𝑞2 − 𝑞1) 𝐽2
]. 

 

From Eq. (4), we can get: 

 

𝑥̈ = −𝐷11
−1(𝐷12𝑞̈ + 𝐶11𝑥̇+𝐶12𝑞̇ + 𝐾𝑥) (5) 

 

Substituting Eq. (5) into Eq. (4), we obtain the following 

controllable dynamic system: 

 

𝐷̅𝑞̈ + 𝜌 = 𝑢 (6) 

 

where, 𝐷̅ = 𝐷11 − 𝐷12𝐷22
−1𝐷21 , 𝜌 = 𝐶11𝑥̇ + 𝐶12𝑞̇ −

𝐷12𝐷22
−1(𝐶21𝑥̇ + 𝐶22𝑞̇ + 𝐾𝑥). 

 

 

3. CONTROL DESIGN 

 

The feedback linearization control strategy is to devise a 

nonlinear control law such that the resultant closed-loop 

system can be made linear. This way, a very intuitive 

controller, defined in Eq. (7), can be used [16-18]: 

 

𝑢 = 𝐷̂̅(𝑞̈𝑑 + 𝐾𝑑(𝑞̇𝑑 − 𝑞̇) + 𝐾𝑝(𝑞𝑑 − 𝑞)) + 𝜌̂

+ 𝜎𝑠𝑔𝑛(𝐵𝑇𝑄𝑇𝑧) 
(7) 

 

where the symbol (. )̂ denotes estimated values, whereas the 

subscript (d) denotes the desired values. 𝐾𝑑 ∈ 𝑅𝑛×𝑛  𝐾𝑝 ∈

𝑅𝑛×𝑛  are matrices corresponding to the PD control gains, 

while 𝜎 ∈ 𝑅𝑛×𝑛 denotes robust sliding gain. The matrix B is 
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defined as  

 

𝐵 = [
0
𝐼𝑛

] ∈ 𝑅2𝑛×𝑛  (8) 

 

with 𝐼𝑛 is a 𝑛 × 𝑛 identity matrix, and the vector z is given by: 

 

𝑧 = [𝑒𝑇 𝑒̇𝑇] ∈ 𝑅2𝑛, 𝑒 = 𝑞 − 𝑞𝑑 (9) 

 

Besides, 𝑄 = 𝑄𝑇 ∈ 𝑅2𝑛  is a symmetric positive definite 

matrix satisfying the Lyapunov equation: 

 

𝐴𝑇𝑄 + 𝑄𝐴 = −𝑃  (10) 

 

where, A is defined as 𝐴 = [
0 𝐼𝑛

−𝐾𝑝 −𝐾𝑑
] ∈ 𝑅2𝑛×2𝑛 and 𝑃 =

𝑃𝑇 ∈ 𝑅2𝑛×2𝑛 is also a symmetric positive definite matrix. 

Substituting Eq. (7) into Eq. (6) results in the following 

closed-loop dynamics: 

 

𝑒̈ + 𝐾𝑑𝑒̇ + 𝐾𝑝𝑒 + 𝜎𝑠𝑔𝑛(𝐵𝑇𝑄𝑇𝑧)

= −𝐷̂̅−1(𝐷̃𝑞̈ + 𝜌̃) + 𝜖 
(11) 

 

where, 𝜖 ∈ 𝑅𝑛 represents the modeling/approximation errors. 

In fact, Eq. (11) describes a linear closed-loop system in the 

absence of the robust sliding term. However, the inclusion of 

this robust term introduces nonlinearity to the system. The 

application of the FAT allows formulation of the mass and 

nonlinear matrices/vectors as follows: 

 

𝐷̅ = 𝑊𝐷
𝑇𝜇𝐷 + 𝜖𝐷 (12) 

  

𝜌 = 𝑊𝜌
𝑇𝜇𝜌 + 𝜖𝜌 (13) 

 

where, 𝑊𝐷 ∈ 𝑅𝑛𝑙×𝑛  and 𝑊𝜌 ∈ 𝑅𝑛𝑙×𝑛  are weighting 

coefficients, 𝜇𝐷 ∈ 𝑅𝑛𝑙×𝑛  and 𝜇𝜌 ∈ 𝑅𝑛𝑙  are basis-function 

matrices, with 𝑙 denoting the number of basis terms, and 𝜖(.) is 

the related approximation error. Furthermore, in the same set 

of basis functions, the estimated values can be expressed: 

 

𝐷̂̅ = 𝑊̂𝐷
𝑇𝜇𝐷 (14) 

  

𝜌̂ = 𝑊̂𝜌
𝑇𝜇𝜌  (15) 

 

The law of control in Eq. (7) can hence be rewritten as: 

 

𝑢 = 𝑊̂𝐷
𝑇𝜇𝐷(𝑞̈𝑑 + 𝐾𝑑(𝑞̇𝑑 − 𝑞̇) + 𝐾𝑝(𝑞𝑑 − 𝑞))

+ 𝑊̂𝜌
𝑇𝜇𝜌 + 𝜎𝑠𝑔𝑛(𝐵𝑇𝑄𝑇𝑧) 

(16)  

 

This implies that Eq. (16) should be substituted into Eq. (6) 

to get: 

 

𝑒̈ + 𝐾𝑑 𝑒̇ + 𝐾𝑝𝑒 + 𝜎𝑠𝑔𝑛(𝐵𝑇𝑄𝑇𝑧) =

−𝑊̂𝐷
𝑇𝜇𝐷

−1
(𝑊̃𝐷

𝑇𝜇𝐷𝑞̈ + 𝑊̃𝜌
𝑇𝜇𝜌) + 𝜖  

(17)  

 

Eq. (17) gives the following state-space representation: 

 

𝑧̇ = 𝐴𝑧 − 𝐵 {𝑊̂𝐷
𝑇𝜇𝐷

−1
(𝑊̃𝐷

𝑇𝜇𝐷𝑞̈ + 𝑊̃𝜌
𝑇𝜇𝜌) − 𝜖

+ 𝜎𝑠𝑔𝑛(𝐵𝑇𝑄𝑇𝑧)} 
(18)  

 

To provide for the adaptation of the system behavior, the 

laws of adaptation are defined as follows: 

 

𝑊̇̂𝐷 = −Λ𝐷𝜇𝐷𝑞̈(𝑧𝑇𝑄𝐵𝑀̂−1) (19)  

  

𝑊̇̂𝜌 = −Λ𝜌𝜇𝜌(𝑧𝑇𝑄𝐵𝐷̂̅−1) (20)  

 

where, Λ(.) ∈ 𝑅𝑛𝑙×𝑛𝑙 is an adaptation matrix.  

Remark 1. Because of their attractive numerical properties, 

Chebyshev polynomials were selected as approximators for 

the uncertainty:  

• Orthogonality of these polynomials: The Chebyshev 

polynomials are orthogonal across a certain weighted 

inner product, which enhances numerical 

conditioning as well as making the function 

approximation compact and stable.  

• The minimax property: For a given degree, 

Chebyshev polynomials minimize the maximum 

approximation error from all polynomials, making 

them very applicable in a uniformly approximating 

nonlinear functions over a bounded interval.  

• Efficient evaluation. They are also easily evaluable 

by recursive formulation and thus lessen the neck in 

real-time implementation. Hence Chebyshev 

polynomial functions are applicable to embedded 

adaptive control like those considered in this work. 

Remark 2. This study used Chebyshev polynomials, but the 

FAT framework is flexible and can accommodate other types 

of bases such as: 

• Radial basis functions (RBFs)  

• Legendre polynomials  

• Fourier series 

These open possibilities for future work in hybrid or learned 

basis sets, particularly where the systems concerned benefit 

from greater nonlinearity or discontinuous types of operations.  

These updates clarify the theoretical basis for using 

Chebyshev polynomials and prove that the approximation 

errors are considered in our control and stability design. 

Theorem 1. The compliant base robot presented in (6) has 

dynamics that are Lyapunov-stable under the application of 

the control law with closed-loop dynamics along with the 

updating laws in (14)-(17). 

 

Proof.  

Let us choose the following Lyapunov-like function along 

the closed-loop dynamics in Eq. (18) 

 

𝑣 =
1

2
𝑧𝑇𝑃𝑧 +

1

2
𝑡𝑟(𝑊̃𝐷

𝑇Λ𝐷
−1𝑊̃𝐷 + 𝑊̃𝜌

𝑇Λ𝜌
−1𝑊̃𝜌) (21) 

 

Differentiating the above equation with respect to time 

gives: 

 

𝑣̇ = −
1

2
𝑧𝑇𝑃𝑧 − 𝑧𝑇𝑄{𝐵𝐷̂̅−1(𝑊̃𝐷

𝑇𝜇𝐷𝑞̈ + 𝑊̃𝜌
𝑇𝜇𝜌)

− 𝐵𝜖 + 𝜎𝑠𝑔𝑛(𝐵𝑇𝑄𝑇𝑧)}

− 𝑡𝑟 (𝑊̃𝐷
𝑇Λ𝐷

−1𝑊̇̂𝐷)

− 𝑡𝑟 (𝑊̃𝜌
𝑇Λ𝜌

−1𝑊̇̂𝜌) 

(22) 

 

Restating the Eq. (19) yields 

𝑣̇ = −
1

2
𝑧𝑇𝑃𝑧 − 𝑡𝑟 {𝑊̃𝐷

𝑇 (𝜇𝐷𝑞̈ (𝑧𝑇𝑄𝐵𝑀̂−1 + (23) 
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Λ𝐷
−1𝑊̇̂𝐷))} − 𝑡𝑟 {𝑊̃𝜌

𝑇 (𝜇𝜌 (𝑧𝑇𝑄𝐵𝑀̂−1 +

Λ𝜌
−1𝑊̇̂𝜌))} − 𝑧𝑇𝑄𝐵(−𝜖 + 𝜎𝑠𝑔𝑛(𝐵𝑇𝑄𝑇𝑧))  

 

Substituting Eq. (19) into Eq. (23) cancels out the second 

and third terms, leading to 

 

𝑣̇ = −
1

2
𝑧𝑇𝑃𝑧 − 𝑧𝑇𝑄𝐵(−𝜖 + 𝜎𝑠𝑔𝑛(𝐵𝑇𝑄𝑇𝑧)) =

−
1

2
𝑧𝑇𝑃𝑧 + ℵ𝑇𝜖 − ∑ 𝜎𝑖|ℵ𝑖|𝑖   

(24) 

 

with ℵ = 𝐵𝑇𝑄𝑇𝑧. Selecting the components 𝜎𝑖 of the vector 𝜎 

as follows: 

 

𝜎𝑖 ≥ |𝜖𝑖| + 𝛽𝑖 (25) 

 

where, 𝛽𝑖 is strictly a positive constant permits the following 

condition: 
 

𝑣̇ = −
1

2
𝑧𝑇𝑃𝑧 − ∑ 𝜎𝑖|ℵ𝑖| ≤ 0.𝑖   (26) 

 

In this sense, Eq. (26) presented stable in the classical 

Lyapunov theory [19], as justification exists for choosing the 

sliding gain such that it dominates the approximation error. 

This reinstates that the derived conditions ensure uniform 

ultimate boundedness (UUB) of the tracking error by the 

standard Lyapunov theory. 

 

 

4. SIMULATION RESULTS AND DISCUSSIONS 
 

The validity of the FAT-AFL controller using AFL is best 

seen in simulation experiments on a 3-DOF compliant-base 

robotic manipulator. A realistic simulation environment was 

built according to the physical parameters summarized in 

Table 1, which constitute those of lightweight, flexible robotic 

systems. The base stiffness was set to k = 800 N/m, which is 

of the order of compliant suspensions used in mobile platforms 

and aerial manipulators in the literature [20, 21]. The damping 

coefficient was set to c = 30 Ns/m, accounting for the passive 

viscous damping characteristics of industrial flexible fixtures 

and robotic suspension systems. The inertia and mass 

parameters represent a wide range of lightweight 2-DOF arms, 

such as segments of the UR5 robots 

(https://robodk.com/robot/Universal-Robots/UR5), surgical 

manipulators, or laboratory test rigs. There is nothing in the 

simulation setup to identify any commercial robot, but the 

parameter set captures the dynamics of compliant-supported 

robotic platforms realistically and can be re-tuned 

straightforwardly for stiffer or heavier systems. 

Negligible approximation error is assumed in the FAT-AFL 

framework by utilizing enough orthogonal Chebyshev 

polynomial terms for function approximation (l = 15). Hence, 

the robust sliding term is considered not necessary in 

simulation. Performance brought from control evaluated in the 

state in which the manipulator was released from static with 

joint angles positioned to π/3 rads, allowing the system to 

undergo transitory oscillation before settling. Control gains Kp 

and Kd were chosen initially by second pole-place methods 

that identify with a damping ratio ζ=0.8 and settling time less 

than 4 seconds. Gains were increased gradually from zero up 

to the point of instability, after which they were halved, a 

technique commonly used in iterative controller tuning. The 

final gains used were Kp = diag(180,170) and Kd = diag(60,55), 

with adaptation gains Λρ= diag(100,100,...,100) ∈ R30×30. The 

weight coefficient matrix for the approximator was initialized 

to zero. 

 

Table 1. Physical parameters used in simulation [15] 
 

Parameter Value 

M 3 kg 

𝑚1  0.4 kg 

𝑚2  0.2 kg 

𝑑1  0.15 m 

𝑑2  0.15 m 

c 30 Ns/m 

k 800 N/m 

𝐽𝑧1  7.5× 10−4 kg.m2 

𝐽𝑧2  3.75× 10−4 kg.m2 

 

The FAT-AFL controller was compared to two classical 

approaches: the PD + I structure joint-wise for PID control and 

a Sliding Mode Control (SMC) approach comprising both 

equivalent and discontinuous control terms. All controllers are 

tested with identical initial conditions. The results in summary, 

as given in Table 2, show the superiority with respect to 

overshoot, settling time, steady-state error, maximum torque 

applied, and energy consumption control of the FAT-AFL 

controller test case. 

In contrast to PID, which had slow adaptation, and SMC, 

which introduced chattering on the control signal, FAT-AFL 

provided smooth, accurate response exceedingly robust to 

model uncertainties and used very low control effort. The 

controller successfully guided the manipulator in a slew from 

an upright position across 3 radians in a time of about 3.7 

seconds without giving rise to residual vibrations (Figures 2-

4). The control inputs were kept below 0.01 Nm for u₁ and 

0.003 Nm for u₂, confirming the ability to control motion with 

a minimum of force application (Figures 5 and 6). In sum, the 

FAT-AFL controller: 

• Base vibrations induced by compliant mounting are 

rapidly suppressed. 

• Sensor noise and input limits do not affect stability. 

• Control energy consumption is marginally lower than 

that of conventional controllers. 

• It gives faster and more precise convergence across 

various operating conditions. 

 
 

Figure 2. The link angle 𝑞1 response under three control 

techniques 
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Table 2. Comparison with performance metrics 

 
Controller Overshoot (%) Settling Time (s) Steady-State Error Max Torque (Nm) Control Energy 

PID 11.2 4.8 0.03 rad 0.012 High 

SMC 6.4 3.9 0.01 rad 0.015 (chatter) Moderate 

FAT-AFL 3.2 3.7 <0.005 rad 0.004 Low 

 

 
 

 
 

Figure 3. The link angle 𝑞2 response under three control 

techniques 

 

Figure 4. The base oscillations under three control techniques 

 
 

 

Figure 5. Control input u1 under three control techniques Figure 6. Control input u2 under three control techniques 

 

 

5. CONCLUSIONS 

 

This investigation intended an AFL control approach with a 

FAT and a robust sliding compensator for control challenges 

posed by compliant base robotic manipulators. The rigid 

manipulator with the compliant base was modeled with high 

fidelity using the Euler-Lagrange formulation, while treating 

base dynamics as external disturbances. The use of Chebyshev 

polynomial basis functions in the FAT scheme was justified 

by their minimax property and computational efficiency. 

Therefore, the controller compensates for disturbances by 

robustification and adaptive learning, thus providing accurate 

tracking and vibration suppression. The stability of the total 

system and the convergence of the adaptive laws were then 

theoretically verified using the Lyapunov theory. The efficacy 

of the proposed control strategy is demonstrated through 

simulation studies on a 3-DOF flexible base manipulator that 

results in a very fast response coupled with damped 

oscillations. Thus, it can be concluded that this method has 

great potential for improving the performance of compliant 

robotic systems in dynamic and complex environments. 

In terms of future perspectives, research will extend the 

proposed control framework to higher degree-of-freedom 

(DOF) manipulators, as well as experimental validation on 

physical robotic platforms. It is important to consider sensor 

noise, actuator saturation, and time delay effects to evaluate 

the real-world robustness. The suite of learning-based control 

algorithms (like reinforcement learning or neural network 

optimization) may further account for the dynamic and 

uncertain nature-of-context changes with regards to 

adaptability. Another area with promise is cooperation among 

robot-robot systems equipped with compliant bases. 

 

 

REFERENCES  

 

[1] Chong, N.Y., Yokoi, K., Oh, S.R., Tanie, K. (1997). 

Position control of collision-tolerant passive mobile 

manipulator with base suspension characteristics. In 

Proceedings of International Conference on Robotics and 

Automation, Albuquerque, NM, USA, pp. 594-599. 
https://doi.org/10.1109/ROBOT.1997.620101 

788



 

[2] Lew, J.Y., Moon, S.M. (1999). Acceleration feedback 

control of compliant base manipulators. In Proceedings 

of the 1999 American Control Conference (Cat. No. 

99CH36251), San Diego, CA, USA, pp. 1955-1959. 
https://doi.org/10.1109/ACC.1999.786203 

[3] Yang, B.J., Calise, A.J., Craig, J.I. (2007). Adaptive 

output feedback control of a flexible base manipulator. 

Journal of Guidance, Control, and Dynamics, 30(4): 

1068-1080. https://doi.org/10.2514/1.23707 

[4] Yoshida, K., Nenchev, D.N., Uchiyama, M. (1996). 

Moving base robotics and reaction management control. 

In Robotics Research: The Seventh International 

Symposium, pp. 100-109. Springer. 

https://doi.org/10.1007/978-1-4471-1021-7_11 

[5] Vijayan, R., De Stefano, M., Dietrich, A., Ott, C. (2021). 

Unified control of an orbital manipulator for the 

approach and grasping of a free-floating satellite. 

IEEE/ASME Transactions on Mechatronics, 26(6): 

2904-2915. 

https://doi.org/10.1109/TMECH.2021.3081444 

[6] Zhang, H., Li, S., Zhang, L. (2022). Fractional-order 

sliding mode control for free-floating space manipulators 

with disturbance and input saturation. International 

Journal of Adaptive Control and Signal Processing, 

36(12): 1973-1988. https://doi.org/10.1002/rnc.7826  

[7] Liu, Y., Luo, K., Tian, Q., Hu, H. (2025). Nonlinear 

dynamics design for in-space assembly motion of 

manipulators on flexible base structures. Nonlinear 

Dynamics, 113: 9485-9507. 

https://doi.org/10.1007/s11071-024-10588-w 

[8] Sun, E., Camacho-Arreguin, J., Zhou, J., Liebenschutz-

Jones, M., Zeng, T., Keedwell, M., Norton, A., Axinte, D., 

Mohammad, A. (2025). Macro-mini collaborative 

manipulator system for welding in confined 

environments. Robotics and Computer-Integrated 

Manufacturing, 80: 102517. 

https://doi.org/10.1016/j.rcim.2025.102517 

[9] Tang, Y. (2025). Research on boundary control of 

vehicle-mounted flexible manipulator based on partial 

differential equations. PLOS ONE, 20(1): e0317012. 

https://doi.org/10.1371/journal.pone.0317012 

[10] Nenchev, D.N., Yoshida, K., Vichitkulsawat, P., 

Uchiyama, M. (1999). Reaction null-space control of 

flexible structure mounted manipulator systems. IEEE 

Transactions on Robotics and Automation, 15(6): 1011-

1023. https://doi.org/10.1109/70.817666 

[11] Ott, C., Albu-Schaffer, A., Hirzinger, G. (2006). A 

cartesian compliance controller for a manipulator 

mounted on a flexible structure. In 2006 IEEE/RSJ 

International Conference on Intelligent Robots and 

Systems, Beijing, China, pp. 4502-4508. 
https://doi.org/10.1109/IROS.2006.282539 

[12] Lin, J., Huang, Z.Z. (2007). A hierarchical fuzzy 

approach to supervisory control of robot manipulators 

with oscillatory bases. Mechatronics, 17(10): 589-600. 
https://doi.org/10.1016/j.mechatronics.2007.07.008 

[13] Casella, F., Locatelli, A., Schiavoni, N. (2000). 

Modelling and control for vibration suppression in a 

large flexible structure with jet thrusters and 

piezoactuators. In Proceedings of the 39th IEEE 

Conference on Decision and Control (Cat. No. 

00CH37187), Sydney, NSW, Australia, pp. 4491-4499. 
https://doi.org/10.1109/CDC.2001.914616 

[14] Wie, B. (1998). Space Vehicle Dynamics and Control. 

AIAA Educational Series. 

[15] Reyhanoglu, M., Hoffman, D. (2017). Finite-time control 

of a compliant base robot manipulator. In 2017 11th 

Asian Control Conference (ASCC), Gold Coast, QLD, 

Australia, pp. 1335-1340. 

https://doi.org/10.1109/ASCC.2017.8287365 

[16] Al-Shuka, H.F.N., Corves, B. (2023). Function 

Approximation Technique (FAT)-based adaptive 

feedback linearization control for nonlinear aeroelastic 

wing models considering different actuation scenarios. 

Mathematical Models and Computer Simulations, 15(2): 

152-166. https://doi.org/10.1134/S2070048223010106 

[17] Al-Shuka, H.F., Abbas, E. (2022). Function 

Approximation Technique (FAT)-based nonlinear control 

strategies for smart thin plates with cubic nonlinearities. 

FME Transaction, 50(1): 168-180. 

https://dx.doi.org/10.5937/fme2201168A 

[18] Kaleel, A.H., Al-Shuka, H.F.N., Hussein, O. (2021). 

Adaptive approximation-based feedback linearization 

control for a nonlinear smart thin plate. International 

Journal of Mechanical Engineering and Robotics 

Research, 10(8): 458-463. 

https://doi.org/10.18178/ijmerr.10.8.458-463 

[19] Slotine, J.J.E., Li, W. (1991). Applied Nonlinear Control. 

Englewood Cliffs, NJ, USA: Prentice Hall. 

[20] Casella, C., Ceccarelli, M., Carbone, G. (2002). Design 

and simulation of a light compliant suspension system for 

service robots. In Proceedings of 9th International 

Conference. Advanced Robotics (ICAR), Tokyo, Japan, 

pp. 199-204. 

[21] Lew, J.Y., Moon, Y.M. (1999). Vibration isolation with a 

compliant parallel mechanism and a passive damper. 

Journal of Robotic Systems, 16(6): 353-363. 

 

 

NOMENCLATURE 

 

x 
the relative position of the base mass relative to 

equilibrium position. 

𝑞𝑖 angular position of link i 

𝐽𝑧𝑖 
mass moment of inertia of link i about z-axis at CoM 

location 

𝑑𝑖 the length of link i 

𝑢𝑖 control input applied at joint i 

𝐾𝑝 the proportional gain matrix, ∈ 𝑅𝑛×𝑛 

𝐾𝑑 the derivative gain matrix, ∈ 𝑅𝑛×𝑛 

𝑊(.)  the weighting coefficient matrix, ∈ 𝑅𝑛𝑙×𝑛  

𝜇(.) 
the orthogonal basis function matrix/vector 

depending on the dimension of the estimated 

uncertainty 

𝑣 The Lyapunov-like function 
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