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This study explores the application of the Extreme Gradient Boosting (XGBoost) 

algorithm for sentiment classification using EEG signals from the MUSE device. The 

model was evaluated using key performance metrics, including accuracy, precision, recall, 

and F1-score, achieving a notable accuracy of 99.1%. XGBoost's strengths in processing 

large datasets, reducing over fitting through regularization, and effectively handling EEG 

data are highlighted. The results underscore the effectiveness of ensemble learning 

methods in improving human-computer interaction and advancing emotional processing. 

There is significant potential for integrating real-time EEG-based sentiment analysis into 

interactive systems and wearable technologies, with promising applications in gaming, 

healthcare, and mental health monitoring. This research contributes to the development of 

intelligent, adaptive AI-driven systems and lays a solid foundation for future EEG-based 

emotion recognition technologies. 
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1. INTRODUCTION

Emotions are an essential component of human existence, 

significantly influencing daily experiences and decision-

making. Models for emotion recognition aim to understand 

and respond to human emotions, with applications across 

domains such as driver monitoring, healthcare, entertainment, 

and software user experience enhancement [1]. These models 

commonly rely on two main approaches: behavioral and 

physiological. Behavioral methods recognize emotions 

through facial expressions and gestures, while physiological 

approaches use biological signals such as electrodermal 

activity (EDA), galvanic skin response (GSR), 

electrocardiography (ECG), and electroencephalography 

(EEG). Unlike behavioral indicators, physiological signals are 

continuously accessible and cannot be consciously controlled. 

Combining both approaches leads to a more comprehensive 

understanding of an individual’s emotional state [2]. 

Many studies focus on emotion recognition by examining 

subjects’ responses to controlled stimuli in laboratory settings. 

However, accurately identifying emotions in real-world 

environments remains challenging. EEG signals provide 

valuable insights into emotions that may not be verbally 

expressed. EEG measures electrical activity via electrodes 

placed on the scalp, capturing signals primarily from 

pyramidal neurons in the cortex. These signals reflect the 

summed potentials of excitatory and inhibitory postsynaptic 

currents of neurons near each electrode. Because EEG reflects 

brain activity in response to stimuli or events, it is a powerful 

tool for emotion classification [3]. 

Various machine learning methods have been applied to 

EEG-based emotion recognition, but the use of XGBoost in 

this domain has been limited. XGBoost offers advantages such 

as modeling non-linear EEG patterns, robustness to noise, and 

built-in regularization to reduce over fitting, making it 

promising for real-time emotion detection from physiological 

signals. EEG-based emotion recognition also holds potential 

for enhancing the diagnosis and treatment of neurological and 

psychological disorders such as stroke, stress, epilepsy, mood 

disorders, and anxiety. It is especially beneficial for 

understanding emotional states in neuro diverse populations. 

This study adopts an interdisciplinary approach, integrating 

computational, psychological, and neurophysiological models 

to advance emotion recognition methods [4].  

2. RELATED WORK

An examination of current research on EEG-based emotion 

recognition features progress in this field, covering aspects 

like signal processing, feature extraction, classification 

techniques, and practical applications. Our extensive literature 

review explores advancements in EEG-based emotion 

recognition, highlighting emerging trends, challenges, and 

significant achievements in this multidisciplinary domain [5]. 

Researchers continually strive to improve the accuracy, 

reliability, and real-world relevance of EEG-based emotion 

recognition systems. 

Early studies focused on whether emotional states could be 

identified from brainwave patterns. Numerous studies have 

examined the relationship between emotional experiences and 

brain activity, particularly in the frontal regions. Frontal EEG 
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asymmetry has been investigated as a potential biomarker for 

vulnerability to depression. Although frontal asymmetry may 

help identify individuals at risk for depression, further large-

scale longitudinal studies are necessary to validate these 

findings [6]. Research in this area also supports the 

advancement of personalized, neuroscience-based treatment 

strategies. By analyzing neural activity changes, researchers 

can evaluate intervention effectiveness, including 

psychotherapy, in modulating brain networks. 

Studies on frontal alpha asymmetry have further explored 

neuro feedback training as a tool for reducing anxiety and 

negative emotions. For example, one study investigated the 

effects of neuro feedback training on depression, anxiety, and 

affect by analyzing specific changes in alpha wave power 

across different frontal regions [7] as shown in below Figure 

1. 

 

 
 

Figure 1. Frontal EEG asymmetry 

 

These pioneering studies pave the way for future EEG-

based research on the neural mechanisms underlying emotions. 

Numerous investigations have focused on signal processing 

techniques to enhance EEG data accuracy in emotion 

recognition, as illustrated in Figure 2 researchers have 

developed various methods to improve EEG signal quality by 

eliminating artifacts such as eye blinks, muscle movements, 

and environmental noise, thereby increasing the accuracy and 

reliability of emotion recognition systems [8]. 

 

 
 

Figure 2. Human emotions identification and recognition 

using EEG signal processing 

 

 

3. IMPLEMENTATION 

3.1 XGBoost algorithm 

 

This examination utilizes the eXtreme Gradient Boosting 

(XGBoost) algorithm for emotion classification. XGBoost is 

widely recognized for its effectiveness and efficiency in 

processing large datasets and handling complex models. Built 

on the principles of gradient boosting, it combines linear 

model solvers with tree-based learning techniques, making it 

a powerful choice for this task [9]. This section explores the 

application of XGBoost in EEG-based emotion classification, 

as shown in Figure 3. Known for its adaptability and strong 

performance across various machine learning applications, 

XGBoost has proven to be highly effective in sentiment 

analysis using EEG signals. 

 

 
 

Figure 3. EEG brainwave dataset training 

 

3.1.1 Application of XGBoost algorithm for EEG-based 

sentiment classification 

XGBoost employs a boosting ensemble learning approach, 

where multiple weak models are constructed sequentially to 

correct errors from previous iterations [10]. This iterative 

improvement enables XGBoost to achieve high predictive 

accuracy, making it a dependable option for sentiment 

classification tasks. 

A key advantage of XGBoost is its efficiency in processing 

complex datasets. By integrating regularization techniques, it 

reduces the bet of over fitting and manages the model's 

hypothesis to new data [11]. Furthermore, XGBoost is 

equipped to manage missing values effectively, ensuring 

robustness even when dealing with incomplete data [12]. 

Furthermore, XGBoost is highly scalable and supports 

parallel processing, making it well-suited for large datasets. Its 

adaptability and strong performance have made it a widely 

used algorithm across various machine learning applications. 

In EEG-based sentiment classification, XGBoost is 

particularly effective at detecting subtle patterns within EEG 

signals. Since EEG data often exhibits non-linear relationships, 

the gradient boosting technique employed by XGBoost 

captures intricate interactions and dependencies, leading to 

more accurate emotion classification. 

XGBoost is commonly utilized in supervised learning tasks, 

where the training data includes input features (x) paired with 

corresponding target labels (y). One of the model's goals is to 

learn a function that accurately predicts based on x [13]. The 

mathematical formulation of XGBoost can be represented as 

follows: 

 

yi =∑ 𝑓𝑘(𝑥𝑖)𝑘=0 , fk€ U 

 

where, F denotes the space of regression trees, and fk(xi) is the 

prediction of the k-th tree for the input xi.” 

This equation represents the aggregation process in 

XGBoost, where the total number of trees in the mode is 
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indicated by k. Each tree’s prediction, represented as fk 

belongs to the function space U. The model iterates through all 

k trees in the ensemble, summing their individual predictions 

for a given input data point xi. This results in the final predicted 

value yi which is obtained as the cumulative outcome of all 

tree-based predictions [14]. 

 

3.1.2 Model evaluation 

We will start by creating a classification report that includes 

important performance indicators for every class, such as F1-

score, precision, and recall. This report considers the 

examination of the model's show across various classes and 

helps identify potential biases or imbalances in its predictions. 

We will then create a confusion matrix to examine the 

model's performance graphically. The confusion matrix 

provides information about the distribution of accurate and 

inaccurate predictions across different classes by contrasting 

predicted and actual labels [15]. This makes it easier to spot 

misclassification trends and evaluate the model's overall 

accuracy. 

By leveraging both classification report and confusion 

matrix, we aim to obtain a thorough evaluation of our 

XGBoost model’s strengths and limitations. These insights 

will guide decisions regarding its optimization and 

deployment in real-world applications [16]. 

 

3.2 Metrics for performance 

 

The viability of EEG-based feeling recognition models is 

assessed using various performance metrics. Commonly used 

metrics such as recall, accuracy, precision and F1-score, 

indicate the model's ability to classify different emotional 

states accurately. In multiclass EEG-based emotion 

classification scenario each class represents a distinct 

emotional category [17]. 

True negatives (TN) occur when the model correctly 

identifies that a model doesn't have a spot with a specific class, 

while true positives (TP) refer to instances where the model 

accurately detects a given class [18]. False negatives (FN) 

indicate cases where the model neglects to perceive occasions 

of a specific class, whereas false positives (FP) occur when the 

model erroneously orders an example as having a place with a 

class [19]. 

The following definitions apply to performance metrics like 

accuracy, precision, recall, F1-score, and the confusion matrix: 

1. Consistency: Consistency evaluates the model's 

general capacity to precisely anticipate class names. 

The level of accurately ordered examples relative to 

all instances is the definition of multiclass 

classification. The following is the formula for 

Consistency: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝐹𝑝

TN + TP + FP + FN
 

 

2. Precision (P): By computing the extent of accurately 

grouped positive examples to all occurrences 

anticipated as certain, accuracy surveys how precise 

the model's positive forecasts are. This formula is 

used to calculate it: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

TP + FP
 

 

3. Recall (R): The model's capacity to perceive each 

case of a particular class is estimated by review. It 

shows the level of genuine positive cases that the 

model precisely distinguished 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

4. F1-score: The model's show is surveyed extensively 

by changing the precision of positive figures and its 

capacity to unequivocally recognize authentic 

positive models across all classes. The F1-score is the 

consonant mean of precision and survey 

 

𝐹1 = 2X
𝑃𝑋𝑅

P + R
 

 

5. Confusion matrix (CM): A confusion matrix is a 

tabular representation that evaluates the performance 

of a classification model by comparing its predicted 

labels with the actual labels. 

 

The XGBoost model demonstrated outstanding 

performance, achieving an accuracy of 99.1% when trained 

with selected features, highlighting its effectiveness in 

sentiment classification across the dataset [20]. The 

classification report provides a comprehensive evaluation of 

the model’s performance. It presents key metrics such as 

precision, recall, and F1-score for each class (negative, neutral, 

and positive), demonstrating the model’s ability to accurately 

classify instances [21]. Furthermore, both the macro and 

weighted average F1-scores reached 0.99, as shown in Table 

1, further confirming the model’s robust overall performance 

across all sentiment categories [22]. 

 

Table 1. The classification report for XGBoost model 

 
Classification Report for XGBoost Model 

Features Precision Recall F1-Score Support 

id_0 0.98 0.98 0.98 201 

id_1 1.00 0.98 1.00 231 

id_2 0.97 0.98 0.96 208 

Accuracy 0.99 640 

Macro average 0.99 0.99 0.99 640 

Average weight 0.99 0.99 0.99 640 

 

Furthermore, the Confusion matrix provides valuable 

insights into the model's characterization execution [23], as 

shown in Table 2. The high qualities along the inclining 

demonstrate proper expectations, whereas the off-corner to 

corner components are misclassified cases [24]. The 

distribution of values within the grid demonstrates the model's 

strong ability to precisely order occurrences across all feeling 

classifications. 

 

Table 2. The confusion matrix for XGBoost 

 

 

 
Predicted Labels 

 N1 N2 N3 R W 

True 

Labels 

N1 0.46 0.007 0.00 0.32 0.15 

N2 0.01 0.76 0.08 0.15 0.00 

N3 0.00 0.08 0.91 0.00 0.00 

R 0.06 0.17 0.00 0.74 0.02 

W 0.13 0.00 0.00 0.05 0.82 
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where, N1: Negative sentiment, N2: Neutral sentiment N3: 

Positive sentiment, R: Resting or baseline state W: Wakeful or 

alert state 

In conclusion, XGBoost's adaptability, scalability, and 

capability to capture non-linear relationships make it a highly 

effective tool for EEG-based sentiment classification, 

enabling accurate inference of emotional states from EEG data. 

To assess the performance of the integrated XGBoost model, 

the classification report and confusion matrix are employed as 

key evaluation metrics, providing a comprehensive 

understanding of model accuracy and misclassification trends 

[25]. 

 

Overall, the results highlight the model’s precision and 

practicality in sentiment classification tasks, demonstrating its 

potential for real-world applications in emotion recognition 

and related domains such as healthcare, education, and user 

experience systems. This study uses only publicly available 

secondary data and does not involve human participants. 

Hence, ethical approval and informed consent are not 

applicable, consistent with prior EEG studies utilizing open-

access datasets. 

 

 

4. RESULTS 

 

The code implements a series of functions to assess machine 

learning models on a specified dataset. The 

generate_generic_results function performs leave-one-

subject-out evaluations, in this case, models are trained using 

information from every subject except the one being assessed, 

tested on the excluded subject, and the results are stored. The 

generate_combined_general_results function assesses models 

across the entire dataset using cross-validation and saves the 

outcomes. Both functions rely on utilities from an utils module 

for tasks such as data preprocessing, model management, and 

performance evaluation. The type of models used is defined 

by the model type, and the results are organized in directories 

for further analysis. A key limitation of the study is the 

exclusion of several smaller states and union territories due to 

data unavailability. This may introduce a small sample bias 

and limit the representativeness of the findings across all 

Indian regions. Future studies could aim to include a broader 

set of regions or utilize alternative data sources to enhance 

generalizability. 

 

4.1 PLOTS-swell 

 

The function for calibrating and evaluating machine 

learning models on EEG data. The calibrate_model function 

combines generic and calibration data to retrain models with 

fresh parameters. The get_data function loads dataset files, 

while generate_calibration_results tests model performance 

across various sample sizes and saves the results. The 

calibration process ensures models are optimized [26] for 

better accuracy in predictions.  

 

4.2 Exploratory Data Analysis (EDA) 

 

This portion dives into the Exploratory Data Analysis (EDA) 

phase, offering insights into the features of the EEG dataset 

[1]. Descriptive statistics, visualizations, and key observations 

are provided to deliver a thorough analysis of the data's 

distribution, patterns, and potential challenges. The EDA of 

the EEG-based emotion classification dataset, comprising 

2132 observations and 2549 features, revealed a well-

distributed label distribution with approximately 33.6% for 

neutral sentiments and 33.2% each for positive and negative 

sentiments. The absence of missing values and the wide span 

of numerical representations contribute to the dataset’s 

complexity. The relationship between calibration samples per 

subject and model performance—including classification 

accuracy, precision, mean absolute error, and root mean square 

error—has been investigated in prior studies emphasizing the 

importance of personalized EEG data interpretation (see 

Figures 4 and 5). 

 

 
 

Figure 4. EDA-model calibration 

 

 
 

Figure 5. HRA-model calibration 

 

4.3 PLOTS-wesad 

 

The code evaluates machine learning models on EEG data 

with a focus on individual subject performance. It utilizes 

cross-validation to compute various evaluation metrics for 

each subject, as recommended in prior studies involving 

subject-dependent EEG emotion recognition [27]. The 

get_cross_val_results function assesses model accuracy, while 

the generate_person_specific_results function trains models 

on data from each subject and saves the outcomes, a method 

consistent with personalized EEG classification strategies [28]. 

It processes multiple datasets, signal types, and model types to 

provide detailed performance evaluations for each subject, 

which is crucial for enhancing model generalization and 

robustness in EEG-based emotion recognition systems [29]. 
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Figure 6 demonstrates high classification accuracy and low 

regression errors with minimal calibration data, indicating 

strong model adaptability, while Figure 7 summarizes subject-

specific model evaluations using cross-validation and 

performance metrics across various signals and models [30]. 

 

 
 

Figure 6. EDA-model calibration 

 

 
 

Figure 7. HRA-model calibration 

 

 

5. CONCLUSION 

 

EEG-based emotion recognition has evolved into a 

multidisciplinary domain that integrates neuroscience, 

psychology, and machine learning to effectively interpret and 

classify emotional states. Progress in signal processing and 

classification methods has greatly enhanced the reliability of 

these systems, with frontal EEG asymmetry emerging as a key 

indicator of emotional responses. This progress has opened up 

new opportunities in areas such as mental health monitoring, 

affective computing, and human-computer interaction. 

In this context, the present study demonstrates the strong 

performance of the XGBoost algorithm for emotion 

classification using EEG signals collected from the MUSE 

wearable device, achieving a high accuracy of 99.1%. The use 

of ensemble learning enables the model to capture complex 

emotional patterns while minimizing overfitting, underscoring 

the potential of artificial intelligence to analyze emotional 

states and support practical applications in healthcare, user 

experience optimization, and intelligent adaptive systems. 

Although the XGBoost model achieves high accuracy on 

the MUSE EEG dataset, future studies should aim to assess its 

applicability to external datasets and real-world environments. 

This includes addressing challenges such as variability 

between individuals, signal interference, and implementation 

in wearable or interactive platforms. Validating the model 

under these diverse conditions will be crucial to ensure its 

reliability and flexibility in practical sentiment analysis 

applications. 

Future research should focus on improving model 

generalization by incorporating diverse datasets and real-

world scenarios. Integrating real-time EEG analysis into 

wearable devices can enhance practical applications, enabling 

adaptive and personalized user experiences. Further 

advancements in AI-driven emotion recognition will pave the 

way for innovative solutions in healthcare, gaming, education, 

and interactive systems, fostering a more intuitive and 

emotionally responsive technology landscape. 
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APPENDIX 

 

Appendix-1 

Sample Dataset 

ID TP9 AF7 AF8 TP10 LABEL 

0 24.83 -6.91 39.04 93.34 Focused 

1 -13.22 62.04 7.17 -8.64 Relaxed 

2 29.62 -51.87 -6.98 -37.47 Stressed 

3 -71.27 -65.28 -16.23 54.67 Focused 

4 61.17 4.63 20.23 19.29 Relaxed 

5 -18.43 -37.28 9.92 67.65 Stressed 

6 -21.2 -71.28 -16.75 42.88 Relaxed 

7 -6.93 35.87 55.78 -11.7 Relaxed 

8 8.71 -25.9 22.93 0.25 Focused 

9 39.49 -13.92 62.61 -34.46 Relaxed 

10 -70.08 15.86 -34.32 52.79 Stressed 

11 3.47 -35.62 24.89 10.11 Relaxed 

12 -19.45 66.24 -16.47 23.97 Stressed 

13 11.71 3.39 17.29 -62.73 Focused 
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14 -24.49 -5.25 2.29 -7.64 Relaxed 

15 8.53 -21.9 -31 -57.71 Focused 

16 -56.08 33.17 -19.15 20.44 Relaxed 

17 9.1 -30.15 -5.8 13.96 Focused 

18 31.5 19.36 29.07 12.56 Focused 

19 -29.45 15.28 -45.9 3.32 Relaxed 

20 -15.08 27.19 43.74 46.16 Stressed 

21 7.91 -20.6 23.12 4.42 Focused 

22 -58.7 -41.04 17.32 32.61 Stressed 

23 17.58 27.01 34.25 42.55 Relaxed 

24 34.46 10.1 21.01 -3.18 Relaxed 

25 -16.37 -40.04 -47.23 29.61 Focused 

26 -27.46 -19.67 -60.48 28.37 Focused 

27 -10.89 -10.65 -22.88 6.79 Stressed 

28 0.95 19.84 47.59 5.01 Relaxed 

29 15.78 30.05 -0.31 -15.71 Focused 

30 -7.46 2.71 -36.86 3.76 Focused 

31 47.57 0.5 -0.34 -3.97 Focused 

32 -43.47 1.84 2.28 -30.07 Relaxed 

33 30.44 28.7 7.99 3.74 Stressed 

34 8.95 -14.67 16.86 4.87 Focused 

35 4.13 32.59 17.63 21.03 Relaxed 

36 -1.31 -37.32 8.9 -0.46 Stressed 

37 34.9 -2.82 -1.53 -12.01 Focused 

38 26.12 19.32 -3.03 -7.47 Relaxed 

39 -19.06 2.55 -25.87 -6.82 Relaxed 

40 -7.11 24.71 -30.18 10.45 Focused 

41 7.92 9.67 11.91 -10.37 Stressed 

42 13.23 17.48 4.53 -4.46 Relaxed 

43 -36.24 2.32 2.23 3.68 Relaxed 

44 -15.32 -11.02 3.27 -2.41 Focused 

45 -19.53 12.18 -19.8 11.42 Stressed 

46 -32.77 -8.73 14.5 6.27 Relaxed 

47 21.37 24.91 18.17 10.18 Focused 

48 23.49 18.27 -5.08 3.2 Stressed 

49 30.65 -5.62 16.58 -5.34 Relaxed 

50 -15.91 12.62 -2.97 7.1 Relaxed 

51 18.34 -22.93 -23.01 -5.08 Focused 

52 -3.82 -2.09 5.81 2.18 Stressed 

53 15.1 13.88 8.06 8.01 Relaxed 

54 2.74 -8.79 -17.51 4.65 Focused 

55 19.43 16.32 15.03 -2.84 Relaxed 

56 -10.39 2.49 2.15 5.49 Focused 

57 13.28 -15.29 -1.13 3.87 Focused 

58 -22.03 12.19 -17.44 2.1 Stressed 

59 14.62 8.9 -12.17 6.12 Relaxed 

60 -2.36 -0.84 7.65 2.77 Relaxed 

61 1.28 5.26 -1.09 -0.79 Relaxed 

62 -6.77 -5.34 13.07 2.44 Stressed 

63 4.91 9.04 7.51 -0.22 Relaxed 

64 10.41 10.84 -4.99 2.49 Focused 

65 -8.73 3.29 6.29 -0.49 Relaxed 

66 7.39 -1.17 -0.65 -0.78 Focused 

67 2.12 4.63 1.23 3.59 Stressed 

68 -6.31 2.83 -4.37 0.62 Relaxed 

69 3.82 -0.22 4.73 -1.07 Relaxed 

70 0.46 3.95 3.77 -0.55 Stressed 

71 -0.32 -2.91 1.18 2.26 Focused 

72 6.7 -1.83 -0.41 -1.26 Focused 

73 -3.74 3.68 2.19 0.77 Relaxed 

74 4.14 -2.56 -0.86 -0.53 Focused 

75 -2.39 2.48 0.86 1.79 Relaxed 

76 1.41 -2 -0.99 -0.28 Relaxed 

77 -0.53 3.41 2.11 0.19 Focused 

78 5.46 -3.79 1.63 -0.32 Focused 

79 -0.81 0.75 0.62 -1.04 Relaxed 

80 1.39 1.28 -1.27 1.27 Relaxed 

81 -1.32 -2.91 3.68 2.79 Focused 

82 2.57 3.17 2.69 -0.67 Relaxed 

83 -2.84 0.19 1.37 1.46 Stressed 

84 3.96 1.24 -2.67 -0.79 Relaxed 

85 -2.45 2.51 3.28 1.79 Relaxed 

86 1.67 -1.9 0.73 -1.28 Focused 

87 -0.53 3.05 2.87 0.24 Relaxed 

88 4.18 -1.27 -0.84 -0.46 Relaxed 

89 -1.22 3.12 1.9 1.29 Focused 

90 0.57 -1.76 -0.61 -0.37 Focused 

91 3.29 2.24 -1.43 1.1 Relaxed 

92 -0.44 -0.74 3.42 1.64 Relaxed 

93 2.94 -2.13 1.31 -0.88 Focused 

94 -2.51 2.73 2.51 1.37 Relaxed 

95 3.62 0.91 -1.9 -0.92 Relaxed 

96 -1.78 2.91 3.19 1.7 Focused 

97 4.49 -2.29 0.41 -0.84 Focused 

98 -0.24 2.41 2.09 0.72 Relaxed 

99 1.8 0.94 -1.76 1.07 Relaxed 

 

Algorithm: XG Boost(eXtreme Gradient Boosting) 

Step 1: Initialize a simple model 

Start with an initial prediction for all samples. 

For classification, it could be uniform probabilities. 

For example, 3 classes (Relaxed, Focused, Stressed), initial 

prediction: 

 

y^i
(0)=1/3 for each class 

 

Step 2: Calculate the Loss Function 

We want to minimize a loss. 

For classification, typically Log Loss (also called cross-

entropy): 

 

Loss=-∑ ∑ 𝐲𝐢𝐤𝒏
𝑲=𝟏 𝐥𝐨𝐠(

𝒏

𝒊=𝟏
y^ik) 
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where, 

 n = number of samples 

 K = number of classes 

 yik= 1 if sample i belongs to class k, else 0 

 y^ik = predicted probability of sample i belonging to class k 

 

Step 3: Calculate Gradient and Hessian 

To improve the model, we calculate: 

• The gradient (first derivative of loss) 

• The hessian (second derivative of loss) 

If ℓ is the loss function: 

⚫ Gradient gi=∂ℓ(y^i, yi)/∂y^i 

⚫ Hessian hi=∂2ℓ(y^i, yi)∂y^i
2 

Step 4: Build a Small Decision Tree 

Using gi and hi XGBoost builds a small tree that predicts 

where the errors are. 

At each split (e.g., splitting on TP9 > 320), XGBoost chooses 

the best split that gives the highest gain. 

Gain formula: 

Gain=1/2[((GL)2/(HL+λ))+ ((GR)2/(HR+λ))−((GL+GR)2/ 

(HL+HR+λ))]−γ 

where, 

GL, HL=sum of gradients and hessians for left node 

GR, HR=sum of gradients and hessians for right node 

λ=Regularization term 

γ=cost for adding a leaf node( to control complexity) 

Pick the split that maximizes the Gain. 

Step 5: Update the Predictions 

Once the new tree is built, the model updates its predictions: 

 

y^i(t)=y^i
(t−1)+η⋅ft(xi) 

where, 

η=learning rate (a small number, like 0.1) 

ft(xi) = prediction from the new tree 

Step 6: Repeat 

• Calculate new gradients 

• Build next tree 

• Update predictions 

Repeat for N trees (like 100–1000) or until the loss stops 

improving 

 

Appendix-2 

 

Working Model: Step-by-Step 

Step1: 

Using XGBoost with one tree (n_estimators=1), class 

probabilities were initially assigned as: 

    Focused: 0.3414 

    Relaxed: 0.3293 

    Stressed: 0.3293 

Step2: 

For any sample iii, the true class has yik=1, so: 

log(y^ik) =log(1/3)≈−1.0986 

 

LogLoss=-1/n∑ log (
1

3
)

𝑛

𝑖=1
=-log(1/3) =log(3)=1.0986 

 

Step3: 

Given initial predictions: 

    y^i,Focused=0.3414 

    y^i,Relaxed=0.3293 

    y^i,Stressed=0.3293y^ 

 

Case Study i:  

Sample 0: Label = Relaxed 

y=[0,1,0] 

Gradients gik= y^ik- yik 

 

    Focused: 0.3414−0=0.3414 

    Relaxed: 0.3293−1=−0.6707 

Stressed: 0.3293−0=0.3293 

 

Hessians hik= y^ik (1- y^ik) 

 

    Focused: 0.3414⋅(1−0.3414)=0.2247 

    Relaxed: 0.3293⋅(1−0.3293)=0.2207 

    Stressed: 0.3293⋅(1−0.3293)= 0.2207 

 

Case Study ii:  

Sample 1: Label = Stressed 

    y=[0,0,1] 

Gradients: 

    Focused: 0.3414−0=0.34140.3414−0=0.3414 

    Relaxed: 0.3293−0=0.32930.3293−0=0.3293 

    Stressed: 0.3293−1=−0.67070.3293−1=−0.6707 

Hessians: 

    Same as above (only depend on predicted prob): 

        Focused: 0.2247 

        Relaxed: 0.2207 

        Stressed: 0.2207 

 

Case Study iii:  

Sample 2: Label = Focused 

    y=[1,0,0]y=[1,0,0] 

Gradients: 

    Focused: 0.3414−1=−0.65860.3414−1=−0.6586 

    Relaxed: 0.3293−0=0.32930.3293−0=0.3293 

    Stressed: 0.3293−0=0.32930.3293−0=0.3293 

Hessians: 

        Focused: 0.2247 

        Relaxed: 0.2207 

        Stressed: 0.2207 

Summary about case studies i,ii,iii 

 

Sample Class Gradient Hessian 

0 Focused 0.3414 0.2247 

0 Relaxed -0.6707 0.2207 

0 Stressed 0.3293 0.2207 

1 Focused 0.3414 0.2247 

1 Relaxed 0.3293 0.2207 

1 Stressed -0.6707 0.2207 

2 Focused -0.6586 0.2247 

2 Relaxed 0.3293 0.2207 

2 Stressed 0.3293 0.2207 

 

Step4:  

 

Split at Feature0 ≤ 0.55 

    Left Node (samples 0,1): 

        GL=0.3414+0.3414=0.6828 

        HL=0.2247+0.2247=0.4494 

    Right Node (samples 2,3): 

        GR=−0.6586+(−0.6586)=−1.3172 

        HR=0.2247+0.2247=0.4494 
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 Parent Node: 

        G=−0.6344, H=0.8988 

       Assume λ=1, γ=0 

 

Compute Gain: 

 

Gain=1/2[((GL)2/(HL+λ))+ ((GR)2/(HR+λ))−((GL+GR)2/ 

(HL+HR+λ))]−γ 

     =1/2[((0.6828)2/(0.4494+1))+ ((-1.3172)2/(0.4494+1)−((-

0.6344)2/ (0.8988+1))]−0 

      = 0.6533 

 

Leaf Value Calculation: 

⚫ Left Leaf (samples 0, 1): 

wL=− (0.6828/0.4494+1 ≈−0.471  

⚫ Right Leaf (samples 2, 3): 

wR=− (−1.31720/.4494+1≈+0.910 

 

Step5: 

Assume: Learning rate η=0.1 

y^i(t)=y^i
(t−1)+η⋅ft(xi) 

Current prediction for class Focused = −1.0986  

Tree output (leaf value) for sample 0, class Focused=0.4 

 y^Stressed
(1)=−1.0986+0.1×0.4=−1.0986+0.04=−1.0586  

 

Step6: Repeat for N trees (like 100–1000) or until the loss 

stops improving 

 

 

 

Appendix-3 

Summary of Code Implementation Details 

 

Category Details Mentioned / Inferred 

Hyper 

parameters 

- Not explicitly stated in the manuscript. 

- Typically used: 

•LSTM: hidden units, epochs, learning 

rate 

• Random Forest: number of trees, max 

depth 

• Decision Tree: splitting criterion, max 

depth 

Feature 

Engineering 

- TF-IDF 

- Bag of Words (BoW) 

- Word2Vec 

- POS tagging 

- Semantic role labelling 

NoiseRemoval 

Techniques 

- Lowercasing 

- Removing stop words, special 

characters, punctuation, numbers 

- Removing URLs and email addresses 

Machine 

Learning 

Models 

- Naive Bayes 

- Logistic Regression 

- Random Forest 

- Decision Tree 

- LSTM 

- Transformer models 

Pre-

processing 

Steps 

- Tokenization 

- Stemming / Lemmatization 

- Vectorization using TF-IDF, BoW, 

Word2Vec 
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