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This study provides an innovative structure to diagnose the malfunction of the grid-

connected photovoltaic energy systems (GPV), depending on the two bilateral 

improvements: the gray wolf (BGWO) and the differential development (BDE), as well as 

choosing the properties and classification of automatic learning (ELM and SVM). The 

proposed methodology relies on real data and includes the following steps: Firstly, we 

extract statistical parameters from all data sources. Second, the BGWO and BDE 

algorithms are used separately to choose the properties and reduce their number. Finally, 

the Extreme Learning Machine (ELM) and the support machine (SVM) are employed to 

identify seven main breakdowns, namely: nonhomogeneous partial shading, inverter fault, 

feedback sensor fault, MPPT controller fault, grid anomaly, open circuit in PV array, and 

boost converter controller fault. The results obtained indicate that the Extreme Learning 

Machine (ELM) algorithm associated with the BGWO chosen algorithm provides an 

optimal input vector that detects faults with high accuracy (99.16%) compared to other 

approaches. 
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1. INTRODUCTION

Solar energy costs should continue to decrease due to 

technological progress. Enhancing the durability and 

operational reliability of PV modules is a key aspect in driving 

down the cost of photovoltaic (PV) systems [1]. Nevertheless, 

these systems remain susceptible to various anomalies, which 

must be swiftly identified to prevent divergence from optimal 

operating conditions [2]. 

To ensure long-term performance and efficiency, it is 

essential to implement proactive measures that preserve 

system reliability and safety. This proactive approach is 

critical to aligning with the protection standards outlined by 

the International Electrotechnical Commission (IEC) [3, 4]. 

Timely identification of faults is vital for sustaining energy 

output, maintaining nominal operating conditions, and 

delivering consistent power quality [5]. Fast fault detection 

(FD) mechanisms not only improve the availability rate of PV 

systems by minimizing downtime but also support compliance 

with grid regulation requirements. 

Effective system monitoring enhances energy output, 

reduces maintenance expenses, and improves the overall 

return on investment throughout the system's life cycle [6, 7]. 

In addition to their non-linear and variable characteristics in 

time and their high dependence on environmental factors (such 

as temperature and irradiance), PV systems naturally inherit 

properties specific to electrical systems. They thus have a very 

fast dynamic, with sudden changes even faster. This 

underscores the necessity for regular and diverse 

measurements utilizing sensors to monitor the grid-connected 

photovoltaic system (GPV) and the dynamics of its failures. 

However, this requirement generates a bottleneck in terms of 

computer processing. Detection of defects linked to sensors in 

GPV systems [8]. The researchers also proposed an optimal 

configuration for positioning current and voltage sensors, 

aiming to minimize the increased costs linked to redundant 

measurement devices. Additionally, a sensor-based analysis to 

facilitate the detection of partial shading conditions [9].  

These methods rely on monitoring localized signals, such as 

the current in the PV string, which are then compared to 

established reference models to identify localized faults [10, 

11]. An in-depth assessment of metaheuristic tools is used [12]. 

Methods for identifying faults in photovoltaic systems often 

rely on mathematical or analytical frameworks, including the 

use of state observers [13], While parameter identification 

techniques [12] and impedance-based models [14] have 

yielded positive results in simulations, their use in practical 

settings is often hindered by their sensitivity to measurement 

noise and uncertainties within the models. Analytical methods 

often fall short in addressing the inherent complexity of real-

world photovoltaic (PV) systems, which are difficult to 

represent accurately using closed-form mathematical models, 

especially under varying conditions. In contrast, artificial 

intelligence (AI) has emerged as a powerful and versatile tool, 

with widespread applications across numerous domains—

including medicine, astronomy, engineering, robotics, speech 
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recognition, natural language processing, and behavioral 

sciences. In the field of photovoltaics, AI techniques have 

become particularly valuable, notably for forecasting and 

predictive analysis tasks [15]. For data-driven fault detection 

in photovoltaic (PV) systems, various techniques can be 

employed, including statistical analyses and machine learning 

approaches, both of which are well-suited for addressing 

complex and nonlinear challenges. Among the artificial 

intelligence methods commonly applied to PV systems are 

artificial neural networks [16], fuzzy logic systems [17], 

decision tree algorithms, and the k-nearest neighbors (K-NN) 

method [18]. The most widely adopted deep learning models 

for identifying and classifying faults in photovoltaic systems 

include convolutional neural networks (CNNs), long short-

term memory networks (LSTMs), recurrent neural networks 

(RNNs), generative adversarial networks (GANs), Boltzmann 

machines, and auto encoders [19]. An auto encoder is a type 

of neural network that learns to compress input data into a 

lower-dimensional representation and then reconstruct the 

original input from this encoded format [20]. The output 

produced by the autoencoder is fed back as its own input, 

allowing the network to learn representative features by 

minimizing the reconstruction error [21]. 

A full assessment of issues connected to the identification 

of faults and protection in solar systems [22], where defects 

were grouped into three categories: physical, electric, and 

environmental. The continuous protection devices (DC) 

attempt to guard against overcurrent’s, grounding problems, 

and electric arcs [23]. Yet, these protections may fail to detect 

certain module-level issues due to factors such as (i) weak 

fault currents, (ii) interference from MPPT (Maximum Power 

Point Tracking) regulators, and (iii) the non-linear and 

irradiance-dependent behavior of PV modules [22]. 

Undetected DC-side faults can significantly degrade 

performance and, in severe cases, cause fires despite existing 

safety mechanisms [24]. An investigation of AC micro grid 

protection strategies [25], where solutions are grouped into 

three categories: grid-tied protection, islanded mode 

protection, and hybrid approaches. Additionally, as digital 

transformation progresses, new cyber threats present complex 

challenges for identifying and diagnosing cyberattacks in 

large-scale power systems [26]. This study focuses on 

analyzing the three aforementioned challenges (I, II, III) in 

grid-connected photovoltaic (GPV) systems. Traditional 

diagnostic methods often struggle with the time-varying, non-

linear nature of these systems and the masking effects 

introduced by MPPT controllers. Advanced diagnostic tools 

are therefore necessary, particularly under conditions where 

MPPT algorithms obscure fault symptoms, especially those 

with low current signatures. 

Identifying issues in solar power systems that utilize an 

MPPT controller frequently necessitates the use of 

sophisticated fault diagnosis (FD) techniques. Sophisticated 

Maximum Power Point Tracking (MPPT) techniques, such as 

a dynamic leader-based collective intelligence method [27] 

and the MSS algorithm [28], have proven to be fast and 

efficient in reducing power losses under partial shading 

conditions. However, these very strengths complicate defect 

detection for two main reasons: MPPT algorithms tend to 

mask the signs of faults, particularly those involving low 

current, and the wide variety of potential defects is made even 

more complex by the operation of MPPT controllers. For a 

recent overview of MPPT algorithms, see the studys [29, 22], 

discusses the detrimental effects of MPPT controllers on fault 

diagnosis in solar systems. 

Addressing the challenges posed by MPPT controllers in 

fault detection, this study introduces a novel Fault Diagnosis 

(FD) method. This technique utilizes the Extreme Learning 

Machine (ELM) and Support Vector Machine (SVM), 

enhanced by Binary Grey Wolf Optimization (BGWO) and 

Binary Differential Evolution (BDE) for feature selection, to 

identify faults in grid-connected PV systems operating under 

MPPT mode. The research employs actual failure data 

obtained from a real GPV system utilizing PSO-based MPPT 

controllers, with the experimental datasets provided by the 

study [30]. 

This paper is structured as follows: Section 2 introduces the 

Grid-Connected Photovoltaic (GPV) system, highlighting its 

dynamic and non-linear nature, along with the specific faults 

examined. Sections 3 and 4 detail the primary contribution: an 

ELM and SVM-based learning machine for detecting seven 

faults in grid-connected PV systems under MPPT control. 

Section 5 explains the extraction of five statistical features  

from data representing different fault scenarios, which are then 

used as input for training and testing the ELM and SVM to 

classify system states. Section 6 describes the use of BGWO 

and BDE for input vector optimization. Section 7 presents the 

application of ELM and SVM to detect the seven fault types. 

Section 8 then presents the findings, demonstrating a fault 

classification rate of up to 99.16%. Finally, Section 9 

summarizes the key conclusions and offers recommendations. 

 

 

2. GRID CONNECTED PV SYSTEM 

 

The grid-connected photovoltaic system examined in this 

study is implemented as shown in Figure 1. This section 

focuses on the theoretical aspects of GPV systems, particularly 

their non-linear and time-varying behavior. This behavior can 

be theoretically explained through the ideal diode model, 

which describes the connection between the system's output 

voltage 𝑉𝑃𝑉 and current 𝐼𝑃𝑉 . 

 

𝐼𝑃𝑉 = 𝐼𝑖𝑟𝑟 − 𝐼0 [𝑒𝑥𝑝 (
𝑉𝑃𝑉 + 𝑅𝑆𝐼𝑃𝑉
𝑉𝑡ℎ𝑒𝑟𝑚𝓃

) − 1]

−
𝑉𝑃𝑉 + 𝑅𝑆𝐼𝑃𝑉

𝑅𝑠ℎ
 

(1) 

 

The electrical behavior of a solar cell can be described by 

several key parameters. In the context of an ideal diode model, 

' 𝓃 ' represents the ideality factor of the cell, a dimensionless 

parameter that characterizes the deviation of the diode's 

behavior from the ideal case. '𝑉𝑡ℎ𝑒𝑟𝑚 = 𝑘𝑇/𝑞  ' denotes the 

thermal voltage of the cell, a voltage scale that depends on 

temperature. This thermal voltage is determined by the 

Boltzmann constant '𝑘 ' and the junction temperature '𝑇 ', as 

well as the electronic charge '𝑞'. Finally, '𝑅𝑠ℎ, 𝑅𝑠 ' indicates the 

shunt resistance and the series resistance, which represent 

losses within the cell due to leakage currents and internal 

connections, respectively. 

The system's non-linear and time-variable characteristics arise 

because the diode saturation current 𝐼0 is a function of the cell 

temperature, and the photocurrent 𝐼𝑖𝑟𝑟  is directly proportional 

to both the irradiance and the cell's temperature [31]. 
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Figure 1. GPV system implementation [32] 

 

  
  

  
  

  
  

  
 

Figure 2. Three-phase currents of a healthy case and seven real faults were injected into a GPV system 
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𝐼𝑖𝑟𝑟 = 𝐼𝑖𝑟𝑟,𝑠𝑡 (
𝐺

𝐺𝑠𝑡
) [1 + 𝐾𝐼(𝑇 − 𝑇𝑠𝑡)] (2) 

 

where, 𝐼𝑖𝑟𝑟,𝑠𝑡 ,  𝑇𝑠𝑡  and 𝐺𝑠𝑡  respectively represent the 

photocurant, the temperature of the cell and the solar 

irradiance under normal test conditions (𝑇𝑠𝑡 = 25℃ and 𝐺𝑠𝑡 =
1000𝑊/𝑚2); 𝐺  and 𝑇  respectively designate the real solar 

irradiance and the real temperature of the cell; and 𝐾𝐼  
corresponds to the relative temperature coefficient of short- 

circuit current. 

A photovoltaic panel composed of 𝑁𝑠  series cells and 𝑁𝑃 

cells in parallel presents the following relation: 𝐼𝑃𝑉 . 

 

𝐼𝑃𝑉 = 𝑁𝑃 𝐼𝑖𝑟𝑟 − 𝑁𝑃𝐼0 (𝑒𝑥𝑝 [
1

𝑉𝑡ℎ𝑒𝑟𝑚𝓃
(
𝑉𝑃𝑉
𝑁𝑆

+
𝑅𝑆 𝐼𝑃𝑉
𝑁𝑃

)]) 
(3) 

 

Aside from their inherent non-linear and dynamic behavior, 

photovoltaic systems are characterized by two key features 

[22]: (i) their voltage and current outputs are both limited and 

extremely dependent on solar irradiance '𝐺' and temperature 

'𝑇', as detailed in Eq. (3), and (ii) they incorporate Maximum 

Power Point Tracking (MPPT). 

In this study, the output of the photovoltaic array is 

simulated using a programmable Chroma 62150H-1000S solar 

panel simulator, which enables the manipulation of 

environmental conditions (𝐺  and 𝑇 ). The electrical grid is 

represented by a programmable AC source, the Chroma 61511 

network simulator. A D Space 1104 digital controller serves 

as the platform for implementing the control scheme and for 

data acquisition. The control strategy, such as (VOC), is 

coupled with (SVPWM) to regulate active and reactive power 

based on grid-side measurements. Synchronization of the 

output voltage with the grid voltage is achieved through a 

Phase-Locked Loop (PLL). The alternating current employed 

in this research plays a protective role, particularly during the 

injection of seven real-world defects, as illustrated in Figure 2. 

This control system employs the (PSO) technique to achieve 

Maximum Power Point Tracking (MPPT) when the available 

power is below the nominal level ( 𝑃𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ≤ 𝑃𝐿𝑖𝑚𝑖𝑡 ). 

Conversely, it transitions into an Intermediate Power Point 

Tracking (IPPT) mode when the available power exceeds this 

threshold (𝑃𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 > 𝑃𝐿𝑖𝑚𝑖𝑡) [31]. 

Additional insights and detailed explanations regarding the 

measurement processes, estimation techniques, and the 

specific faults analyzed in the system can be found in reference 

[32]. 

This grid-connected photovoltaic system offers reliable and 

precise fault data, which serves as the foundation for our fault 

identification approach. To achieve this objective, we 

employed two machine learning techniques: Extreme 

Learning Machine (ELM) and Support Vector Machine 

(SVM). 

 

 

3. EXTREME LEARNING MACHINE (ELM) 

 

In 2006, Huang proposed a new learning algorithm called 

ELM (Extreme Learning Machine) for neural networks with a 

single hidden layer (SLFN) [33]. This algorithm chooses the 

nodes hidden randomly and estimates the exit weights of the 

SLFN. The ELM learning speed is considerably faster than 

that of traditional algorithms in Feedforward neural networks, 

such as retro propagation algorithm, while having a good 

generalization capacity. This technique is based on a three -

step learning model [34]: 

The initial structure of the extreme learning machine is 

illustrated in Figure 3 [35]. We have the ELM's inputs and 

exits; They are defined as follows: 

 

𝑋 = [
𝑥11 … 𝑥1𝑄
𝑥𝑛1 … 𝑥𝑛𝑄

] ;  𝑇 = [
𝑡11 … 𝑡1𝑄
𝑡𝑚1 … 𝑡𝑚𝑄

] (4) 

 

where, 

• 𝑛: Is input matrix dimensions; 

• 𝑚: Is output matrix dimensions. 

 

The weights connecting the input layer to the hidden layer 

were initialized randomly. 

 

𝑊 = [
𝑤11 … 𝑤1𝑚
𝑤𝑚1 … 𝑤𝑛𝑚

] (5) 

 

Here, '𝑤𝑖𝑗 ' denotes the weights that connect the neurons of 

the input layer ,'𝑗 𝑡ℎ ' to the neurons of the hidden layer, '𝑖'. 
The Extreme Learning Machine considers the weights 

between the hidden layer and the output layer as a matrix noted 

generally 𝛽, and these can be expressed as follows: 

 

𝛽 = [
𝛽11 … 𝛽1𝑚
𝛽𝑙1 … 𝛽𝑘𝑚

] (6) 

 

Here, '𝛽𝑖𝑗 ' signifies the weights that connect the neurons of 

the hidden layer ' 𝑗𝑡ℎ ' to the neurons of the output layer '𝑘𝑡ℎ'. 

In an ELM, the biases (or thresholds) of the hidden layer 

neurons are assigned randomly. This contrasts with traditional 

neural networks, where both weights and biases are iteratively 

updated using backpropagation. Instead, ELM generates these 

biases only once, randomly, and they remain unchanged 

throughout the entire learning phase. 

 

𝐵 =  [𝑏1 𝑏2 … 𝑏𝑛]
′ (7) 

 

The Extreme Learning Machine (ELM) selects the 

network's activation function ' 𝑔(𝑥)'. As illustrated in Figure 

3, the resulting output matrix ' 𝑇' can then be represented by 

the following equation: 

 

𝑇 = [
𝑡11 … 𝑡1𝑄
𝑡𝑚1 … 𝑡𝑚𝑄

]
𝑚×𝑄

 (8) 

 

 
 

Figure 3. Schema of extreme learning machine (ELM) [35] 
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Each column vector within the output matrix ' 𝑇' is defined 

by the following expression: 

 

𝑡𝑗 = [

𝑡1𝑗
𝑡2𝑗
…
𝑡𝑚𝑗

] =

[
 
 
 
 
 
 ∑ 𝛽𝑖1𝑔(𝑤𝑗𝑥𝑗 + 𝑏𝑖)

𝑙

𝑖=1

∑ 𝛽𝑖2𝑔(𝑤𝑗𝑥𝑗 + 𝑏𝑖)
𝑙

𝑖=1 …

∑ 𝛽𝑖𝑚𝑔(𝑤𝑗𝑥𝑗 + 𝑏𝑖)
𝑙

𝑖=1 ]
 
 
 
 
 
 

; 

(𝑗 = 1, 2, 3, … , 𝑄) 

(9) 

 

From Eq. (8) and Eq. (9), we obtain: 

 

𝐻𝛽 = 𝑇′ (10) 

 

where, 

• 𝑇′: is the transposed 𝑇; 

• 𝐻: Signifies the hidden layer's output. 

 

For a unique and minimum-error solution, the values of the 

weight matrix '𝛽 ' are determined using the least squares 

method [36, 37]. 

 

𝛽 = 𝐻†𝑇′ (11) 

 

where, 𝐻† is the generalized opposite of Moore-Penrose of the 

matrix 𝐻. 

To enhance the network's generalization ability and 

stabilize the results, a regularization term is added to 𝛽 [38]. 

Should the hidden layer have a lower neuron count 

compared to the training set size, '𝛽' can be expressed as: 

 

𝛽 = (
𝐼

𝜆
+ 𝐻′𝐻)

−1

𝐻′𝑇′ (12) 

 

where, 

• 𝛽’𝛽 = 𝐼 : signifies the regularization parameter; 

• 𝜆 : is the regularization coefficient used to balance the 

learning accuracy and the network's complexity [39]. 

 

Should the hidden layer have a higher neuron count 

compared to the learning set size, '𝛽 ' can be expressed as 

follows [40]: 

 

𝛽 = 𝐻′ (
𝐼

𝜆
+ 𝐻𝐻′)

−1

𝑇′ (13) 

 

 

4. SUPPORT VECTOR MACHINE (SVM) 

 

The support vector machine (SVM) is a supervised learning 

model developed by Vapnik and his team with AT&T 

Laboratories, mainly intended for binary classification and 

regression applications. It was successfully used in various 

fields, including exploration of data mining, bioinformatics, as 

well as recognition of manuscript characters or digital objects 

[41, 42]. 

The fundamental idea of a Support Vector Machine (SVM) 

is to classify data by determining the optimal hyperplane that 

achieves the widest possible separation between different 

classes. This optimal separation is defined as the margin, the 

largest distance between any two support vectors. The data 

points that lie closest to this separating hyperplane are termed 

support vectors. Initially conceived for binary classification 

tasks (involving '𝑁𝐶 = 2 ' class separation), SVMs can be 

adapted for multiclass classification (meaning '𝑁𝐶 > 2 ’ or 

more classes) through widely used techniques such as one-

versus-one or one-versus-all [43]. 

The fundamental concept of a linear Support Vector 

Machine (SVM) involves distinguishing between two 

categories of data points within a two-dimensional feature 

space, as shown in Figure 4. In this simplified scenario, the 

optimal hyperplane takes the form of a line. Let '𝐷' represent 

a dataset comprising '𝑛 ' samples, each residing in a '𝑑 ' 

dimensional space. Each of these samples is assigned to one of 

two classes: 

• The condition, '𝑦𝑖 = −1' indicates samples belonging 

to the negative class; 

• The condition, '𝑦𝑖 = +1' indicates samples belonging 

to the positive class. 

 

Learning data is represented in the following form: 

 

𝐷 = {(𝑥𝑖 , 𝑦𝑖), 1 ≤ 𝑖 ≤ 𝑛, 𝑥𝑖 ∈ 𝑅
𝑑 ,

𝑦𝑖 ∈ {−1,+1}} 
(14) 

 

As Figure 4 demonstrates with linearly separable data, 

while various hyperplanes can separate the two classes, the 

optimal decision rule is obtained by selecting the one that 

yields the largest margin between them. 

Therefore, the primary goal is to determine the optimal 

hyperplane '𝐻0' and the two parallel support vector lines '𝐻1 

and 𝐻2', situated equidistantly from it, while ensuring that no 

data point falls within the region defined by these two lines 

[44-46]. 

The mathematical expressions for the hyperplane and its 

corresponding support vector lines are given by: 

 

{

𝐻1: 𝑤
𝑇𝑥𝑖 + 𝑏 = −1

𝐻0: 𝑤
𝑇𝑥𝑖 + 𝑏 = 0

𝐻2: 𝑤
𝑇𝑥𝑖 + 𝑏 = +1

 (15) 

 

The separation between ' 𝐻1  or 𝐻2 ' and ' 𝐻0 ' is 

mathematically expressed in Eq. (13). Eq. (17), on the other 

hand, gives the distance between the two support vectors '𝐻1 

and 𝐻2'. 

 

Distance between 𝐻1||2  and 𝐻0=
|𝑤𝑇𝑥𝑖+b|

||𝑤||
=

1

||𝑤||
 (16) 

 

 
 

Figure 4. Basic idea of SVM [43] 
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Distance between 𝐻1 and 𝐻2=Margin=
2

||𝑤||
 (17) 

 

As a result, Eq. (17) indicates that to achieve the largest 

possible margin, it is essential to minimize the standard norm 

of the vector '||𝑤|| = √𝑤𝑇𝑤', while adhering to the conditions 

specified in Eq. (18) which ensure no samples fall within the 

support vector boundaries. 

 

{
𝑤𝑇𝑥𝑖 + 𝑏 ≤ −1    𝑓𝑜𝑟   𝑦𝑖 = −1

𝑤𝑇𝑥𝑖 + 𝑏 ≥ +1     𝑓𝑜𝑟   𝑦𝑖 = +1
 (18) 

 

We can combine these equations to obtain: 

 

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1      ∀𝑖 (19) 

 

{
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 

1

2
𝑤𝑇𝑤} 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑀𝑎𝑟𝑔𝑖𝑛

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑦𝑖(𝑤𝑇𝑥𝑖  +  𝑏) ≥ 1           ∀𝑖
 (20) 

 

The optimization problem expressed in Eq. (20), which is 

subject to constraints, can be tackled using Lagrange 

multipliers ' 𝛼𝑖 ≥ 0 ', leading to what is termed the dual 

formulation. This dual problem is equivalent to a quadratic 

programming problem, solvable with tools like the quadprog 

solver in the Matlab Optimization ToolboxTM. 

 

𝐿(𝑤, 𝑏, 𝛼) =
1

2
𝑤𝑇𝑤 +∑𝛼𝑖(1 − (𝑦𝑖𝑤

𝑇𝑥𝑖 + 𝑏))

𝑛

𝑖=1

 (21) 

 

{
 
 

 
 𝜕𝐿

𝜕𝑤
= 0 ⇒ 𝑤 =∑𝛼𝑖𝑦𝑖𝑥𝑖

𝑛

𝑖=1

𝜕𝐿

𝜕𝑏
= 0 ⇒∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0

 (22) 

 

By substituting Eq. (22) in Eq. (21), we can derive the dual 

formulation from Eq. (23). 

 

𝐿𝐷 =∑𝛼𝑖

𝑛

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (23) 

 

In cases where the data points cannot be divided by a linear 

boundary, a necessary step is to pre-process the data by 

transforming the input vector ' 𝑥' into a characteristic space of 

higher dimensionality '∅(𝑥) '. This method is known as the 

kernel trick [44]. 

 

𝐿𝐷 =∑𝛼𝑖

𝑛

𝑖=1

−∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 ∅(𝑥𝑖
𝑇)∅(𝑥𝑗)⏟      

𝐾(𝑥𝑖 ,𝑥𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 (24) 

 

A variety of kernel functions can be employed, including 

sigmoid, polynomial, and radial basis function (Gaussian) 

kernels [47]. In both the SVM modules developed for problem 

detection and fault diagnosis in this work, the fundamental 

radial basis function (RBF) kernel is utilized. 

 

𝐾(𝑥𝑖 ,  𝑥𝑗) = 𝑒𝑥𝑝(−
‖𝑥𝑖 − 𝑥𝑗‖2

2𝜎2
 ) (25) 

 

This work adopts the One-Versus-One Multiclass SVM 

approach within its defect detection module to distinguish 

between seven failure modes in grid-connected photovoltaic 

systems operating under MPPT. This technique operates by 

constructing a series of binary classifiers, and the number 

necessary for this strategy can be determined using the 

subsequent formula: 

 
𝑁𝐶(𝑁𝐶 − 1)

2
 (26) 

 

 

5. FEATURE EXTRACTION 

 

Feature extraction plays a vital role in data analysis and 

classification tasks. Key steps in a classification problem 

include signal preprocessing, extraction of relevant features, 

feature selection for dimensionality reduction, and 

classification using a suitable algorithm. Extracting 

meaningful parameters can significantly enhance the 

reliability of fault diagnosis. In this study, five statistical 

features (as shown in Table 1) are derived from the data under 

various fault conditions. These features serve as input vectors 

for training and testing the ELM and SVM models to 

determine whether the system is operating under normal 

conditions or exhibiting faults [48]. 

 

Table 1. Statistical features [48] 

 
Statistical Features Equation 

Minimum 𝑀𝑖𝑛(𝑥) 
Maximum 𝑀𝑎𝑥(𝑥) 

Kurtosis 

1

𝑁
∑�̅�𝑖

4 −
3

𝑁2
(∑𝑥𝑖

2

𝑁

𝑖=0

)

2

−
4

𝑁
�̅� (∑𝑥𝑖

2

𝑁

𝑖=0

)

𝑁

𝑖=0

+
12

𝑁
�̅�2 (∑𝑥𝑖

2

𝑁

𝑖=0

)

− 6�̅�4 

Mean 
1

𝑁
∑𝑥𝑖

𝑁

𝑖=0

 

Skewness 
1

𝑁
∑𝑥𝑖

3 −
3

𝑁
�̅� (∑𝑥𝑖

2

𝑁

𝑖=0

) + 2�̅�3
𝑁

𝑖=0

 

 

where, 

• 𝑥  represents the values of real data signal in the time 

domain of each fault 

• �̅� is the mean of 𝑥 ∶  �̅� =
1

𝑁
∑ 𝑥𝑖
𝑁
𝑖=0  

• 𝑁 the length of a signal 

To achieve a more efficient seven-fault classification, the 

BGWO and BDE feature selection algorithms are 

implemented to reduce the dimensionality of the feature space. 

 

 

6. FEATURE SELECTION 

 

Feature selection is a critical stage in pattern recognition. In 

this study, our focus is on employing optimization algorithms 

to perform this selection process. 

 

6.1 Binary grey wolf optimization (BGWO) 

 

The Binary Grey Wolf Optimization (BGWO) method is 
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recommended and employed in this research to identify the 

most suitable subset of characteristics for the classification 

tasks. The Gray Wolf Optimization (GWO) algorithm, on 

which the BGWO is based, is inspired by the gray wolves' 

hunting behavior. This behavior is structured according to a 

social hierarchy comprising: 

• Alpha (𝛼): The leader of the pack, representing the best 

current solution in the research space. 

• Beta (β): the second-best individual, assisting alpha in 

decision-making. 

• Delta (𝛥): generally, the third best, playing a support 

role. 

• Omega (𝛺): all the other solutions, which follow the 

leaders and are influenced by their movements. 

The main use of optimization by the binary gray wolf 

(BGWO) is the selection of characteristics (feature selection) 

[49]. This method is particularly effective in reducing the 

dimensionality of data while retaining the most relevant 

information, which improves the accuracy of classification 

models and reduces their computational complexity. By 

representing each solution as a binary vector (where each bit 

indicates whether a characteristic is selected or not), the 

BGWO explores the search space to find the optimal subset of 

explanatory variables. 

Algorithm 1 illustrates the stages of optimization by the 

Gray Binary Group (binary optimization of the gray wolf, 

BGWO) [50]. 

 
 

Algorithm 1: BGWO algorithm 

1: Define population size 𝑁 , and maximum 

number of generation 𝐺𝑚𝑎𝑥. 

2: Generate an initial random uniformly distributed 

population of 𝑁 vectors. 

3: Find the objective function values for all 

members of the population. 

4: While 𝐺 < 𝐺𝑚𝑎𝑥   do 

5: for   𝑛 = 1 𝑡𝑜 𝑁   do 

6: Update the 𝑛𝑡ℎ  vector using: 

7: 𝑊𝐺+1,𝑖

= {
1,    𝑖𝑓  𝑆 (

𝑊1,𝑖  +  𝑊2,𝑖 + 𝑊3,𝑖 

3
) ≥ 𝑟𝑎𝑛𝑑().

0,                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

8: End for 

9: Update 𝑢, 𝐶1, 𝑎𝑛𝑑  𝐶2 

10: Update 𝑊𝛼 , 𝑊𝛽 , 𝑎𝑛𝑑  𝑊𝛿  

11: Set: 𝐺 = 𝐺 + 1 

12: End while 

 

6.2 Binary differential evolution (BDE) 

 

When tackling classification tasks with numerous features, 

selecting a subset of the most informative ones is crucial. This 

process streamlines the classifier's computations by 

eliminating unnecessary data points and can potentially 

enhance its ability to correctly categorize instances by 

focusing on the most pertinent attributes. A key difficulty in 

multi-class classification lies in identifying a smaller group of 

features that can maintain a comparable level of accuracy to 

when the entire original set is used. 

The following paragraphs explain the working principles of 

differential evolution and the method applied to optimize the 

extreme learning machine (ELM). Moreover, the basic theory, 

relevant definitions, and the mathematical expressions for the 

operators of binary differential evolution (BDE) are presented, 

alongside other functionalities of this approach. In this study, 

binary differential evolution is employed, and its fundamental 

theoretical basis is the same as that of conventional differential 

evolution. The main differences between them are in the way 

their operators are structured. 

Introduced by the study [51], differential evolution (DE) is 

a widely recognized optimization algorithm, cited by the study 

[52] as being among the most popular. As a population-based 

optimizer, it's designed to tackle a range of optimization 

challenges by evaluating an objective function (OF). The 

method starts with a randomly generated set of initial solutions, 

which are subsequently combined to produce a refined group 

of individuals. 

 

 
 

Figure 5. Flowchart of the stages of differential evolution 

[52] 

 

According to the study [53], an algorithm of differential 

evolution (DE) must have four fundamental capacities: 

1). An effective exploration of the research space, 

2). an appropriate exploitation of promising solutions, 

3). The prevention of stagnation in iterations, 

4). Prevention of premature convergence to sub-optimal 

solutions. 

The field of differential evolution (DE) has seen many 

advancements and combinations with other algorithms over 

time [54-57]. For a comprehensive understanding of the latest 

and most sophisticated research in differential evolution, 

reference [52] is recommended. 

Differential evolution is characterized by its straightforward 

design, making it relatively easy to grasp. In essence, it 

employs genetic operators, namely mutation, crossover, and 

selection on a population ' 𝐺' in generation ' 𝑋(𝐺)' to produce a 

subsequent population in generation '  𝑋(𝐺+1) '. Figure 5 

provides a visual representation of this optimization process 

through a flowchart. 

Binary differential evolution (BDE) operates based on the 

same fundamental principles as differential evolution (DE) 

and proceeds through four distinct phases. 

The equations presented in this section will henceforth 

pertain to binary differential evolution (BDE). 

In binary differential evolution (BDE), the process starts 

with the generation of a random population '  𝑋(0) ', which 

includes ' 𝑁𝑖𝑛𝑑 ' individuals, each having ' 𝑁𝑔𝑒𝑛 ' genes, 

according to Eq. (27). 
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𝑥𝑛𝑖𝑛𝑑,𝑛𝑔𝑒𝑛
(0)

= {
1, 𝑖𝑓𝑟𝑎𝑛𝑑 ≥ 𝑂. 5
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (27) 

 

Here, ' 𝑛𝑖𝑛𝑑 = 1, 2, . . . , 𝑁𝑖𝑛𝑑 ' represents the individuals, 

' 𝑛𝑔𝑒𝑛 = 1, 2, . . . , 𝑁𝑔𝑒𝑛 ' the genes, and ' 0' denotes the initial 

population. (Rand) signifies a random number within the range 

' [0, 1]'. It's important to note that each individual '𝑥𝑛𝑖𝑛𝑑
(𝐺)

' in any 

generation ' 𝐺 ' is also referred to as a Target Vector. Following 

the initialization, the fitness of each individual within the 

population is evaluated using a chosen objective function. 

Subsequently, a mutation operator is applied to introduce 

variation or change within the population. One example of a 

mutation process, among many possibilities, is provided by Eq. 

(28). 

 

𝜐𝑛𝑖𝑛𝑑,𝑛𝑔𝑒𝑛
(𝐺+1)

= {
1, 𝑖𝑓𝑟𝑎𝑛𝑑 ≥ 𝑃 (𝑥𝑛𝑖𝑛𝑑,𝑛𝑔𝑒𝑛

(𝐺) )

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (28) 

 

where, ' 𝜐𝑛𝑖𝑛𝑑,𝑛𝑔𝑒𝑛
(𝐺+1)

' represents the mutant vector obtained, and 

' 𝑃 (𝑥𝑛𝑖𝑛𝑑,𝑛𝑔𝑒𝑛
(𝐺) )' designates the probability value, which can 

be determined, for example, using the probability estimate 

operator (PEO) [58]. Once the mutation has been made, the 

crossing operator can be applied to improve the diversity of 

the population and generate a test vector ' 𝑢𝑛𝑖𝑛𝑑,𝑛𝑔𝑒𝑛
(𝐺+1)

'. 

Through a random combination process, this operator 

merges the target vector and the mutant vector, as described 

by Eq. (29). 

 

𝑢𝑛𝑖𝑛𝑑,𝑛𝑔𝑒𝑛
(𝐺+1)

= {
𝜐𝑛𝑖𝑛𝑑,𝑛𝑔𝑒𝑛
(𝐺+1)

 , 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 𝐶𝑅 𝑜𝑟 𝑛𝑔𝑒𝑛 = 𝐼 𝑟𝑎𝑛𝑑

𝑥𝑛𝑖𝑛𝑑,𝑛𝑔𝑒𝑛
(𝐺)

 ,                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(29) 

 

In this equation, ' 𝐶𝑅' stands for the crossover rate, a value 

chosen within the bounds of 0 and 1. The symbol ' 𝐼 𝑟𝑎𝑛𝑑 ' 

represents a randomly selected gene index from the set of all 

gene positions, ' 1, 2, . . . , 𝑁𝑔𝑒𝑛 '. Finally, ' 𝐺 ' and ' 𝐺 + 1' are 

used to denote the current and the succeeding generations. 

Following the mutation and crossover operations, the 

subsequent step involves applying the selection operator, 

which is based on the fitness values of both the target and trial 

vectors. This selection process is governed by Eq. (30). 

 

𝑥𝑛𝑖𝑛𝑑
(𝐺+1)

= {
𝑢𝑛𝑖𝑛𝑑
(𝐺+1)

, 𝑖𝑓 𝑓𝑖𝑡
𝑢𝑛𝑖𝑛𝑑
(𝐺+1) ≥ 𝑓𝑖𝑡

𝑥𝑛𝑖𝑛𝑑
(𝐺)

𝑥𝑛𝑖𝑛𝑑
(𝐺)

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (30) 

 

Following the application of the operators, a new population 

' 𝑋(𝐺+1)' for the next generation, ' 𝑥1
(𝐺+1), 𝑥2

(𝐺+1), … , 𝑥𝑁𝑖𝑛𝑑
(𝐺+1)

', is 

formed. This cycle of applying the operators is repeated 

iteratively until a termination condition is satisfied, for 

instance, when the maximum number of generations is reached. 

For additional information on the Differential Evolution 

(DE) algorithm, we can refer to the study [51], which is the 

first author. An in-depth study of the fundamental concepts, 

variants, and applications of algorithms [59]. The theoretical 

study of DE, including the analysis of convergence, 

differential change, crossroads, and the diversity of the 

population [60]. Finally, specific information on the binary 

version of the algorithm, Binary Differential Evolution (BDE) 

[61, 62]. 

 

 
7. APPLICATION OF LEARNING MACHINE 

 

This study considers the seven fault scenarios and one 

healthy operating condition in grid-connected photovoltaic 

(PV) systems under Maximum Power Point Tracking (MPPT) 

mode, as detailed in Table 2 (labeled F0M to F7M). 

We used the flowchart in Figure 6 to achieve our objective 

to detect these seven defects by using 70% of the dataset to 

train ELM and SVM classifiers and the remainder for testing. 

The application of the learning machines (ELM and SVM) 

with BGWO and BDE and their tuning parameters that give us 

the best results are shown in Table 3. 

 

 
 

Figure 6. Flowchart of the suggested architecture 

 
Table 2. Faults injected in the GPV system [31] 

 
Default Type Description 

F0M Healthy case Healthy case 

F1M Inverter fault 
Complete failure in one of the six 

IGBTs 

F2M 
Feedback Sensor 

fault 
One phase sensor fault 20% 

F3M Grid anomaly Intermittent voltage sags 

F4M PV array mismatch 
10 to 20% nonhomogeneous partial 

shading 

F5M PV array mismatch 15% open circuit in PV array 

F6M 
MPPT controller 

fault 

-20% gain parameter of PI 

controller in MPPT controller of the 

boost converter 

F7M 
Boost converter 

controller fault 

+20% in time constant parameter of 

PI controller in MPPT controller of 

the boost converter 
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Table 3. The best results of ELM and SVM with 

(BGWO and BDE) 

 

Accuracy 

Tuning Parameters For 

BGWO BDE 

Parameter Values Parameter Values 

Population (N) 10 Population 10 

Maximum number of iterations 100 Maximum number of iterations 100 

Search domain [0 1] Crossover rate (CR) 0.9 

ELM SVM ELM SVM 

Best Training Accuracy 100% with 278 Neurons 100% 100% with 77 Neurons 98.92% 

Best Testing Accuracy 99.16% with 62 Neurons 96.66% 98.33% with 172 Neurons 95% 

 

8. RESULTS AND DISCUSSION 

 

To enhance the efficiency of the seven-fault classification 

by reducing the number of features, binary grey wolf 

optimization (BGWO) and binary differential evolution (BDE) 

were applied for feature selection. According to the results in 

Table 4, the Extreme Learning Machine (ELM) utilizing 

BGWO for feature selection outperformed other techniques, 

reaching a high accuracy of 99.16% in detecting faults.

 

Table 4. The accuracy of each classifier 

 

Classifiers 

and 

Time 

Features Selections 

Without Optimization BGWO BDE 

Training (%) Testing (%) Training (%) Testing (%) Training (%) Testing (%) 

ELM 100 95 100 99.16 100 98.33 

Time; [Sec] 31.361 20.0297 43.9597 19.2206 42.3499 20.9613 

SVM 
Kernel 

functions 

RBF 100 85.83 100 96.66 98.92 95 

Time ; [Sec] 5.5486 0.043865 3.1925 0.041497 3.36 0.037256 

Linear 95 91.6667 78.5714 72.5 85.3571 79.1667 

Time ; [Sec] 3.322 0.029982 3.3127 0.025633 3.1283 0.028743 

Polynomial 100 97.5 88.5714 85.8333 100 94.1667 

Time ; [Sec] 3.2901 0.032833 3.1712 0.032326 3.1946 0.032258 

 

8.1 Classification Using Support Vector Machine (SVM) 

 

This section presents the classification results of the Support 

Vector Machine (SVM) optimized using two binary 

metaheuristic algorithms: Binary Differential Evolution (BDE) 

and Binary Grey Wolf Optimization (BGWO). 

 

8.1.1 Classification using SVM with BDE optimization 

algorithm 

To improve the classification accuracy, the Binary 

Differential Evolution (BDE) algorithm was employed for 

feature selection before training the SVM classifier. The 

convergence behavior of the BDE algorithm during 

optimization is shown in Figure 7, which illustrates a gradual 

decrease in the cost function over successive iterations. 

The performance of the SVM classifier optimized with BDE 

is depicted in the confusion matrix in Figure 8. As can be seen, 

the model achieves a respectable classification performance, 

although some misclassifications still occur. The final cost 

function value attained by the BDE algorithm in the case of 

SVM 𝐶𝑓𝐵𝐷𝐸 = 0.075. 

 

8.1.2 Classification using SVM with BGWO optimization 

algorithm 

Similarly, Binary Grey Wolf Optimization (BGWO) was 

used to optimize feature selection for the SVM classifier. As 

shown in Figure 9, the BGWO algorithm demonstrates a faster 

convergence rate compared to BDE, reaching a lower cost 

function value more rapidly. The final cost function value for 

BGWO in this case is 𝐶𝑓𝐵𝐺𝑊𝑂 = 0.025, indicating superior 

performance over BDE. 

The corresponding confusion matrix for the BGWO-

optimized SVM is presented in Figure 10. The results clearly 

demonstrate improved classification accuracy, with fewer 

misclassified samples than the BDE-based approach. Overall, 

BGWO proves to be more effective in enhancing SVM 

performance. 

 

 
 

Figure 7. Convergence of the cost function optimized by the 

binary differential evolution (BDE) algorithm 

 

 
 

Figure 8. Confusion matrix of SVM based on binary 

differential evolution (BDE) algorithm 
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Figure 9. Convergence of the cost function optimized by the 

binary grey wolf optimization (BGWO) algorithm 

 

 
 

Figure 10. Confusion matrix of SVM based on binary grey 

wolf optimization (BGWO) algorithm 

 

8.2 Classification using extreme learning machine (ELM) 

 

Extreme Learning Machine (ELM) classifiers were also 

evaluated using both BDE and BGWO optimization 

techniques for feature selection. The ELM's performance is 

sensitive to three parameters: input weights, bias values, and 

the number of hidden layer neurons. In this study, input 

weights and biases were randomly initialized, and the output 

weights were computed using the closed-form solution 

described in Eqs. (12) and (13), with a sigmoid activation 

function applied. 

 

8.2.1 Classification using ELM with BDE optimization 

algorithm 

Figures 11(a) and 11(b) show the training and testing 

accuracy of the ELM classifier when optimized with the BDE 

algorithm. The model reaches a relatively high testing 

accuracy with a specific number of hidden neurons. The 

convergence of the cost function during optimization is shown 

in Figure 12, which reflects the algorithm’s progression 

towards an optimal solution. The final cost function value for 

the BDE-optimized ELM is 𝐶𝑓𝐵𝐷𝐸 = 0.075. 

The classification results are further detailed in the 

confusion matrix shown in Figure 13, where the model 

misclassifies one sample, resulting in an error rate of 10.8%. 

 

 
(a)Training accuracy 

 

 
 

(b) Testing accuracy 

 
Figure 11. Accuracy of ELM with BDE optimization 

algorithm 

 

 

 
Figure 12. Convergence of the cost function optimized by 

the binary differential evolution (BDE) algorithm 

 

 

 
Figure 13. Confusion matrix of ELM based on binary 

differential evolution (BDE) algorithm 
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8.2.2 Classification using ELM with BGWO optimization 

algorithm 

Training and testing accuracies for the ELM using BGWO-

optimized feature selection are illustrated in Figures 14(a) and 

14(b), respectively. This approach yields superior testing 

accuracy, reaching 99.16% with 62 hidden layer neurons, the 

optimal architecture found in this study. 

The convergence behavior of the BGWO algorithm for 

ELM is shown in Figure 15, which confirms the faster 

convergence and better final cost value 𝐶𝑓𝐵𝐺𝑊𝑂 = 0.0625 , 

compared to BDE. 

The final confusion matrix is displayed in Figure 16, where 

only one sample is misclassified, corresponding to an error 

rate of 11.7%. While this is marginally higher than the error 

rate observed with BDE, the significantly higher testing 

accuracy indicates that BGWO provides better generalization 

for the ELM model. 

 

 

 
 

(a) Training accuracy 

 

 
 

(b) Testing accuracy 

 

Figure 14. Accuracy of ELM using feature selection based 

on BGWO 

 

 
 

Figure 15. Convergence of the cost function optimized by 

the binary grey wolf optimization (BGWO) algorithm 

 

 
 

Figure 16. Confusion matrix of ELM based on binary grey 

wolf optimization (BGWO) algorithm 

 

 

9. CONCLUSION 

 

Early detection and diagnosis make it possible to limit 

damage and maintain the other components of the photovoltaic 

system connected to the network by studying the influence of 

defects and their behavior in the event of dysfunction. This 

work offers a new contribution for the detection of seven 

defects extracted from a real database, which can affect a 

photovoltaic system connected to the network operating in 

MPPT mode. The proposed diagnostic method is based on 

artificial intelligence, represented by Extreme Learning 

Machine (ELM) models and Support Vector Machine (SVM), 

assisted by BGWO and BDE optimization algorithms. The 

results obtained clearly show that the ELM approach, 

associated with the BGWO optimization algorithm based on 

statistical parameters, offers high precision (99.16%). This 

highlights its importance in identifying the various defects in 

PV systems connected to the network in MPPT mode, while 

reducing the severity of the breakdowns. In addition, based on 

these results, future work could apply the ELM assisted by 

other optimization algorithms such as the principal component 

analysis (PCA) or the Binary Harris Hawk Optimization 

(BHHO) algorithm in other areas of diagnostics, such as 

electric machines or any technological process. 
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