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This paper provides a second evaluation, with the intention of formulating an improved 

model that is capable of predicting the mean coefficients of heat transfer during condensation 

inside tubes with any orientation. This model has been developed through the application of 

transportable borders for the propagation of heat inside an elementary volume, up to the 

macro system considered. The theoretical model obtained leads to two basic dimensionless 

groups, which establish the study intervals that should be considered in the correlation of 

experimental quantities available, for the development of future experimental models. 
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1. INTRODUCTION

Condensation is a mode of heat transfer involving saturated 

steam. Condensation occurs when the vapor finds a surface at 

a temperature below the saturation temperature, then when this 

event occurs; the agent undergoes a phase change, [1-5]. 

At present, several works are available, in which a detailed 

study of the correlation of several known models has been 

developed, as well as its index of uncertainty in the prediction 

of the average heat transfer coefficients. However, on the 

contrary, there are still divergences regarding the structure and 

way of grouping the variables, which should predict the 

condensation models, for this reason it is that about two dozen 

models are known, as well as the variables and asymmetrical 

groups that compose them [6-8]. 

Currently, Chato's expression is the one used to obtain the 

coefficient of heat transfer by condensation inside pipes. This 

method was developed for horizontal pipes, and in their 

correlation, several refrigerants and water were used. The 

Chato equation is valid for Reynolds numbers below 35000. 

Chato's model assumes that vapor has negligible velocity, so 

it does not provide heat to the stratified liquid at the bottom of 

the tube, and offers no resistance to it. 

The knowledge of this problem motivates the authors to 

develop an analysis methodology that considers the effect of 

steam drag and that also includes the effect of sub-cooling of 

the liquid, and that for others is as accurate as the methods 

currently used, [9- 12]. 

To solve this problem and its subsequent application to the 

condensation of vapors inside a tube with any geometric 

orientation, the authors combined the solution of the 

differential equation of temperature distribution with the 

differential relationship of the velocity profile. Based on the 

above, the authors define as the objective of this work to make 

a second attempt to present a model that allows improving the 

correlation indexes obtained at present with the valid 

calculation procedures. This model has been obtained through 

the application of problems with mobile borders, for the 

propagation of heat in the confined space in the boundary layer 

inside the tubes, with any geometrical orientation. 

2. MATHEMATICAL CONSIDERATIONS

2.1 Eigenfunction expansions on boundary layer 

The elliptical operators are the elements that provide the 

closest natural analogy to the one-dimensional linear 

differential operators, which are shown in details in the works 

[2-4]. 

The operator 𝐿 = −∇2 is formally self-adjoint with respect

to the inner product, then: 

〈𝜙, 𝜒〉 = ∬ 𝜙∗𝜒𝑑𝑥𝑑𝑦 (1) 

This property given in Equation (1) follows from Green’s 

identity 

∬ {𝜙∗(−∇2x) − (−∇2ϕ)∗𝜒}𝑑𝑥𝑑𝑦 =
Ω

 ∫ {𝜙∗(−∇x) −
∂Ω

(−∇ϕ)∗𝜒}n𝑑𝑠 (2) 

In Equation (2) ∂Ω is the boundary of the region Ω and n is 

the outward normal on the boundary.  

By means of the method of separation of variables, it is 

possible to solve problems of eigenvalues, which include the 

operator of Laplace, for example, the problem of Dirichlet's 

eigenvalues requires that a group of eigenfunctions be 

determined and also that the operator's eigenvalues be defined. 

𝐿 = −∇2, D(L) = {𝜙 ∈ 𝐿2[Ω]: 𝜙 = 0, on ∂Ω} (3) 
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Suppose Ω is the tube 0 ≤ 𝑙 ≤ 𝑙𝑥  , 0 ≤ 𝑟 ≤ 𝑟𝑥 . the 

normalized eigenfunctions are: 

 

𝜙𝑛,𝑚(𝑥) = √
4

𝑙𝑥𝑟𝑥
sin (

𝑛𝜋𝑙

𝑙𝑥
) sin (

𝑚𝜋𝑟

𝑟𝑥
)       (4) 

 

with eigenvalues 

 

𝜆𝑛,𝑚(𝑥) = (
𝑛𝜋

𝑙𝑥
)

2

+ (
𝑚𝜋

𝑟𝑥
)

2

  (5) 

 

The eigenfunctions are orthonormal 

 

∫ 𝜙𝑛,𝑚 𝜙𝑛′,𝑚′𝑑𝑥𝑑𝑦 = 𝛿𝑛𝑛′𝛿𝑚𝑚′          (6) 

 

and complete. Thus, any function in 𝐿2[Ω] can be expanded as 

 

𝑓(𝑥, 𝑦) = ∑ 𝐴𝑛𝑚𝜙𝑛,𝑚(𝑥, 𝑦)∞
𝑚,𝑛=1        (7) 

 

where 

 

𝐴𝑛𝑚 = ∬ 𝜙𝑛,𝑚(𝑥, 𝑦)𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦       (8) 

 

As long as the Laplace operator can be isolated, it is possible 

to define a compact set in the form of a product of its own 

functions, given in the coordinate system  𝜉𝑖  such that 

theboundary becomes  𝜉𝑖 = 𝑐𝑜𝑛𝑠𝑡 . The compactness of the 

space in several dimensions is guaranteed by the integrity of 

the functions of each one-dimensional differential operator 

described by its own functions. 

Conversely, for other coordinates systems, the own 

functions when being separated are not functions of 

elementary character, reason why the Laplacian is composed 

then by a set of own functions of Dirichlet, which will be valid 

in any region of integration. 

 

2.2 Applications of the Green functional 

 
Once we known the eigenfunctions φn  and eigenvales λn 

for −∇2 in a region Ω we can write down the Green function 

as 

 

𝑔(𝑟, 𝑟′) = ∑
1

𝜆𝑛
𝜑𝑛(𝑟)𝜑𝑛

∗ (𝑟′)𝑛   (9) 

 
The Green function for the Laplacian in the entire ℝ𝑛 is 

givenby the sum over eigenfunctions 

 

𝑔(𝑟, 𝑟′) = ∫
𝑑𝑛𝑘

(2𝜋)𝑛

𝑒𝑖𝑘∙(𝑟−𝑟′)

𝑘2           (10) 

 

Thus  

 

−∇r
2𝑔(𝑟, 𝑟′) = ∫

𝑑𝑛𝑘

(2𝜋)𝑛 𝑒𝑖𝑘∙(𝑟−𝑟′) = 𝛿𝑛 ∙ (𝑟 − 𝑟′) (11) 

 
We can evaluate the integral given in Equation (11) or any 

𝑛 by using Schwinger’s trick to turn the integrand into a 

Gaussian (see Figure 1): 

 

𝑔(𝑟, 𝑟′) = ∫ 𝑑𝑠
∞

0

∫
𝑑𝑛𝑘

(2𝜋)𝑛
𝑒𝑖𝑘∙(𝑟−𝑟′)𝑒−𝑠𝑘2

 

               = ∫ 𝑑𝑠 (√
𝜋

𝑠
)

𝑛
1

(2𝜋)𝑛
𝑒−

1
4𝑠

𝑘∙|𝑟−𝑟′|
2∞

0

 

         =
1

2𝑛𝜋0.5𝑛
∫ 𝑑𝑡 𝑡0.5𝑛−2𝑒𝑡∙|𝑟−𝑟′|

2
4⁄

∞

0

 

               =
1

2𝑛𝜋0.5𝑛
Γ (

𝑛

2
− 1) (

|𝑟 − 𝑟′|2

4
)

1−0.5𝑛

 

    =
1

(𝑛−2)𝑆𝑛−1
(

1

|𝑟−𝑟′|
)

𝑛−2

           (12) 

 

In Eq. (12), the term Γ(x)is Euler’s gamma function: 

 

Γ(𝑥) = ∫ 𝑑𝑡 𝑡𝑥−1𝑒𝑡∞

0
         (13) 

 

And 

 

Sn−1 =
2πn 2⁄

Γ(n 2⁄ )
      (14) 

 

Eq. (14) is the surface area of the n-dimensional unit wall. 

For three dimensions, the equation (12) is transformed to: 

 

𝑔(𝑟, 𝑟′) =
1

4𝜋|𝑟−𝑟′|
    ;     𝑛 = 3  (15) 

 

When studying the phenomena in two dimensions, it is 

noted that the Fourier integral turns out to be divergent for 

reduced values of thermal conductivity 𝑘. This divergence is 

possible to control if the dimensionless regularization 

techniques are applied. For this purpose, it is assumed that the 

number of samples n turns out to be a continuous variable, 

therefore it is possible to establish that: 

 

Γ(𝑥) =
1

𝑥
Γ(𝑥 + 1)          (16) 

 

Together with 

 

𝑎𝑥 = 𝑒𝑎 ln 𝑥 = 1 + 𝑎 ln 𝑥 + ⋯  (17) 

 

To examine the behavior of 𝑔(𝑟, 𝑟′) near 𝑛 = 2: 
 

𝑔(𝑟, 𝑟′) = 
1

4𝜋

Γ(n 2⁄ )

(n 2 − 1⁄ )
(1 − (n 2 − 1⁄ ) ln(π|r − r′|2) + O[(n − 2)2]) 

=
1

4𝜋
(

1

n 2−1⁄
− 2 ln|r − r′| − ln π − γ + ⋯) (18) 

 

 
 

Figure 1. Interior potential development of the Green 

functional 

 

In Eq. (18) the term γ = −Γ′(1) = 0.5772  is the Euler-

Mascheroni constant.  

The pole 1 (n 2 − 1⁄ )⁄  blast up at 𝑛 = 2, it is independent 

of position, however, this term can be incorporated and 

simplified, the − ln 𝜋 − 𝛾  into an undetermined additive 

constant. Then, the limit 𝑛 → 2 can be taken and we find: 
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𝑔(𝑟, 𝑟′) =
1

2𝜋
ln|r − r′| + const. ,      n = 2  (19) 

 

The inclusion of a constant value in Eq. (19) does not 

influence on the Green- function property, so we can choose 

any convenient value for it. Although this procedure allows to 

reduce the uncertainty index of the coefficient of thermal 

conductivity, press in the Fourier integral, in the measure that 

the value of the thermal conductivity is increased, a problem 

of convergence of the function is generated, however, the 

Green function in ℝ3  allows us to solve for 𝜙(𝑟) in the 

equation 

 

−∇2𝜑 = 𝑞(𝑟)        (20) 

 

when 𝑛 = 1 the problem is reduced to the study of a volume 

of elementary control of a section of the tube. 

Any section is taken along the tube, to establish the control 

volume, (see Figure 1), considering in a first approximation 

attempt that the flow has one-dimensional sharing, which 

simplifies the study, since then the axial components they are 

a priority, while the radial elements pass to a secondary role, 

so they can be neglected. 

In the elementary section considered for the study (see 

Figure 2), the process is assumed in steady state, then, the 

input is then defined by the PB segment, while the AQ segment 

becomes the output zone of the heat flow. For this reason, the 

heat flux, its trajectory is known, but the arbitrary function that 

is capable of describing it is unknown, but it can be described 

in an approximate way, which can be expressed as: 

 

𝑥 = 𝑋1(𝑡) for  𝑃𝐵 

𝑥 = 𝑋2(𝑡) for  𝐴𝑄                               (21) 

 

By applying the principle of maximum value, it is possible 

to establish that in the problem studied there is one and only 

one solution, which turns out to be continuous and maximum, 

then the Green’s functional differential can write as: 

 

Ξ(𝑇) = −𝑎2 𝜕2𝑇

𝜕𝑥2 +
𝜕𝑇

𝜕𝑡
                              (22) 

  

 
 

Figure 2. Model problem and elementary volumes employed 

  

The selected elementary section PAQB can be divided into 

four linear sections, called PB, AQ, BQ and AP. For any of 

these linear sections, the solution of the differential equation 

(12) and its combination with the integral criterion of Green, 

allows obtaining an integral complex, which allows solving 

the problem on the studied boundary at any point inside and 

outside the volume of control, [10-11]: 

 

∫ 𝜑𝜓𝑑𝑥

𝑃𝐵

− ∫ 𝜑𝜓𝑑𝑥

𝐴𝑄

+ ∫ [𝜑𝜓𝑑𝑥

𝐵𝑄

 

+𝑎2 (𝜓
𝜕𝜑

𝜕𝑥
− 𝜑

𝜕𝜓

𝜕𝑥
) 𝑑𝑡] 

− ∫ [𝜑𝜓𝑑𝑥 + 𝑎2 (𝜓
𝜕𝜑

𝜕𝑥
− 𝜑

𝜕𝜓

𝜕𝑥
) 𝑑𝑡] = 0

𝐴𝑃
 (23) 

 

In Eq. (23), the term ( )tx, is the heat transfer solution for 

the problem. 

 

2.3 Applications of the finite element procedures to the 

problems solution 

 

When the Green ś Equation is equal to zero, then the source 

function 𝜓 = 𝐺0(𝑥, 𝑡, 𝜉, 𝜏) is obtained. This equation in the 

infinite line is: 

 

𝜓 = 𝐺0(𝑥, 𝑡, 𝜉, 𝑡) =
1

2√𝜋𝑎2(𝑡−𝜏)2
𝑒

−
(𝑥−𝜉)2

4𝑎2(𝑡−𝜏)             (24) 

 

Assuming that the solution to the heat transfer problem 

inside the selected elementary volume is described by 

𝜑(𝑥, 𝑡 + ℎ), where ℎ > 0, then it is possible to formulate the 

solution of the heat transfer problem 𝜑(𝑥, 𝑡)  Substituting 𝑥 −
ℎ = 𝜉   and 𝑡 = 𝜏 + ℎ, the Tijonov’s infinite line (Equation 

(24)) is transformed to: 

 

𝜓 = 𝐺0(𝑥, 𝑡) =
1

2√𝑥𝑎2ℎ2
𝑒

−
(2𝑥−ℎ)

4𝑎2ℎ                     (25) 

  

The solution of the desired problem can be generated from 

the simplification given previously for the elementary section 

PABQ, applying for that purpose the criterion of the minimum 

energy principle, finding for each integral section its 

corresponding minimum, which is possible when applying the 

following substitutions: 

 

𝜑(𝑥, 𝑡)
1

2√𝜋𝑎2ℎ2
𝑒

−
(2𝑥−ℎ)2

4𝑎2ℎ = �̅�    (26)  

 

or: 

 

1

2√𝜋𝑎2ℎ2
𝑒

−
(2𝑥−ℎ)2

4𝑎2ℎ
𝜕𝜑(𝑥,𝑡)

𝜕𝑥
− 𝜑(𝑥, 𝑡)

𝜕(
1

2√𝜋𝑎2ℎ2
𝑒

−
(2𝑥−ℎ)2

4𝑎2ℎ )

𝜕𝑥
=

𝜔 (27) 

 

that proves to be equivalent: 

 

�̅�
𝜕𝜑

𝜕𝑥
− 𝜑(𝑥, 𝑡)

𝜕�̅�

𝜕𝑥
= 𝜔                            (28) 

 

Substituting Eq. (27) and Eq. (28), in Eq. (23): 

 

∫ �̅�𝑑𝑥
𝑃𝐵

− ∫ �̅�𝑑𝑥
𝐴𝑄

+

∫ [
𝜔𝑑𝑥

+𝑎2 (𝜔
𝜕𝜑(𝑥,𝑡)

𝜕𝑥
𝐵𝑄

− 𝜑(𝑥, 𝑡)
𝜕𝜔

𝜕𝑥
) 𝑑𝑡] − ∫ [𝜔𝑑𝑥 +

𝐴𝑃

𝑎2 (𝜔
𝜕𝜑(𝑥,𝑡)

𝜕𝑥
−𝜑(𝑥, 𝑡)

𝜕𝜔

𝜕𝑥
) 𝑑𝑡] = 0           (29) 

 

By using finite element techniques, it is possible to reduce 

equation (30) to a control volume composed of linear finite 

elements. A triangular finite element composed of three nodes 

is selected (one-dimensional triangular element). The one-

dimensional triangular element has a node at the center and the 
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two remaining nodes are located at both ends of the finite 

element [3], see Figure 3. 

 

 
 

Figure 3. Representation of a quadratic one-dimensional 

element 

 

The form functions for this type of elements are: 

 

𝑁1 = −
1

2
𝜉(1 − 𝜉);    𝑁2 = (1 + 𝜉)(1 + 𝜉); 

𝑁3 =
1

2
𝜉(1 + 𝜉)                                   (30) 

 

The approximate procedures for the solutions of the 

problems is obtained between the analysis of each individual 

segment in the given control volume (see figure 2), combining 

the Equations (30) and (29). 

 

Segment PB 

Entry 

(−
1

2
𝑥 + 𝑥2) 𝑉𝑋 = 𝑎 (−

1

2
𝑥 + 𝑥2)

2

+ 3𝜇 (
𝜕𝑉𝑋

𝜕𝑥
)

2

     (31) 

 

Intermediate 

(1 − 2𝑥 + 𝑥2)𝑉𝑥 = 𝑎(1 − 2𝑥 + 𝑥2)2 + 3𝜇 (
𝜕𝑉𝑋

𝜕𝑥
)

2

    (32) 

 

Exit   

(
1

2
𝑥 + 𝑥2) 𝑉𝑋 = 𝑎 (

1

2
𝑥 + 𝑥2)

2

+ 3𝜇 (
𝜕𝑉𝑋

𝜕𝑥
)

2

 (33) 

 

Segment AQ 

Entry 

− (−
1

2
𝑥 + 𝑥2) 𝑉𝑋 = −𝑎 (−

1

2
𝑥 + 𝑥2)

2
+ −3𝜇 (

𝜕𝑉𝑋

𝜕𝑥
)

2
 (34) 

 

Intermediate 

−(1 + 2𝑥 + 𝑥2)𝑉𝑥 = −𝑎(1 + 2𝑥 + 𝑥2)2 − 3𝜇 (
𝜕𝑉𝑋

𝜕𝑥
)

2
  (35) 

 

Exit 

− (
1

2
𝑥 + 𝑥2) 𝑉𝑋 = −𝑎 (

1

2
𝑥 + 𝑥2)

2

− 3𝜇 (
𝜕𝑉𝑋

𝜕𝑥
)

2

    (36) 

 

The simultaneous solution of the Equation (31) to (36) 

allows obtaining than the final solution is dependent of one 

dimensionless group, known as dimensional velocity (1/𝐽𝑔) 

[13] 

 

𝐽𝑔 =
𝑥𝐺

√𝑔𝑑𝜌𝑉(𝜌𝐿−𝜌𝑉)
                               (37) 

 

For inclined and vertical tubes, the use of the criterion of 

weak solutions allows to obtain equality of results with respect 

to that obtained in Eq. (37), [14-16]. 

 

 

 

3. EXPERIMENTAL VALIDATION 

 

3.1 Experimental validation of the new model 

 

The dimensionless Shah parameter is defined by Equation 

(53) [17]: 

 

𝑍 = (
1−𝑥

𝑥
)

0.8

𝑃𝑟𝐿
0.4                             (38) 

 

The combination of the Equations (37) and (38) provide the 

applicability range for vertical, inclined and horizontal tube. 

 

For vertical and inclined tubes 

 

Zone 1 𝐽𝑔 ≥
1

2.37𝑍+0.728
                      (39) 

 

Zone 2 0.927𝑒(−0.0868𝑍−1.165) < 𝐽𝑔 <
1

2.37𝑍+0.728
 (40) 

 

Zone 3 𝐽𝑔 ≤ 0.927𝑒(−0.0868𝑍−1.165)          (41) 

 

For horizontal pipes 

Zone 1 𝐽𝑔 ≤ 0.979(𝑍 + 0.262)−0.618           (42) 

 

Zone 2 𝐽𝑔 > 0.979(𝑍 + 0.262)−0.618 (43) 

 

An extended summary of the validity range in which the 

developed model provides an adequate fit is given in Table 1, 

[15]. 

 

3.2 Elements to consider for the application of the 

developed model 

 

In investigations carried out, the authors [15] show that 

Eqns. (39) to (43) can be used in the determination of a model 

for the calculation of the average coefficient of heat transfer 

by condensation, valid for any spatial configuration of the tube. 

This procedure allowing also reducing the uncertainty index 

up to 13 % for vertical and inclined tubes, while for horizontal 

tubes the average error is reduced up to 11.8 %. 

 

Table 1. Validity range for the proposal model 

 
Parameter Range 

Fluids 

R-134A, R-142B, R-404A, R-410A, R-502, 

R-507, Water, isobutene, propylene, 

propane, benzene, ethanol, methanol, 

toluene, R-22, R32, R-113, R-123, R-125 

and dowtherm 209. 

Inner diameter of the 

tube (mm) 
2 to 50 

Orientation of the 

tube 

Inclined downwards, horizontal and vertical 

downwards 

Reduced pressure, 𝑝𝑅 0.0008 to 0.91 

𝐺 (kg/m2s) 4 to 850 

𝑃𝑟𝐿 1 to 18 

𝑅𝑒𝐿  68 to 84832 

𝑅𝑒𝑉 8210 to 523980 

𝑥 (steam quality) 0.01 to 0.99 

𝑍 0.005 to 20 

𝐽𝑔 0.6 to 20 

 

Table 2 offers a comparison of the index of correlation 

obtained when compare the experimental available data with 

452



 

the obtained results by means of the uses of a group of existing 

models in literature [15, 21]. When verifying the given results, 

it could be verified that the proposed model evidences better 

values of adjustment, with an average error of the 15 %. 

 

Table 2. Comparison of the some models with experimental 

values 

 

Model 

% average 

deviation in 

horizontal 

tubes 

% average 

deviation in 

vertical and 

inclined tubes 

Bohdal [11] 14.9 – 

Dobson-Chato [9] 14.3 – 

Akers et al. [17] 18.6 – 

Carpenter-Colburn [9] 19.9 – 

Shah [7] 13.9 15.7 

Tandon [12] 21.2 – 

Cavallini [10] 14.6 – 

Camaraza et al. [21] 11.8 13.0 

 

For vertical tubes, in the dispensable literature, only have a 

suitable model to predict the heat transfer coefficients, the 

Shah's equation, for this reason, in this paper, only are 

executed comparisons with this model. finding a deviation of 

15.7 %, which is coincident with the 15.8 % showed in the 

original publication of the method [19-23]. 

 

 

4. CONCLUSIONS 

 

The methods required for the mathematical deduction of a 

new model were developed, applying for this purpose the 

criterion of mobile boundaries of Green. The construction of 

the mathematical model was obtained with a process based on 

finite element techniques, determining for this purpose two 

dimensionless groups, obtaining from these a new model that 

allows reducing the uncertainty in the calculation of the 

average transfer coefficient of heat by condensation inside 

pipes. 

The adequacy of the differential criterion of the profile of 

velocities in the interior of tubes and their subsequent 

combination with the differential equation of the temperature 

profile, it is possible to execute it by means of the use of the 

mathematical technologies propitiated by the method of 

mobile borders. This procedure allows including the effect of 

the propagation of heat in a two-dimensional confined space, 

with any spatial orientation.  

The developed model is valid for horizontal, vertical and 

inclined tubes. The developed model was tested with similar 

solutions provided by other authors, and a better correlation 

index was found, with an average error of 11.8 % for 

horizontal tubes and 13 % for inclined and vertical tubes. 
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NOMENCLATURE 

 

𝑎 Thermal diffusivity,  m2∙s-1 

𝐶𝑝 Specific heat, J∙kg-1∙K-1 

𝑑 Equivalent inner tube diameter, m 

𝐺 Mass flux, kg∙m-2∙s-1 

𝑔 Gravitational acceleration, m∙s-2 

ℎ𝑓𝑔 Latent heat of vaporization, J∙kg-1. K-1 

ℎ Single-phase heat transfer coefficient, kg∙m-1∙K-1∙s-1 

ℎ𝑇 Two-phase heat transfer coefficient, kg∙m-2∙s-3∙K-1 

ℎ𝐶  Single-phase heat transfer coefficient, kg∙m-2∙s-3∙K-1 

ℎ𝑚𝑒𝑑  Experimental measured value, kg∙m-2∙s-3∙K-1 

𝐽𝑔 Dimensionless velocity 

𝑘 Fluid thermal conductivity, W∙m-1∙K-1 

𝑘𝐿 Fluid thermal conductivity for single-phase, W∙m-1∙K-1 

𝑃𝑟𝐿  Prandtl number for single-phase 

𝑝𝑅  Reduced pressure 

𝑅𝑒𝐿  Liquid Reynolds number 

𝑅𝑒𝑉  Vapor Reynolds number 

𝑇 Mean fluid temperature, °C 

∆𝑇 Temperature difference across the condensate film 

𝑇𝑠𝑎𝑡  Saturation temperature, °C 

TP Wall temperature, °C 

𝑉 Velocity profile, m∙s-1 

𝑉𝑀𝑎𝑥 Maximum velocity, m∙s-1 

𝑉𝑥 Velocity component in x axis, m∙s-1 

𝑉𝑦 Velocity component in y axis, m∙s-1 

𝑉𝑧 Velocity component in z axis, m∙s-1 

𝑥 Thermodynamic vapor quality 

𝑍 Dimensionless Shah parameter 

 

Greek symbols 

 

 Thermal expansion coefficient, K-1 

µ Dynamic viscosity, kg∙m-1∙s-1 

𝜃 Tubes inclination respect to horizontal line 

𝜌 Density, kg∙m-3 

𝜉 Number of intervals in function form, Equation (30) 

𝑣 Liquid kinematic viscosity, m2∙s-1 

𝛿 Film thickness of boundary layer, m 

φ Solution of the heat transfer problem, (Equation (26)) 

𝜓 Source function, (Equation (24)) 

𝜏 Temperature in Green’s functional, (Equation (22)) 

𝜔 Substituting term employed in Equation (28)  

 

Subscripts 

 

𝐿 Liquid 

V Vapor 
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