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 A comprehensive theoretical and computational investigation is carried out on nonlinear, 

steady-state, laminar convective boundary layer flows of an incompressible Buongiorno-

type nanofluid from a semi-infinite vertical surface embedded within a non-Darcy porous 

medium. The Darcy-Forchheimer model is deployed for the porous medium. “The research 

investigation fills a major vacuum in the literature by integrating the above-mentioned 

effects with Buongiorno’s nanofluid model.” The versatile second-order accurate implicit 

finite-difference Keller Box technique is used to solve the dimensionless nonlinear BVP 

“An excellent correlation is obtained on validating the present results with the previous 

research results available in the literature and the error analysis is also examined.” “The 

novelty of the present work is the insights into the structure of nanofluids in porous media, 

heat and mass transfer”. It is observed that the velocity profile is enhanced with increment 

in (M) whereas temperature and concentration profiles are suppressed with a larger Darcy 

number, velocity is strongly increased near the surface, whereas temperature, concentration 

is depleted throughout the boundary layer with greater Darcy number. An augmentation in 

the Forchheimer number significantly suppresses the fluid velocity, while concurrently 

enhancing both the thermal and solutal profiles. This current study has practical 

implications in enhancing the design and optimization the cooling systems, electronic 

thermal management, and energy systems. This study makes major advances to the fields 

of thermal sciences and nanofluid technology dynamics. 
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1. INTRODUCTION 

 

Nanofluid (NF) is a combination of nanostructures and a 

fundamental fluid. Nanofluid technology is the most efficient 

heat transmission method. Numerous scientists have 

anticipated that NFs will be able to convey heat more 

efficiently than basic fluids. By suspending nanoparticles 

(NPs) smaller than 100 nm in ethylene glycol, water, and oil, 

nanofluids can be altered. The heat conductivity of these fluids 

containing NPs suggests a substantial role as a route for 

thermal and mass transmission. An elevation in thermal 

conductivity significantly improves a fluid's ability to transmit 

heat. Choi [1] proposed the term "nanofluid" to address new 

heat transfer challenges using nanotechnology. Eastman et al. 

[2] also reviewed substantial research on convective transport 

in NFs. Buongiorno [3] developed this model in 2006, 

considering the impacts of two significant mechanisms 

namely Brownian motion and thermophoresis. These 

mechanisms greatly influence the properties of NFs related to 

heat transmission. The model more accurately depicts patterns 

of NFs in myriad ways. Buongiorno provided a thorough 

synopsis of several studies on heat transmission and thermal 

conductivity in NFs. Utilizing the Buongiorno nanofluid 

(BNF) framework, Ahmad et al. [4] conducted an in-depth 

investigation into the unsteady dynamics of NF thin films 

distributed over a rotating disk, accounting for the influences 

of Lorentz forces and an imposed magnetic field. Important 

discoveries include the lowering of film thickness with 

rotation and unsteadiness, as well as the enhancement of heat 

transfer rates through thermophoresis and Brownian motion. 

According to Khan et al. [5], asymptotic patterns appear for 

the shear-to-strain rate ratio at infinity, while viscoelasticity 

and magnetic fields greatly reduce displacement thicknesses. 

The complex interactions between fluid characteristics and 

outside influences on NF flow dynamics are emphasized by 

these effects. Multiple solutions of non-homogeneous Sisko 

fluid flow over stretching/shrinking sheets were examined by 

Ahmad et al. [6], considering suction/injection effects, 

magnetic fields, and varying thermal conductivity. Reduction 

of skin friction with material characteristics and clear patterns 

in temperature and concentration profiles because of 

relaxation parameters are important discoveries. Uddin et al. 

[7] computed using a Galerkin FEM, the unsteady convection 

flow of ferric oxide-water Buongiorno nanofluids within the 
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annulus formed between a square and a concentric 

hypocycloid. They noted that a significant boost is computed 

in heat transfer with increment in volume fraction whereas the 

converse effect is produced with greater nanoparticle 

diameter. Humane et al. [8] investigated Buongiorno modeled 

Nano liquid of thermal and concentration-driven convective 

phenomena are explored within a magneto-micropolar fluid 

confined to an inclined, porous, and elastically stretching 

medium, highlighting the intricate interplay between heat and 

mass transfer under the influence of magnetic and 

microstructural fluid effects. Numerous engineering 

applications require large thermal transmissions. This has a 

variety of applications, including safer surgery through heat 

treatment, medicinal applications like cancer therapies, and 

solar energy applications like heat exchanger building. For 

practical applications, more effective oils and lubricants can 

be made thanks to NF technology. Thermal and solid-state 

stratification have several real-world uses due to NFs' mass 

and heat transport. 

The Darcy number (Da) is a dimensionless measure that 

describes how fluids pass through porous materials like rock 

or soil. It is called after the French engineer Henry Darcy, who 

was a pioneer in the investigation of fluid dynamics in porous 

media. Defined as proportionate of permeability of porous 

media to characteristic length scale squared. The Darcy model 

[9] is the most well-known example of this type of model and 

is typically applicable to flows with high viscosity or low 

Reynolds numbers. In accordance with this theoretical 

framework, a direct linear correlation exists between the fluid 

velocity and the pressure gradient traversing the porous 

medium, implying proportional resistance to flow within the 

medium's structure. In fluid mechanics, the dimensionless 

Forchheimer number (Fs) is used to describe how important 

viscous forces are with inertial forces in a porous material. In 

1901, a Dutch engineer by the name of P. Forchheimer 

expanded on Darcy's ideas by using it as a foundation. When 

computing the inertial forces in the momentum equation, 

Forchheimer [10] added square of the velocity term, 

modifying Darcy's Law. The Forchheimer number serves as a 

pivotal dimensionless parameter that elucidates the 

comparative influence of inertial forces relative to viscous 

forces-regulated by the fluid's dynamic viscosity—within the 

flow through a porous medium. Muskat [11] incorporated this 

expression into his work; it is now referred to be a 

"Forchheimer term." Later, Pal and Mondal [12] examined 

Darcy-Forchheimer (Da-Fs) model in their research, 

discovering that the NF concentration profile's declaration 

increases the electric field parameter. It is frequently applied 

to flow analysis through porous media, including filter media, 

packed beds, and porous membranes. The porosity of the 

medium is characterized as the ratio of the pore volume to the 

total volume of the medium. While there are innumerable 

naturally existing porous media, some are artificially created 

to meet industrial needs. Stones such as limestone, sandstone, 

fabric sponges, human skin, kidneys, gallbladders with stones, 

etc. are examples of naturally permeable media. One of the 

most diverse areas of contemporary engineering science is 

transport in porous mediums. Hybrid coatings designed for 

offshore platform structures [13] have evolved significantly. 

Over the past century, there has been a consistent advancement 

in the mathematical modelling of fluid dynamics within 

porous media. A thorough analysis is carried out to assess the 

natural thermal conduction in magnetohydrodynamic flow 

within a square enclosure, which undergoes differential 

heating and is filled with a uniform non-Darcian porous 

medium saturated with a HNF (TiO2/Cu–water), Venkatadri et 

al. [14] demonstrated that while a larger Hartmann magnetic 

number and (Fs) significantly reduce movement, they also 

increase the flow of heat to the interface. Ultimately, they 

discovered that a low Hartmann number, low nanoparticle 

volumetric fraction, and high (Da) maximize thermal transfer 

rates utilizing a response surface methodology (RSM) 

technique. Ferdows et al. [15] conducted more research on 

non-Darcy convection by utilizing the MATLAB BVP4C 

function to examine the impact of on the combined gyrotactic 

bioconvection flow emanating from a horizontal cone towards 

a non-Darcian porous surface is examined. 

Chemical engineering polymer spin coating techniques 

allow for the exact deposition of an external coating on a 

rotating topology. The use of this method for creating thin 

polymeric coatings has grown in recent years. Thermal 

conduction frequently occurs in conjunction with spin coating. 

To further modify the coating properties, a porous medium can 

be placed outside of the rotating body (substrate). This has led 

to a few researchers studying the convection of the BL from 

spinning objects in relation to non-Darcian porous materials 

[16]. Wang et al. [17] used a modified version of Buongiorno's 

model to investigate heat, mass transfer of an Ag-H2O nano-

thin film travelling through permeable media. Nasir et al. [18] 

investigated the flow of non-Newtonian BNF over a stretching 

surface within a non-Darcy porous medium, employing the 

Maxwell viscoelastic model and (HAM). Their study 

accounted for non-Fourier heat conduction, non-Fickian 

diffusion, and convective heat transfer effects. They found that 

flow is influenced by rheological, buoyancy, and 

thermophoretic effects, while temperature, thermal BLT, and 

nanoparticle concentration depend on Prandtl number, 

relaxation, diffusion, and Schmidt number. 

The examination of fluid motion induced by the influence 

of a magnetic field is known as magnetohydrodynamics. The 

importance of researching MHD flows stems from their 

frequent occurrence in nature. Applications in metallurgy, 

purification, MHD energy production, and chemical 

manufacturing portray the importance of MHD fluids [19]. A 

novel subset of multifunctional magnetic polymers has 

surfaced in recent times. They have magnetic particles 

incorporated in them that react to outside electromagnetic 

fields. The rheological characteristics of these intricately 

magnetically controlled colloids can be precisely adjusted at 

the nano or micro scale. By combining the properties of 

ordinary polymers with (MHD) or electrically conducting 

liquids, these substances also referred to as electro-conductive 

polymers (ECPs) and magnetoelectric polymers (MEPs) work 

successfully [20]. A magnetic field applied externally can be 

used to tailor the electro-active phases of coating material by 

suspending metallic conducting particles in polymers to meet 

specific requirements. In recent times, a range of advanced and 

complex functional magnetic polymers has been developed for 

various technological applications. Known as electro-

conductive polymers (ECPs), these materials possess unique 

rheological characteristics and magnetohydrodynamic (MHD) 

properties. By including metallic conducting elements into the 

coating melt, which causes the material to undergo electro-

active phases when exposed to an external magnetic field, 

these smart materials can be optimized to function efficiently 

[21]. These materials improve the prevention of corrosion and 

defect sealing purposes. This has led to the development of 

many complicated supplies, such as iron oxide magnetic nano-
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coatings, nickel/aluminum electroconductive foam coatings, 

and thin magnetic films composed of cobalt. Powerful 

magnetic fields were used by Moreira et al. [22] to create thin-

film coatings over sizable spinning regions with uniformly 

smooth exteriors for biomedical applications. Shoaib et al. 

[23] investigated the temperature distribution of nanostructure 

materials in three-dimensional MHD HNF flow via soil. 

Fluid dynamics research has entered a completely new 

realm with the addition of the “dissipative effect”. Many 

researchers have also looked closely at how dissipation affects 

fluid movements. The process by which a fluid accomplishes 

work and subsequently turns into heat is known as viscous 

dissipation. “Viscous dissipation refers to the conversion of 

kinetic energy into thermal energy through frictional forces. It 

plays a significant role in influencing conventional convective 

processes across various systems. A comprehensive 

understanding and control of viscous dissipation are essential 

for enhancing the efficiency of systems utilizing (NFs), 

especially in applications that demand effective heat transfer 

and thermal regulation”. Ramana et al. [24] presented the 

MHD dissipative Newtonian fluid non-Darcy flows past an 

axisymmetric surface with a heat source using the bvp4c 

technique. Reddy and Gaffar [25] have discussed an inclined 

plane's chemically viscous dissipative BNF transport while 

taking thermophoresis effects and Brownian movement into 

account. Shahzad et al. [26] explored the effects of Joule 

heating and viscous dissipation on the unstable 

magnetohydrodynamic (MHD) heat transfer of Jeffrey NF 

over a stretching sheet. Meanwhile, Awais et al. [27] examined 

the influence of bio-convective nanomaterials, considering 

factors such as heat immersion, stratification, and viscous 

dissipation. 

Most fluid motions are depicted naturally in both similar 

and non-similar ways, with highly useful applications in terms 

of various flow topologies. Similar solutions each have a 

unique application sector. The flow of fluid close to the surface 

is another area that has been brought in for technical use. 

Examples include the production of glass fibre, wire drawing, 

paper, melting spinning, and rubber sheet and polymer 

extraction and manufacturing. Nevertheless, because of its 

intricate topological coordinates, this research is not 

appropriately taken into effect. In this context, Sparrow et al. 

[28] applied the non-similar flow characteristics to analyze 

flows dominated by viscous forces in specific regions. In a 

similar vein, Sparrow and Yu [29] investigated the non-similar 

traits of the boundary layer (BL), employing the heat balance 

framework to examine the thermal dynamics within the same 

domain. Non-similar transformations are mathematical 

techniques for analyzing fluid flow problems where flow 

variables like velocity, temperature, or concentration vary 

across the flow field without maintaining a consistent pattern. 

They introduce new variables to capture these variations, 

enabling the study of complex flows with non-uniform 

boundary conditions or geometries. This approach helps 

resolve fluid dynamics issues where a single dimensionless 

form cannot describe the entire flow. The significance of 

Newtonian liquid non-similar flow was first investigated by 

Minkowycz and Sparrow [30], who also came to some 

extremely important conclusions regarding the incorporation 

of stream-wise coordinates in the issue formulation. These 

methods are crucial for accurately modeling and solving real-

world fluid flow scenarios that exhibit non-uniform pattern. 

Non-similar flows are crucial both theoretically and practically 

in heat transmission and BL flow, especially when material 

properties vary. These flows arise when transformations 

cannot fully resolve the dependence of independent variables, 

leading to differences in fundamental flow values along the 

streamwise direction. Appropriate transformations help 

simplify the altered equations, analyzing complex flow fields 

feasible. Some factors, including alterations in the freestream 

speed, differences in the temperatures of the heated wall, the 

consequences of injecting fluid or suction outdoors, surface 

transfer of mass, etc., can result in non-similarity. The 

Oldroyd-B fluid flow over an expanding surface is analysed 

using non-similar forced convection has been researched by 

Razzaq and Farooq [31] and they examined non-similar 

description and simulation of the Casson fluid's Darch-

Forchheimer Brinkman challenge in a medium with pores 

were reported. Cross nanomaterials over a gravitationally 

affected surface were the subject of non-similar mathematical 

and dynamical analyses by Al Salami et al. [32]. A non-similar 

study of forced convection radially magnetised ternary hybrid 

flow NF on a curved stretched surface was examined by Jan et 

al. [33].  

In the present work, motivated by coating applications 

involving magnetic NFs, an analytical model is developed for 

steady-state laminar BL flow of a magnetized BNF from a 

non-isothermal semi-infinite vertical plate to non-Darcy 

porous medium with, Lorentz forces, viscous dissipation, heat 

and mass transfer of NPs is considered. “Previous studies on 

NF flow and heat transfer have largely focused on classical 

fluid models and often neglected the combined influence of 

magnetic dissipation effects, thermophoresis, Brownian 

motion, and porous medium characteristics, particularly in the 

context of non-Darcy flow regimes. Additionally, the BNF 

model which accounts for nanoparticle movement due to 

thermophoresis and Brownian diffusion has rarely been 

applied in settings involving semi-infinite plates, non-Darcy 

porous media, and magneto-hydrodynamic (MHD) effects 

simultaneously. This research fills key gaps by using the 

Keller Box method to analyze non-similar convection flows, 

which are more realistic but less studied than similar flows. 

Using Buongiorno's nanofluid, it incorporates the (Da-Fs) 

model for the porous medium to account for inertial effects in 

high-velocity porous media flows. The primary objective of 

this study is to develop a rigorous mathematical framework for 

investigating the heat and mass transfer characteristics of BNF 

flow influenced by magneto-dissipative effects. The analysis 

is conducted over a semi-infinite vertical plate embedded in a 

non-Darcy porous medium, incorporating the impacts of 

Brownian motion and thermophoresis. This work seeks to 

elucidate the complex interplay between magnetic fields, 

porous medium resistance, and nanoparticle dynamics under 

non-linear flow regimes. The novelties of the present work are 

the simultaneous consideration of substrate (wall) non-

isothermal semi-infinite vertical plate, (Da-Fs) drag, MHD, 

and viscous dissipation also partial differential equations 

which include fully two-dimensional Buongiorno’s magnetic 

nanofluid coating flow. The dimensionless nonlinear multi-

physical boundary value problem (BVP) with related wall and 

free stream boundary conditions is solved using the robust 

second-order accurate KBM. Validation with previous studies 

has been documented in the literature, authentication is 

accomplished, and error analysis is also performed. Velocity, 

temperature, and concentration distributions are computed and 

visualized graphically the “simulations are relevant to further 

deepening understanding of transport characteristics in 

magnetic nano-material manufacturing coating flows to 
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enhance the design and optimization of cooling systems, 

electronic thermal management, and energy systems by 

providing accurate predictions of heat transmission, and fluid 

flow patterns. This research is particularly valuable for 

improving efficiency and performance in applications where 

precise thermal control and advanced fluid dynamics are 

critical and precise forecasts of heat, mass transfer, and fluid 

flow patterns by examining these intricate relationships”. 

A laminar, steady-state, incompressible convection flow of 

NF past a semi-infinite plate in an (x, y) coordinate system is 

studied, as illustrated in Figure 1 semi-infinite vertical plate is 

followed by x-axis going higher, and y-axis going normal to 

the plate. Buoyancy effects are often caused by gradients in a 

dispersed species' thermal region, which drives the flow. The 

flow over the horizontal sheet described by Navier-Stokes 

becomes identical to boundary-layer equations as the 

characteristic value of natural convection, or the Grashof 

number (Gr), is increased indefinitely. Gravitational 

acceleration (g) exerts a downward force. Both NF and semi-

infinite plate are first kept constant in terms of both 

temperature and concentration. Additionally, the fluid 

temperature and concentration are raised to the ambient levels 

TW>T∞, and remain fixed. To approximate the conductivity, a 

homogeneous and isotropic porous media is considered. 

 

 
 

Figure 1. Magnetic nanofluid coating boundary layer model and coordinate system 

 

 

2. MATHEMATICAL FORMULATION 

 

To approximate the conductivity, a homogeneous and 

isotropic porous media is considered. The second order (Da-

Fs) model's pressure gradient is described in the following way: 

 
2

p aU bU =− +  (1) 

 

where, 𝛻𝑝 is the pressure, 𝑎 =
𝜇

𝐾
 𝑎𝑛𝑑 𝑏 =

𝜌

𝐾1
 are the constants 

and U is the velocity. 

The governing equations for mass, momentum, energy, and 

nanoparticle species (concentration) for the BNF under the 

boundary layer and Boussinesq approximations may be 

established using the models of Buongiorno [3], Ramesh 

Reddy et al. [25, 34], Gaffar et al. [35], Ramya et al. [36], 

Anjum et al. [37], and Prasad et al. [38]. The vectorial forms 

of the conservation equations are: 

 
. 0 =V  (2) 

 

𝜌𝑓 (
𝜕𝑣

𝜕𝑡
+ 𝑉. 𝛻𝑉) = −𝛻𝑝 + 𝜇𝑓(𝛻

2𝑉)

+ 𝑔[(1 − 𝐶∞)𝜌𝑓∞(𝑇 − 𝑇∞)𝛽

− (𝜌𝑝 − 𝜌𝑓∞)(𝐶 − 𝐶∞)] −
𝜎𝐵20

𝜌
𝑢 

(3) 

 

(𝜌𝑐)𝑚 (
𝜕𝑇

𝜕𝑡
+ 𝑉. 𝛻𝑇)

= 𝑘𝑚𝛻2𝑇

+ (𝜌𝑐)𝑚 [𝐷𝐵𝛻𝐶. 𝛻𝑇 +
𝐷𝑇

𝑇∞

(𝛻𝑇)2]

+
𝜈

𝜌𝐶𝑝

(𝛻𝑉)2 

(4) 

 
𝜕𝐶

𝜕𝑡
+

1

𝜀
𝑉. 𝛻𝐶 = 𝐷𝐵𝛻2𝐶 +

𝐷𝑇

𝑇∞

𝛻2𝑇 (5) 

 

All the terms are discussed in the nomenclature. Here, V=(u, 

v) is the velocity vector. 

The Semi-infinite substrate surface (wall) and free stream 

(BL edge) are subject to the following BCs Anjum et al. [37]: 
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𝑢 = 𝑣 = 0, 𝑇 = 𝑇𝑤 , 𝐶 = 𝐶𝑤𝑎𝑡𝑦 = 0 
𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞𝑎𝑠𝑦 → ∞ 

(6) 

 

According to Kuznetsov and Nield [39], Eq. (3) may be 

expressed using the Oberbeck-Boussinesq approximations 

when the nanoparticle concentration is minimal, and the right 

pressure option is used. This results in the linearised 

momentum equation, which is as outlined below: 

 

0 = −𝛻𝑝 + 𝜇𝑓(𝛻
2𝑉)

+ 𝑔[(1 − 𝐶∞)𝜌𝑓∞𝛽(𝑇 − 𝑇∞)

− (𝜌𝑝 − 𝜌𝑓∞)(𝐶 − 𝐶∞)] 

(7) 

 

The following are the simplified BL conservation equations 

for the present regime in a (x,y) coordinate framework: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (8) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈

𝜕2𝑢

𝜕𝑦2

+ 𝑔[(1 − 𝐶∞)𝜌𝑓∞𝛽(𝑇 − 𝑇∞)

− (𝜌𝑝 − 𝜌𝑓∞)(𝐶 − 𝐶∞)] −
𝜈

𝐾
𝑢

−
𝑏

𝐾
𝑢2 −

𝜎𝐵0
2

𝜌
𝑢 

(9) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼𝑚

𝜕2𝑇

𝜕𝑦2
+ 𝜏 [𝐷𝐵

𝜕𝑇

𝜕𝑦

𝜕𝐶

𝜕𝑦
+

𝐷𝑇

𝑇∞

(
𝜕𝑇

𝜕𝑦
)

2

]

+
𝜈

𝜌𝐶𝑝

(
𝜕𝑢

𝜕𝑦
)

2

 

(10) 

 

1

𝜀
(𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
) = 𝐷𝐵

𝜕2𝐶

𝜕𝑦2
+

𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2
 (11) 

 

where, 

 

𝛼𝑚 =
𝑘𝑚

(𝜌𝑐)𝑓

, 𝜏 =
(𝜌𝑐)𝑝

(𝜌𝑐)𝑓

 (12) 

 

𝜓 are defined as 𝑢 =
𝜕𝜓

𝜕𝑦
 𝑎𝑛𝑑 𝑣 = −

𝜕𝜓

𝜕𝑥
 

Subject to the velocity components given in terms of stream 

function, Eq. (8) is automatically met. The non-dimensional 

scaling parameters listed below are introduced [25, 35, 37]:  

 

( )

( ) ( )
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1 1 1

3

2
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L
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     

 
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
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−
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   
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(13) 

 

All parameters are defined in the nomenclature. Eqs. (9)-(11) 

are thus transformed into the subsequent system of 

interdependent, nonlinear equations. ODEs by virtue of the 

transformations from Eq. (13): 

 

𝑓‴ + 3𝑓𝑓″ − 2𝑓 ′2 + (𝜃 − 𝑁𝑟𝜙) −
𝜉

𝐷𝑎𝐺𝑟
1
2

𝑓 ′

−
𝐹𝑠

𝐷𝑎
𝜉2𝑓 ′2 − 𝑀𝜉𝑓 ′

= 2𝜉 (𝑓 ′
𝜕𝑓 ′

𝜕𝜉
− 𝑓″

𝜕𝑓

𝜕𝜉
) 

(14) 

2 2 2''
3 ' ' ' ' 2 '

Pr

f
f Nb Nt Ec f f

 
      

 

  
 + + + + = − 

  

 
(15) 

 

'' 1
3 ' '' 2 '

Nt f
f f

Sc Sc Nb

 
   

 

  
+ + = − 
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 (16) 

 

The transformed non-dimensional BCs are: 

 

0, ' 0, 1, 1 0

' 0, 0, 0

f f at

f as

  

  

= = = = =

→ → → →
 (17) 

 

Here the following non-dimensional quantities are 

introduced: 

 
( )( )

( ) ( )
( ) ( )

( )

1
2 2 42
0 1

2 2

1

, ,
1

162
, ,Pr , , ,

2

p f w B w T w

f w

m m p w

C C D C C D T T
Nr Nb Nt

C T T T

B L C LK b
Da Fs Sc M Ec

L L D C C T T

   

   

  

   

   

   



− − − −
= = =

− −

= = = = = =
−

 

(18) 

 

Here all parameters are defined in the nomenclature. The 

shear stress components at the surface, known as the skin-

friction coefficients (Cf), the heat transfer rate known as 

Nusselt number (Nu), and the mass transfer rate of NPs, known 

as the Sherwood number (Sh), are the physically key 

interesting engineering design parameters for the Semi-infinite 

vertical surface. They are defined as follows: 

 
1

3 4
14 ''( ,0)fC C x f =  (19) 

 
1

4
1 '( ,0)Nu k TC x  

−

= −   (20) 

 
1

4
1 '( ,0)Sh D C C x  

−

= −   (21) 

 
1

4𝜈𝜇𝐶1
3𝑥

1
4

𝐶𝑓 = 𝑓′′(𝜉, 0) (22) 

 

1

4
1

1
'( ,0)Nu

k TC x

 
−

−
=



 
(23) 

  

1

4
1

1
'( ,0)Sh

D CC x

 
−

−
=



 
(24) 

 

,w wT T T C C C  = −  = −  

 

Here,  ~0 and the BLEs (14)-(16) contract to a system of 

ODEs in the neighbourhood of the lower stagnation point: 

 

𝑓‴ + 3𝑓𝑓″ − 2𝑓 ′2 + (𝜃 − 𝑁𝑟𝜙) −
𝜉

𝐷𝑎𝐺𝑟
1
2

𝑓 ′

−
𝐹𝑠

𝐷𝑎
𝜉2𝑓 ′2 − 𝑀𝜉𝑓 ′ = 0 

(25) 

 

2 2 2''
3 ' ' ' ' 0

Pr
f Nb Nt Ec f


     + + + + =  (26) 
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'' 1
3 ' '' 0

Nt
f

Sc Sc Nb


 + + =  (27) 

 

 

3. KELLER BOX COMPUTATION SOLUTION AND 

VALIDATION 

 

The dimensionless BLEs (14)-(16), along with the boundary 

condition (17), have been numerically resolved through the 

implementation of the Keller box implicit finite difference 

method [40]. This method remains one of the best numerical 

techniques for solving two-point BVPs. The Keller-box 

approach offers appealing extrapolation properties and 

second-order accuracy with flexible spacing. On a rectangular 

grid Figure 2, a finite-difference technique is used ("box") and 

converts partial differential equations of the BL into an 

algebraic set of equations. It attains remarkable accuracy, 

offers steady numerical meshing characteristics, and 

converges quickly. By utilizing fully implicit methods with 

customizable stepping, KBM improves accuracy on explicit or 

semi-implicit schemes. Another advantage of this method is 

that two-coordinate (, ) nonlinear partial differential 

equation systems can be easily accommodated, unlike other 

solvers such as MATLAB BVP4C, which are restricted to 

ordinary differential BVPs. Originally formulated by Keller 

[40] for analyzing low-velocity aerodynamic BLs, this 

technique has since been widely adopted across a broad 

spectrum of industrial Multiphysics fluid dynamics 

applications. These encompass radiative-convective 

magnetohydrodynamic flow over curved geometries within 

porous structures [35], micropolar convective phenomena [41], 

as well as transient viscoelastic fluid motion and associated 

mass transport processes. Consistent with the underlying 

principles of parabolic systems, each discretization interval is 

entirely interlinked, ensuring comprehensive coupling of the 

governing variables at every computational step. The discrete 

algebra connected to the KBM technique is essentially 

independent of any other mimicking (physics-capturing) 

computation methods [42-44]. Recent applications of this 

method in multi-physical coating flows include the thermo-

rheological coating flow of a cone [45] and the non-Newtonian 

enrobing flow of a cylinder [46]. 

The four phases involved in the KBM are: 

1) Splitting the system of Nth order PDEs down to the N 

first order ODEs. 

2) Finite Difference Discretization. 

3) Quasi-linearization of Non-Linear Keller Algebraic 

Equations. 

4) Block-tridiagonal elimination solution of the 

Linearized Keller Algebraic Equations. 

 

Step1: Reduction of the Nth order partial differential 

equation system to N first order equations  

Eqs. (18)-(20) and boundary conditions (21), in conjunction 

with the introduction of auxiliary variables, are utilized to 

reformulate the BVP into a system comprising multiple first-

order differential equations. Consequently, the incorporation 

of these new variables yields a system of nine concurrently 

solvable first-order ordinary differential equations. 

 

𝑢(𝑥, 𝑦) = 𝑓′, 𝑣(𝑥, 𝑦) = 𝑓′′, 𝑔′(𝑥, 𝑦) = 𝑝, 𝑠(𝑥, 𝑦)
= 𝜃, 𝑡(𝑥, 𝑦) = 𝜃′ 

(28) 

 

'f u=  (29) 

 

'u v=  (30) 

 
'g p=  (31) 

 

's t=  (32) 

 
 

Figure 2. Keller box procedure, box cell and boundary layer meshing 
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𝑣′ + 3𝑓𝑣 − 2𝑢2 + (𝑠 − 𝑁𝑟𝑔) − (
𝜉

𝐷𝑎√𝐺𝑟
+ 𝑀𝜉)𝑢

−
𝐹𝑠

𝐷𝑎
𝜉2𝑢2 = 2𝜉 [𝑢

𝜕𝑢

𝜕𝜉
− 𝑣

𝜕𝑓

𝜕𝜉
] 

(33) 

 

2 2 2'
3 2

Pr

t s f
ft Nbt p Nt t Ec v u t 

 

  
+ + + + = − 

  
 (34) 

 

' 1
' 3 2

p Nt g f
t fp u p

Sc Sc Nb


 

  
+ + = − 

  
 (35) 

 

Here, the prime notation signifies differentiation with 

respect to the independent variable  . Expressed in terms of 

the dependent variables, the BCs are reformulated as follows: 

 

0, ' 0, 1, 1 0

' 1, 0, 0

f f at

f as

  

  

= = = = =

→ → → →
 (36) 

 

Step 2: Finite Difference Discretization 

Within a Keller box framework (computational cell), a two-

dimensional numerical mesh is established over the ξ–η 

coordinate plane. The advancement procedure is characterized 

by the following stepwise formulation: 
 

 
 

2-Dimensional computational grid on the ξ–η plane 

 

0 10, , 1,2, , ,j j j Jh j J    − = = + =    (37) 

 
0 10, , 1,2, ,n n

nk n N   −= = + =   (38) 

 

where, 𝑘𝑛 is the 𝛥𝜉 -spacing and ℎ𝑗 is the 𝛥𝜂 -spacing. If 𝑔𝑗
𝑛 

denotes the value of any variable at (𝜂𝑗 , 𝜉
𝑛), then the variables 

and derivatives of Eqs. (28)-(35) at (𝜂𝑗−1/2, 𝜉
𝑛−1/2)  are 

replaced by: 

 

𝑔𝑗−1/2
𝑛−1/2

=
1

4
(𝑔𝑗

𝑛 + 𝑔𝑗−1
𝑛 + 𝑔𝑗

𝑛−1 + 𝑔𝑗−1
𝑛−1) (39) 

 

(
𝜕𝑔

𝜕𝜂
)
𝑗−1/2

𝑛−1/2

=
1

2ℎ𝑗

(𝑔𝑗
𝑛 − 𝑔𝑗−1

𝑛 + 𝑔𝑗
𝑛−1 − 𝑔𝑗−1

𝑛−1) (40) 

 

(
𝜕𝑔

𝜕𝜉
)
𝑗−1/2

𝑛−1/2

=
1

2𝑘𝑛
(𝑔𝑗

𝑛 − 𝑔𝑗−1
𝑛 + 𝑔𝑗

𝑛−1 − 𝑔𝑗−1
𝑛−1) (41) 

 

The resulting finite-difference approximation of Eqs. (28)-

(35) for the mid-point (𝜂𝑗−1/2, 𝜉
𝑛), are: 

 

( )1

1 1/2

n n n

j j j jh f f u−

− −− =  (42) 

( )1

1 1/2

n n n

j j j jh u u v−

− −− =  (43) 

 

( )1

1 1/2

n n n

j j j jh g g p−

− −− =  (44) 

 

( )1

1 1/2

n n n

j j j jh s s t−

− −− =  (45) 

 

(𝑣𝑗 − 𝑣𝑗−1) +
ℎ𝑗

4
(3 + 2𝛼)(𝑓𝑗 + 𝑓𝑗−1)(𝑣𝑗 + 𝑣𝑗−1)

+
ℎ𝑗

2
(𝑠𝑗 + 𝑠𝑗−1 − 𝑁𝑟(𝑔𝑗 + 𝑔𝑗−1)) 

−2(1 + 𝛼 −
𝐹𝑠

𝐷𝑎
𝜉2)

ℎ𝑗

4
(𝑢𝑗 + 𝑢𝑗−1)

2

− (
𝜉

𝐷𝑎√𝐺𝑟
+ 𝑀𝜉)

ℎ𝑗

2
(𝑢𝑗 + 𝑢𝑗−1)

− 𝛼ℎ𝑗𝑓𝑗−1/2
𝑛−1 (𝑣𝑗 + 𝑣𝑗−1) 

−𝛼ℎ𝑗𝑣𝑗−1/2
𝑛−1 (𝑓𝑗 + 𝑓𝑗−1) − 𝑣𝑛−1 = [𝑅1]𝑗−/12

𝑛−1  

(46) 

 
1

𝑃𝑟
(𝑡𝑗 − 𝑡𝑗−1)

ℎ𝑗

4
(3 + 2𝛼)(𝑓𝑗 + 𝑓𝑗−1)(𝑡𝑗

+ 𝑡𝑗−1)
ℎ𝑗

4
(𝑡𝑗 + 𝑡𝑗−1)(𝑝𝑗

+ 𝑝𝑗−1)
ℎ𝑗

4
(𝑡𝑗 + 𝑡𝑗−1)

2

− 2
𝛼ℎ𝑗

4
(𝑠𝑢)𝑗−1/2

𝑛−1

+ 𝛼ℎ𝑗 (𝑠𝑗−1/2
𝑛−1 (𝑢𝑗 + 𝑢𝑗−1)

− 𝑢𝑗−1/2
𝑛−1 (𝑠𝑗 + 𝑠𝑗−1)

− 𝑓𝑗−1/2
𝑛−1 (𝑡𝑗 + 𝑡𝑗−1)

+ 𝑡𝑗−1/2
𝑛−1 (𝑓𝑗 + 𝑓𝑗−1))

+ 𝐸𝑐2𝜉2(𝑣𝑗 + 𝑣𝑗−1)
2

= [𝑅2]𝑗−1/2
𝑛−1  

(47) 

 

1

𝑆𝑐
(𝑝𝑗 − 𝑝𝑗−1) +

1

𝑆𝑐

𝑁𝑡

𝑁𝑏

+
ℎ𝑗

4
(3 + 2𝛼)(𝑓𝑗 + 𝑓𝑗−1)(𝑝𝑗

+ 𝑝𝑗−1)

+ 2
𝛼ℎ𝑗

2
(𝑔𝑗−1/2

𝑛−1 (𝑢𝑗 + 𝑢𝑗−1)

− 𝑢𝑗−1/2
𝑛−1 (𝑔𝑗 + 𝑔𝑗−1)

− 𝑓𝑗−1/2
𝑛−1 (𝑝𝑗 + 𝑝𝑗−1)

+ 𝑝𝑗−1/2
𝑛−1 (𝑓𝑗 + 𝑓𝑗−1))

− 2
𝛼ℎ𝑗

4
(𝑢𝑔)𝑗−1/2

𝑛−1 = [𝑅3]𝑗−1/2
𝑛−1  

(48) 

 

where, we have used the abbreviations: 
 

1
2

n

nk




−

=  

 

[𝑅1]𝑗−1/2
𝑛−1

= −ℎ𝑗

[
 
 
 
 
 
 

(𝑣′)
𝑗−

1
2

𝑛−1 + (3 − 2𝛼)(𝑓𝑣)
𝑗−

1
2

𝑛−1

+(𝑠𝑗−1
𝑛−1 − 𝑁𝑟𝑔𝑗−1

𝑛−1) − (

. 𝜉

𝐷𝑎√𝐺𝑟
+𝑀𝜉

)(𝑢𝑗−1
𝑛−1) +

(2 − 2𝛼 −
𝐹𝑠

𝐷𝑎
) (𝑢𝑗−1

𝑛−1)
2

]
 
 
 
 
 
 

 
(49) 
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[𝑅2]𝑗−1/2
𝑛−1

= −ℎ𝑗

[
 
 
 
 
 

1

𝑃𝑟(𝑡′)
𝑗−

1
2

𝑛−1(3 − 2𝛼)

(𝑓𝑡)𝑗−1/2
𝑛−1 (𝑡𝑝)𝑗−1/2

𝑛−1 (𝑡2)𝑗−1/2
𝑛−1 2

(𝑣2)𝑗−1/2
𝑛−1

+2𝛼(𝑢𝑠)𝑗−1/2
𝑛−1

]
 
 
 
 
 

 
(50) 

 

[𝑅3]𝑗−1/2
𝑛−1 = −ℎ𝑗 [

1

𝑆𝑐
(𝑝′)𝑗−1/2

𝑛−1 +
1

𝑆𝑐

𝑁𝑡

𝑁𝑏
(𝑡′)𝑗−1/2

𝑛−1

+ (3 − 2𝛼)(𝑓𝑝)𝑗−1/2
𝑛−1

+ 2𝛼(𝑢𝑔)𝑗−1/2
𝑛−1 ] 

(51) 

 

The BCs are: 

 

0 0 0 00, 0, 0, 0, 0, 0, 0n n n n n n n

J J Jf u g s u g s= = = = = = =  (52) 

 

Stage 3: Keller algebraic equations that are non-linear 

can be quasi-linearized. 

If we presume 𝑓𝑗
𝑛−1, 𝑢𝑗

𝑛−1, 𝑣𝑗
𝑛−1, 𝑔𝑗

𝑛−1, 𝑝𝑗
𝑛−1, 𝑠𝑗

𝑛−1, 𝑡𝑗
𝑛−1  to 

be widely recognized for 0 j J  , the consequence is in a 

framework of 7J+7 equations for the solution of 7J+7 

unknowns 𝑓𝑗
𝑛 , 𝑢𝑗

𝑛, 𝑣𝑗
𝑛 , 𝑔𝑗

𝑛 , 𝑝𝑗
𝑛 , 𝑠𝑗

𝑛 , 𝑡𝑗
𝑛 𝑗 = 0,1,2, . . . , 𝐽. This non-

linear system of algebraic equations is linearized by means of 

Newton’s method. 

Stage 4: The linearized Keller Algebraic Equations' block-

tridiagonal elimination solution. 

Since the linearized system has a block-tridiagonal structure, 

it is solved using the block-elimination technique. This results 

in a block-tridiagonal architecture composed of block matrices. 

Every component of the coefficient matrix is a matrix in and 

of itself, and the full linearized system is represented as a block 

matrix framework. This system is solved using the efficient 

Keller-box approach. A significant influence on the numerical 

output is the quantity of mesh points in both axes. After a few 

experiments, A greater density of grid points is chosen within 

the computational domain radial coordinate (η-direction), 

whereas a significantly lesser number are employed in the 

tangential coordinate (-direction). ηmax=16 establishes an 

appropriately high level at which the desired BCs are 

accomplished. For this flow domain, max is set as 3. In the 

current computation, mesh independence is attained. The 

computational algorithm is run on a PC using MATLAB. As 

explained by Keller [45], the procedure exhibits outstanding 

stability, convergence and consistency. 

 

3.1 Convergence analysis 

 

Until a certain convergence threshold is met, computations 

are performed. Laminar boundary-layer calculations 

commonly use the wall shear stress parameter, v (, 0), as the 

convergent standards [47]. The most significant error in BL 

calculations is found to be in the parameter of wall shear stress. 

Noteworthy is the fact that this convergence criteria is used 

throughout the study since it is effective, appropriate, and the 

best solution to all of the issues taken into consideration. The 

computations are terminated when |𝛿𝑣0
(𝑖)| ≺ 𝜀1 , a modest 

𝜀1specified value is reached. 𝜀1=0.00001, which provides an 

accuracy of around 4 decimal places for anticipated amounts 

in this investigation. 

 

3.2 Validation of Keller box code 

 

(Nu) and (Cf) for various values of Gr are contrasted with 

those found in prior investigations to evaluate the current 

numerical code's authenticity. Table 1 and the Figure 3 exhibit 

this by comparing the validity of the current research to 

previous investigations by Plumb and Huenefeld [48] and 

Chamkha et al. [49]. Table 2 and Figure 4 provide local skin 

friction coefficient (Cf) results that are contrasted with 

Newtonian solutions provided by Reddy et al. [34], Merkin 

and Pop [50], and Sadiqa et al. [51] for various values of  and 

excellent agreement is achieved. The reliability of the current 

Keller box code is confirmed by the very precise concurrence 

obtained based on the latest and most recent data. The data 

shows significant consistency and dependability in the 

observed patterns, confirming that the current results support 

and strengthen the outcomes of previous analyses. Error 

analysis percentage of the comparisons are also included. 

 

 
 

Figure 3. Bar graph for the comparison of (Nu), (Cf) for various values of Gr 
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Table 1. Comparison of dimensionless (Nu), (𝐶𝑓) for various values of Gr 

 

Gr 

Nusselt Number (Nu) Skin Friction (𝐶𝑓) 

Plumb and Huenefeld 

[48] 

Chamkha et al. 

[49] 

Present 

Results 

Plumb and Huenefeld 

[48] 

Chamkha et al. 

[49] 

Present 

Results 

0 0.4439 0.44374 0.44372 1 1 1 

0.01 0.44232 0.44216 0.44219 0.9902 0.99019 0.99017 

0.1 0.42969 0.4295 0.4291 0.91608 0.91608 0.91603 

1 0.36617 0.36575 0.36579 0.61803 0.61803 0.61805 

10 0.25126 0.25065 0.25067 0.27016 0.27016 0.27015 

100 0.15186 0.15145 0.15143 0.09512 0.09512 0.09516 

 

Table 2. Local skin friction coefficient (Cf) comparison for different values of  as Da→∞, Fs=0 

 
 Skin Friction Coefficient (Cf) 

 
Ramesh Reddy et 

al. [34] 
Merkin and Pop [50] Saddiqa et al. [51] 

Current 

Results 

Error 

Analysis% 

with [34] 

Error 

Analysis% 

with [50] 

Error 

Analysis% 

with [51] 

0.1 0.012 0.014 0.014 0.016 4% 2% 2% 

0.2 0.049 0.051 0.050 0.054 5% 3% 4% 

0.3 0.103 0.105 0.104 0.106 3% 1% 2% 

0.4 0.171 0.172 0.172 0.169 2% 3% 3% 

0.5 0.249 0.250 0.250 0.251 2% 1% 1% 

0.6 0.338 0.337 0.336 0.339 1% 2% 3% 

0.7 0.429 0.430 0.430 0.432 3% 2% 2% 

0.8 0.528 0.530 0.529 0.531 3% 1% 2% 

0.9 0.634 0.635 0.634 0.634 0% 1% 0% 

1 0.743 0.745 0.744 0.747 4% 2% 3% 

1.1 0.857 0.859 0.858 0.860 3% 2% 2% 

1.2 0.971 0.972 0.975 0.975 4% 3% 0% 

1.4 … … … 0.998    

 

 
 

Figure 4. Bar graph for the comparison of (Cf) for different  values 

 

 

4. GRAPHICAL AND TABULAR RESULTS AND 

DISCUSSIONS 

 

The mathematical viewpoint of BNF's flow via a semi-

infinite vertical plate with a non-Darcy-porous material is 

highlighted in this section of the paper. The KBM is applied 

for Eqs. (15)-(17). A detailed graphical illustration of the 

solution is shown in Figures 5-14 utilizing MATLAB code, on 

(f'), (θ), (ϕ), (Cf), (Nu), (Sh) for nine dimensionless 

thermophysical parameters in the model, such as (Nb), (Nt), 

(Nr), (Da), (Fs), (M), (Ec), (Sc), (Gr) are presented along the 

radial coordinate (). The Numerical problem comprises two 

independent space variables (,), default values of the 

following variables are Pr=0.71, Sc=0.6, Nr=0.1, Nb=0.3, 

Nt=0.3, Da=Fs=M=Ec=0.5, Gr=10, =1.0 are prescribed.
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(a) Influence of Nb on velocity profile 

 
(b) Influence of Nb on temperature profile 

 
(c) Influence of Nb on concentration profile 

 

Figure 5. Effect of Brownian diffusion parameter Nb on 

velocity, temperature and concentration profiles 

 
(a) Influence of Nt on velocity profile 

 
(b) Influence of Nt on temperature profile 

 
(c) Influence of Nt on concentration profile 

 

Figure 6. Effect of thermophoresis parameter Nt on velocity, 

temperature and concentration profiles 
 

Figures 5(a)-5(c) shows effect of Brownian diffusion, 

(0.4≤Nb≤2.5), on (𝑓 ′), (θ), (ϕ) profiles. Mathematically, it can 

be expressed as: 𝑁𝑏 =
𝜏𝐷𝐵(𝐶𝑤−𝐶∞)

𝜈
. This term +𝑁𝑏𝜃 ′𝜙 ′ 

appears in thermal Eq. (16) and +
𝑁𝑡

𝑁𝑏

1

𝑆𝑐
𝜃″  appears in 

concentration Eq. (17). According to the Buongiorno 

formulation [3], higher values of Nb indicate smaller NPs, and 

varying this parameter produces a change in ballistic collisions. 

In Figure 5(a). (f') is enhanced although a stronger elevation is 

computed in the former with greater Nb values. (Nb) also 

modifies NF thermal conductivity and the propensity for heat 

transmission in the NF. As a result, the increased random 

motion of the NPs modifies the thermal pattern as well, and 

the momentum field experiences this influence through 

thermal buoyancy. As Nb increases, (θ) is positively affected 

across the BL regime, as seen in Figure 5(b). There is also a 

significant change in the topology of () further from the 

substrate (wall) at very high Nb values. Raising () aggravates 

the motion of the NPs and ballistic collisions. Consequently, 

chaotic (Nb) is increased even further. The increased heat 

conduction in the regime and the improved micro-convection 

surrounding the NPs are also influenced by the change in 

thermal conductivity with greater Brownian motion. This 

results in a thicker thermal BL due to a heating effect. 

Although the fluid's molecules and NPs are always moving, 

there is a noticeable shift in () overall. Brownian motion, 

however, predominates in the random thermal motion of NPs. 

As Nb is increased, however, the intensification in ballistic 

collisions curtails the diffusion of NPs and this produces a 

notable decrease in () values, as observed in Figure 5(c). 

Hence, the thickness of () is reduced which is important in 
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fine-tuning coating structure during the manufacturing process. 

Our findings align with the patterns observed in, Reddy et al. 

[25, 34], Ramya et al. [36], and Prasad et al. [38]. It has also 

been demonstrated that the increased viscosity enhances the 

flow and thermal convection, while simultaneously reducing 

the rates of mass transfer. The physical significance of these 

observations lies in the complex interplay between (Nb) and 

NF dynamics. As Nb increases, NPs experience enhanced 

random movement, facilitating more efficient thermal 

diffusion and accelerating (𝑓′). This phenomenon is crucial in 

settings where efficient heat transport is necessary, like 

cooling structures and thermal management in engineering. 

However, the reduction in concentration gradient signifies a 

more homogeneous dispersion of NPs, which can affect 

processes reliant on localized concentrations, such as drug 

delivery or materials synthesis. The fluid's (Nb) is significantly 

impacted by increasing Nb levels because of the ' random NPs 

mobility. 

 
(a) Influence of Nr on velocity profile 

 
(b) Influence of Nr on temperature profile 

 
(c) Influence of Nr on concentration profile 

 

Figure 7. Effect of buoyancy ratio parameter Nr on velocity, 

temperature and concentration profiles 

Figures 6(a)-6(c) illustrate the effect of the thermophoretic 

parameter, (0≤Nt≤0.27) on (𝑓 ′), (θ), (ϕ). Mathematically, it can 

be expressed as: 𝑁𝑡 =
𝜏𝐷𝑇(𝑇𝑤−𝑇∞)

𝜈𝑇∞
. This term +𝑁𝑡𝜃 ′2 appears 

in the thermal Eq. (16) and +
𝑁𝑡

𝑁𝑏

1

𝑆𝑐
𝜃″  appears in the 

concentration Eq. (17). According to the Buongiorno 

formulation [3], thermophoretic body force has a direct impact 

on nanoparticle diffusion. From Figure 6(a) an increase in Nt 

decelerates ( f  ). The increasing thermophoresis parameter 

value enhances () in Figure 6(b) and considerably boosts () 

in Figure 6(c) These trends are sustained at all distances 

transverse to the inclined substrate. However, while 

asymptotic decays occur from the wall to the free stream for 

all (), () profiles is only a decay for Nt=0, which has not 

been identified previously in the literature. With the 

subsequent elevation in the thermophoresis parameter, a peak 

in () merges progressively further from the wall. Eventually, 

however, profiles for Nt >0.1 do descend smoothly to the free 

stream. Overall, stronger thermophoresis elevates the thermal 

and nanoparticle species BLT, which inevitably influences the 

structure of the coating regime. The influence of an increased 

thermophoretic temperature gradient is pronounced across all 

transport properties, confirming the important role it plays in 

NF mechanics. Our findings support the patterns of Reddy et 

al. [25, 34], Ramya et al. [36], and Prasad et al. [38]. It has also 

been demonstrated that the higher viscosity serves to slow 

down the flow while enhancing both heat convection and mass 

transfer rates. Physically, this signifies that a stronger 

thermophoretic force leads to enhanced momentum, heat, and 

mass transfer, reflecting more pronounced thermal and solute 

gradients in NF flow. The two most intriguing aspects of 

Buongiorno's NF model are thermophoresis and Brownian 

motion characteristics. In essence, these characteristics raise 

() which is essential for optimizing heat and mass transfer 

processes in various applications. 

Figures 7(a)-7(c) elucidate the impact of the combined 

Buoyancy ratio parameter (-0.4≤Nr ≤0.1) on profiles (𝑓 ′), (), 

(). Dual natural convection currents mobilized by 

temperature and nanoparticle species are present. The 

combined buoyancy effect is simulated via the term, 

+(𝜃 − 𝑁𝑟𝜙) , in the momentum Eq. (15) in which 𝑁𝑟 =
(𝜌𝑝−𝜌𝑓∞)(𝐶𝑤−𝐶∞)

𝜌𝑓∞(1−𝐶∞)𝛽(𝑇𝑤−𝑇∞)
. Buoyancy ratio parameter (Nr) quantifies 

the relative effect of thermal and concentration-driven 

buoyancy forces on fluid motion is characterized by the ratio 

of the concentration-induced buoyancy force to the thermal 

buoyancy force. The regime exhibits buoyancy from both 

thermal and nanoscale species, resulting in dual natural 

thermo-solute convection. For Nr>0, the flow is clearly 

accelerated (Figure 7(a)) at a certain distance from the plate 

surface. In contrast, when Nr<0, which represents the case 

where thermal and species buoyancy forces oppose one 

another, the flow experiences deceleration. As the distance 

from the plate surface increases, the effect of Nr undergoes a 

shift; for Nr>0, there is a slight decrease in the flow rate, 

whereas the opposite occurs for Nr<0. However, the impact of 

a significant change in Nr becomes less noticeable as one 

moves farther from the wall. If Nr=0, forced convection occurs, 

buoyancy forces disappear. Buoyancy forces thus have a 

considerably stronger influence near the surface of the plate. 

As seen in Figure 7(a), (𝑓 ′) is suppressed with positive Nr but 

is enhanced with negative Nr. In other words, assistive 

buoyancy damps the primary flow whereas opposing 
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buoyancy. This reduction weakens buoyancy-driven 

movement, tending to a decrease in (𝑓′). Consequently, with 

less buoyancy force driving fluid motion, the convective heat 

transfer process is hindered, resulting in depreciation of (𝑓′) 

profiles in the system. Temperature and concentration exhibit 

distinctly different reactions for varying values of Nr. As 

illustrated in Figures 7(b) and 7(c), in both scenarios, the 

opposition of buoyancy forces consistently increases the 

values across the entire BL region. When Nr<1, thermal 

buoyancy effects will prevail over concentration buoyancy, 

whereas for Nr>1, concentration buoyancy forces will 

dominate. Figures 7(b)-7(c) demonstrate that an increment of 

Nr strengthens the buoyancy-driven flows. This augmentation 

enhances fluid motion, facilitating more effective mixing and 

transport of heat and solute. Consequently, (), () profiles are 

appreciated. Notably, both (), () show an upward trend, 

signifying the heightened internal buoyancy forces improve 

heat, mass transfer. This results in higher thermal, solute 

gradients near the surface, causing increased (), () levels 

within the boundary. Our outcomes align with the observed 

trends of Reddy et al. [25], Prasad et al. [38], and Gaffar et al. 

[42]. Physically, this signifies that stronger buoyancy effects 

lead to more efficient energy and species transport in the fluid 

this is essential for precisely estimating flow pattern 

maximizing mass and heat transfer in a variety of technical 

applications. 

Figures 8(a)-8(c) portrays impact of Darcy number 

(0.4≤Da≤2.5) on profiles (𝑓 ′ ), (), (). Across the surface 

domain, along the transverse coordinate (). Particularly in the 

study of flow via porous media, it’s given by ratio of 

permeability of porous medium to characteristic length scale 

squared. This term −
𝜉

𝐷𝑎𝐺𝑟
1
2

𝑓 ′ −
𝐹𝑠

𝐷𝑎
𝜉2𝑓 ′2  appears in 

momentum Eq. (15). Darcy number is employed to assess the 

relative impact of the porous medium's resistance to fluid 

movement in comparison to the inertial forces. A small Da 

value signifies that the flow is predominantly controlled by the 

resistance of the porous medium, whereas a large Da value 

indicates that inertial forces play a more dominant role. This is 

the Darcia body force compoent. 𝐷𝑎 =
𝐾

2𝐿2 an Darcian body 

forces disappear in a porous medium with infinite permeability 

when Da approaches infinite. Figure 8(a) demonstrates 

unambiguously that (𝑓′) is amplified with an increase in Da, 

with the maximum effect occurring close to the surface. 

Greater permeability, of course, indicates a decrease in solid 

Fibers that obstruct fluid flow, which accelerates the flow by 

lowering the Darcian resistance; this lowers the Darcian 

resistance and accelerates flow. As the Darcy parameter 

increases, the maximum velocity is pushed further from the 

wall. Yet again, increased permeability facilitates the magnetic 

polymer's percolation via the porous media. Figure 8(b) shows 

that boosting the Darcy parameter yields a significant 

suppression of (). Heat conduction is suppressed as a result 

of the loss of porous matrix containing solid fibres linked to 

increased penetration. This cools the regime by reducing heat 

diffusion inside it. As a result, the surface's heat BLT is 

suppressed. Porous media with lower permeability reach far 

higher () than those with higher permeability. Figure 8(c) 

eluciates that as the Da increases this indicates increased 

resistance to flow through the porous medium. This resistance 

reduces the exchange of nanocrystals, leads to a low 

concentration of NPs near surface. Consequently, overall () 

profile within the fluid decreases. Our outcomes are consistent 

with the patterns of [34, 35, 37]. Physically, Fluid flow 

resistance falls as Da rises, showing increased permeability in 

the porous medium. This lower resistance allows for an 

increased (𝑓′) because the flow encounters less drag. However, 

the enhanced (𝑓′) reduces leads to decay in both () and () 

profiles. Essentially, fluid moves more quickly through the 

medium, carrying less heat and fewer NPs along with it. 

Reduced heat transmission via thermal conduction in the 

system is facilitated by the steady reduction of solid fibres that 

have large Da values in porous medium. This cools down the 

thermal BLT, which also diminishes, and limits the transfer of 

energy from heat into the system from a vertical plane. As a 

result, the flow quickens, its (𝑓′) rises, and the momentum of 

the regime does too. This parameter is crucial for analysing 

and modelling fluid flow behaviours in applications using 

porous medium, including increased extraction of oil, flow of 

groundwater, and purification. 

 
(a) Influence of Da on velocity profile 

 
(b) Influence of Da on temperature profile 

 
(c) Influence of Da on concentration profile 

 

Figure 8. Effect of darcy parameter Da on velocity, 

temperature and concentration profiles 
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(a) Influence of Fs on velocity profile 

 
(b) Influence of Fs on temperature profile 

 
(c) Influence of Fs on Concentration Profile 

 

Figure 9. Effect of Forchheimer parameter Fs on velocity, 

temperature and concentration profiles 

 

Figures 9(a)-9(c) highlight the influence of the Forchheimer 

number (0≤Fs≤2.7) on (𝑓 ′ ), (θ), (ϕ). 𝐹𝑠 =
2𝑏

𝐿
. (Fs) a non-

dimensional parameter. It measures relative significance of 

viscous forces and inertial effects in a media with pores. This 

term −
𝐹𝑠

𝐷𝑎
𝜉2𝑓 ′2 appears in momentum Eq. (15), it compares 

inertial forces (which drive the flow) to viscous forces (which 

resist the flow). An increased value of (Fs) suggests that 

inertial forces gain greater prominence in comparison to 

viscous forces, thereby affecting the flow dynamics within the 

porous medium. (Fs) mimics the effects of second-order, 

nonlinear drag in porous material. In contrast to the linear 

Darcian drag components, it is quadratic, just like the Darcy 

number. In the case of Darcy-Brinkman flow, inertial drag 

effects disappear at Fs=0. Figure 9(a) demonstrates how a 

greater inertial impedance that resists flow is present and 

causes a noticeable depreciation in (𝑓′) with an increase in 

(Fs). This impact is maximised close to surface, lesser 

deceleration in a flow with a higher (Fs) is calculated farther 

away. There is no discernible effect of (Fs) on flow in the free 

stream. Figure 9(b) reveals a significant heating impact occurs 

in the regime as a result of the higher (Fs). () is always 

stronger for all transverse coordinate (η) values. Hence, 

thickness of the thermal BL is highest for the strong 

Forchheimer case (Fs=1) and smallest for weak Forchheimer 

drag case (Fs=0). Simulations performed by us are restricted 

to non-tortuous and isotropic porous medium. Nonetheless, 

second order inertial porous drag and linear Darcian 

impedance have a major impact on controlling flow and 

thermal properties in coating manufacturing processes. Figure 

9(c) illustrates () increases as (Fs) gradually rises because 

greater (Fs) signify greater inertial effects in flow through 

porous medium. These inertial effects enhance the mixing and 

dispersion of nanocrystals, leads to a greater () of NPs near 

surface. Consequently, increased inertial forces facilitate 

better nanoparticle distribution and an elevated concentration 

profile. Our observations correspond with the patterns of [34, 

35, 37]. Physically, since the drag force and coefficient of 

inertia are connected, a surge in inertia causes the fluid's drag 

force to grow, thus lowering its speed. The influence of the 

quadratic inertial drag is larger with closer proximity to the 

wall's surface. Nevertheless, since forchimmer drag is of order 

two, a rise in Fs virtually blanks the momentum development 

and causes a slowdown. Consequently, the reduced (𝑓′) 

decreases convective heat transfer rate, tends to higher 

temperatures near the surface. Simultaneously, the enhanced 

inertial effects promote better mixing and dispersion of NPs, 

increasing their concentration near surface. Thus, ( 𝑓 ′ ), 

dampens while (), () profiles enhance with higher (Fs). (Fs) 

is used to optimize flow and performance in NF -based 

filtration systems and heat exchangers by accounting for 

inertial effects in porous media. 

Figures 10(a)-10(c) displays implications of magnetic 

parameter (0.1≤M≤2.2), on ( 𝑓 ′ ), (), () profiles through 

surface regime. Magnetic parameter 𝑀 =
𝜎𝐵0

2𝐿
1
2

𝜇𝐶1
2  is also called 

as rotational Stuart number correlates centrifugal inertial force 

with Lorentzian magnetic drag force. It features in the term, 

−𝑀𝜉𝑓 ′ in momentum Eq. (15). Electrical non-conductivity of 

NF occurs when M=0 and magnetic field effects disappear. 

Because of varying (𝑓′)  fields, magnetic force has a more 

complex effect. Figure 10(a) indicates that (𝑓 ′) appreciates as 

M value elevates, as the magnetic parameter increases, the 

Lorentz force (which opposes the flow) becomes stronger. 

However, in this scenario, the increased magnetic field may 

cause a damping effect on the fluid, reducing resistive forces 

from the porous medium. This results in a higher fluid (𝑓′) 

near the boundary, which was not observed in the previous 

literature related to this kind of trend in magnetic interaction 

parameters. Physically, the applied magnetic field modifies 

the flow dynamics, enhancing the momentum transfer in the 

NF. Figures 10(b)-10(c) show how raising the magnetic 

parameter depreciates both (), () profiles as the magnetic 

parameter increases, the enhanced Lorentz force induces a 

stronger flow, which improves convective heat and mass 

transfer. This results in faster heat and mass removal from the 

BL region, leading to a decrease in both (), (). Physically, 

the magnetic field accelerates the fluid, reducing thermal and 

solutal BLT. 
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(a) Influence of M on Velocity Profile 

 
(b) Influence of M on temperature profile 

 
(c) Influence of M on concentration profile 

 

Figure 10. Effect of magnetic parameter M on velocity, 

temperature and concentration profiles 

 

Figures 11(a)-11(c) show how Eckert number (0≤Ec≤4.5), 

on (𝑓 ′), (θ), (ϕ) profiles through surface regime with transverse 

coordinate (). The dimensionless Eckert number 𝐸𝑐 =
16𝜈2𝐶1

4𝐿

𝐶𝑝(𝑇𝑊−𝑇∞)
 is used to measure the effect of viscous dissipation 

in a flow. This term 𝐸𝑐𝜉2𝑓″2 + 𝑀(𝐸𝑐)𝜉3𝑓 ′2  appears in the 

Eq. (16). Ec models the relative contribution of internal 

friction-induced kinetic energy dissipation to the BL enthalpy 

differential. It is produced by internal friction caused by 

molecule ballistic collisions in the magnetic polymer, which 

results in a heating effect. Ec also plays a part in the Ohmic 

heating term, commonly referred to as Joule heating, which 

characterizes the magnetic polymer's resistance to electrical 

current. Both viscous and Ohmic dissipation disappear when 

Ec=0. High values of (Ec) indicate that kinetic energy is 

significantly converted into internal energy through viscous 

friction, leading to noticeable temperature changes within the 

fluid. Figure 11(a) illustrates that (𝑓 ′) elevates when Ec rises. 

Higher Ec signifies greater kinetic energy relative to thermal 

energy, which promotes fluid motion due to viscous 

dissipation. (θ) rises because of this transformation of kinetic 

energy into thermal energy reducing viscosity, consequently 

increasing velocity. Figure 11(b) shows that as Ec enhances 

(θ) also appreciates significantly, viscous dissipation causes a 

larger conversion of kinetic energy into thermal energy. This 

mechanism, combined with extra heat via Ohmic heating and 

internal heat generation, raises the fluid's temperature. Figure 

11(c) depicts that the (ϕ) declines as the Ec improves due to 

greater thermal energy from viscous dissipation and Ohmic 

heating which enhances Brownian motion of NPs. Our 

observations correspond with the patterns of [25, 34, 36]. 

Physically, the increased thermal agitation causes NPs to 

disperse farther away from the substrate, reducing their 

concentration. Additionally, elevated (θ) reduces fluid's 

capacity to carry on higher nanoparticle concentrations near 

the BL. This elevated (θ) enhances thermal diffusion, thereby 

reducing the concentration gradient and causing the 

concentration profile to decline. This underscores the inverse 

relationship between viscous heating and solute concentration 

in fluid flows. 

 
(a) Influence of Ec on velocity profile 

 
(b) Influence of Ec on temperature profile 

 
(c) Influence of Ec on concentration profile 

 

Figure 11. Effect of Eckert number Ec on velocity, 

temperature and concentration profiles 
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(a) Influence of Sc on velocity profile 

 
(b) Influence of Sc on temperature profile 

 
(c) Influence of Sc on concentration profile 

 

Figure 12. Effect of schmidt number Sc on velocity, 

temperature and concentration profiles 

 

Figures 12(a)-12(c) feature impact of Schmidt number 

(0.5≤Sc≤20) on profiles (𝑓 ′), (), () through surface regime 

with transverse coordinate (). Schmidt number (Sc) 

dimensionless number in that characterizes relative 

significance of mass diffusion (molecular diffusion) over 

momentum diffusion (viscous effects) in a fluid. Definition of 

it is mass diffusivity divided by kinematic viscosity, given as 

𝑆𝑐 =
𝜈

𝐷𝑚
, this term 

𝜙″

𝑆𝑐
 appears in concentration Eq. (17). (Sc) 

helps assess how momentum is transported relative to mass 

within the fluid, influencing the behaviours and distribution of 

NPs in various applications. Figure 12(a) depicts that (𝑓 ′ ) 

dampens with an increasing Schmidt number because a higher 

Schmidt number indicates lower mass diffusivity relative to 

momentum diffusivity. This results in a thicker solutal BL, 

which decreases fluid flow resistance and overall velocity. 

Consequently, fluid movement is slowed down, leading to a 

decreased velocity profile. Figures 12(b)-12(c) elucidates that 

() and () profiles substantially elevate with an enhanced (Sc) 

because a higher Schmidt number indicates lower mass 

diffusivity, leading to a thicker concentration BL. This results 

in less diffusion of NPs away from the surface, thereby 

increasing their concentration near the wall. Additionally, the 

thicker BL retains more heat, elevating (θ) profile. For Sc1, 

species diffusivity dominates and vice versa for Sc1, whereas 

a slight increase is observed in (θ) with increasing Sc, and a 

strong reduction in () is seen with increasing Sc values. Our 

results are consistent with the trends observed by Gaffar et al. 

[42]. The practical use of (Sc) lies in enhancing mass transfer 

processes in areas like chemical reactors and separation 

systems by choosing NFs with suitable momentum and mass 

diffusion characteristics. 

 

 
(a) Influence of Gr on velocity profile 

 
(b) Influence of Gr on temperature profile 

 
(c) Influence of Gr on concentration profile 

 

Figure 13. Effect of Grashof number Gr on velocity, 

temperature and concentration profiles 

 

Figures 13(a)-13(c) demonstrate the impact of Grashof 

number (7≤Gr≤25) on profiles (𝑓 ′), (), () through surface 

regime with transverse coordinate (). Grashof number (Gr) 

dimensionless number which quantifies the proportionate 
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importance of buoyant and viscous forces in a fluid flow. It 

helps in understanding and optimizing heat transfer processes 

driven by buoyancy effects. The velocity profile is enhanced 

while (), () profiles decrease. In Figures 13(a)-13(c) as the 

Grashof number (Gr) increases, (𝑓 ′) increases due to stronger 

buoyancy forces driving the flow, enhancing fluid motion. (), 

() decrease because the intensified convection transfers heat 

and NPs more rapidly away from the surface, thinning the BLs. 

Physically, the (Gr) represents the ratio of buoyancy forces to 

viscous forces in the fluid. Higher (Gr) values indicate 

stronger buoyancy forces, which accelerate the fluid flow, 

thereby increasing the velocity profile. This enhanced flow 

promotes greater mixing and heat transfer, reducing (), () 

gradients near the semi-infinite vertical plate. (Gr) in fluid 

dynamics, NFs are used to design and optimize systems where 

natural convection plays a critical role, such as in solar 

collectors, electronic cooling systems, and heating 

applications. It helps predict how buoyancy-driven flow 

affects heat and mass transfer, allowing for improved 

efficiency in these thermal management systems. 

Figures 14(a)–14(c) demonstrate impacts of Eckert number 

Ec on (Cf), Nu, Sh along the surface regime. (Cf) increases 

indicating higher viscous dissipation, more kinetic energy is 

converted to thermal energy, which enhances (𝑓 ′) gradients, 

thereby rising (Cf). The increased () gradients also intensify 

mass transfer, raising (Sh). However, added thermal energy 

reduces the temperature difference between fluid surfaces 

decreasing Nu, which measures heat transfer efficiency. 

Physically, this conversion increases (𝑓 ′ ) near the surface, 

thereby raising skin friction, higher thermal energy also 

enhances nanoparticle diffusion, leading to more effective 

mass transfer and thus boosting Sh. However, elevated internal 

thermal energy reduces the temperature gradient between fluid, 

and surface which is the driving force for convective heat 

transport, resulting in a lower Nusselt number. Thus, while 

momentum mass transfer is enhanced, the efficiency of heat 

transmission diminishes due to the reduced temperature 

differential. In electronic cooling systems, such as those in 

high-performance computers, increased viscous dissipation 

from rapidly moving coolant fluids generates heat, enhancing 

fluid velocity and mass transfer rates, analogous to higher (Cf), 

Sh. 

It is noteworthy that in Figures 5-14 all profiles converge 

Seamlessly confirming the application of an appropriately 

large infinity boundary condition in the far-field region. 

Table 3 shows the (Cf), (sh), (Nu) for various values of M, 

Pr, Sc, Da, and Fs along with a variation in the stream-wise 

coordinate value ξ,(1≤ξ ≤3). The following default parameter 

values are used: Nr=0.1, Nb=0.3, Nt=0.3, Ec=0.5, Gr=10. 

It is observed that as the magnetic parameter (M) increases, 

the Lorentz force induced by the magnetic field enhances the 

fluid movement reducing (Cf), (Nu) which measures rate of 

heat transfer. This opposition leads to a thicker thermal BL. 

Conversely, enhanced M, raises mass transfer rate, leading to 

a higher Sh as concentration BL becomes thinner. As Prandtl 

number Pr appreciates the fluid's thermal diffusivity 

decreases, leading to a thicker thermal BL reducing (Nu). 

Elevation in Pr also means higher momentum diffusivity, 

which depreciates (Cf). Conversely, mass diffusivity is less 

affected, resulting in a thinner concentration BL and an 

increased Sh, indicating enhanced mass transfer. As (Sc) 

boosts it leads to a thinner concentration BL. This results in 

higher mass transfer rates, thus steadily rising (Sh). The 

reduced mass diffusivity also means higher momentum 

diffusivity, which increases velocity gradient at the wall, 

thereby raising (Cf). Furthermore, the enhanced flow mixing 

due to higher (Sc) contributes to surged heat transfer, resulting 

in a higher (Nu). As the (Da) number increases, the 

permeability of the porous medium rises, reducing resistance 

to fluid flow. This leads to higher fluid velocities near the wall, 

which elevates (Cf). The enhanced fluid motion improves both 

heat and mass transfer rates, resulting in higher (Nu), (Sh) due 

to thinner thermal and concentration BL. As (Fs) rises 

significantly, the inertial resistance in porous media becomes 

more significant. This increased resistance reduces (f'), leading 

to a decrease in (Cf). Additionally, the lower (𝑓 ′) diminishes 

both thermal and mass transmission rates, resulting in reduced 

(Nu), (Sh) due to thicker thermal and concentration BL. 

 

 
(a) Influence of Ec on skin friction 

 
(b) Influence of Ec on sherwood number 

 
(c) Influence of Ec on Nusselt number 

 

Figure 14. Effect of Eckert number Ec on (Cf), (Nu), (Sh) 
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Table 3. Values of skin friction (Cf), Sherwood number (Sh), and Nusselt number (Nu) for various values of M, Pr, Sc, Da, and 

Fs 

 
     x=1 x=2 x=3 

M Pr Sc Da Fs Cf Sh Nu Cf Sh Nu Cf Sh Nu 

0.1     0.6538 0.4595 0.1663 0.7044 0.6913 -0.2435 0.7789 1.0699 -0.9435 

0.6     0.6058 0.4421 0.1338 0.6253 0.6757 -0.3335 0.6888 1.0968 -1.2020 

1.2     0.5576 0.4255 0.0969 0.5551 0.6725 -0.4377 0.6138 1.1604 -1.5138 

1.7     0.5240 0.4152 0.0680 0.5107 0.6787 -0.5212 0.5688 1.2293 -1.7776 

2.2     0.4953 0.4077 0.0404 0.4752 0.6900 -0.6021 0.5342 1.3086 -2.0478 
 0.71    0.8859 0.6184 0.3013 1.0847 0.6015 0.2465 0.2249 0.5615 0.1211 
 7    0.8436 0.6178 0.3200 1.0331 0.6030 0.2615 0.2062 0.5645 0.1265 
 10    0.7667 0.6266 0.3365 0.9404 0.6151 0.2737 0.1753 0.5750 0.1283 
 15    0.7306 0.6417 0.3257 0.8976 0.6305 0.2633 0.1622 0.5848 0.1206 
 25    0.6980 0.6750 0.2830 0.8599 0.6614 0.2257 0.1510 0.6012 0.0988 
  0.5   0.4953 0.4077 0.0404 0.4752 0.6900 -0.6021 0.5342 1.3086 -2.0478 
  5   0.6389 1.2280 0.1047 0.6542 1.3713 -0.3097 0.7092 1.6445 -1.0732 
  10   0.6413 1.5821 0.1034 0.6549 1.7005 -0.2934 0.7075 1.9364 -1.0249 
  15   0.6422 1.8255 0.1040 0.6550 1.9312 -0.2827 0.7067 2.1495 -0.9963 
  20   0.6426 2.0178 0.1049 0.6551 2.1154 -0.2750 0.7064 2.3232 -0.9764 
   0.4  0.5144 0.1465 0.3971 0.4429 0.1196 0.3489 0.3900 0.1043 0.3090 
   0.8  0.5536 0.1631 0.4206 0.5040 0.1431 0.3900 0.4591 0.1267 0.3596 
   1.6  0.5730 0.1713 0.4317 0.5399 0.1634 0.4120 0.5109 0.3906 0.3835 
   2.1  0.5822 0.1751 0.4368 0.5587 0.1800 0.4227 0.5344 0.1290 0.4077 
   2.5  0.5846 0.1761 0.4381 0.5658 0.2317 0.4252 0.5421 0.1832 0.4111 
    0.6 0.5268 0.1519 0.4046 0.4592 0.1258 0.3600 0.4067 0.1090 0.3213 
    1.2 0.5136 0.1473 0.3958 0.4339 0.1179 0.3406 0.3773 0.1027 0.2967 
    1.7 0.5037 0.1438 0.3891 0.4176 0.1133 0.3277 0.3600 0.1000 0.2821 
    2.2 0.4947 0.1406 0.3829 0.4043 0.1099 0.3170 0.3465 0.0985 0.2705 
    2.7 0.4865 0.1377 0.3771 0.3931 0.1072 0.3078 0.3355 0.0975 0.2611 

 

 

5. CONCLUSIONS 

 

A mathematical model of steady-state laminar coating BL 

flow of magnetized Buongiorno nanofluid from a semi-infinite 

vertical surface to a non-darcy porous media has been 

developed. MHD and viscous dissipation effects, Thermal 

convection and nanoparticle mass transport have also been 

incorporated. The governing equations and BCs have been 

made dimensionless through suitable scaling and non-similar 

transformations. The subsequent nonlinear multi-physical 

BVP was then solved with a second-order implicit finite-

difference KBM, implemented in MATLAB. The Keller box 

code has been validated with previously published research. 

Graphical and tabulated Results about how several factors 

affect transport characteristics have been shown. 

Computations have shown that: 

(i) With an elevation in Nb, ( 𝑓 ′ ) and () profiles are 

amplified on the contrary, the () profile is suppressed 

throughout the BL regime. 

(ii) An increase in thermophoresis parameter (Nt) fluid the 

flow is significantly slowed down farther away from the 

surface, however, strongly enhances thermal and nanoparticle 

species BLT, which can have a significant influence on the 

homogeneity of nano-coatings in the manufacturing process. 

(iii) A heightened buoyancy ratio parameter (Nr) 

strengthens buoyancy-driven flows, declines fluid motion, and 

enhances (), () significantly. 

(iv) Strong fluid flow acceleration is produced close to the 

plate's surface by an increase in the Darcy parameter (Da) 

because of increased permeability, yet (), () of NPs are 

significantly suppressed across BL that is transverse to the 

substrate. 

(v) Higher (Fs) reduces ( 𝑓 ′ ) due to increased inertial 

resistance, but (), () surge throughout the BL transverse to 

the wall as reduced convective heat transfer allows more heat 

and better nanoparticle distribution. 

(vi) An enhancement in magnetic interaction parameter M, 

accelerates fluid flow, in the vicinity of the plate’s surface, but 

significantly depletes (), (), because of the heat generated 

during the process of pulling the magnetic polymer against the 

radial magnetic field. 

(vii) Considerable rise of Eckert number (Ec) boosts (𝑓 ′) by 

transforming kinetic energy into thermal energy and reducing 

viscosity. Higher (Ec) also accelerates () while decreasing (), 

as viscous dissipation promotes greater thermal energy and 

dispersion. 

(viii) Higher Prandtl number (Pr) decreases thermal 

diffusivity, resulting in a thicker thermal BL and reduced (Nu), 

(Cf).  

(ix) As Schmidt number (Sc) increases it enhances (Cf), 

mass transfer rate (Sh), heat transfer rate (Nu). 

(x) An increase in (Da) raises fluid permeability (𝑓 ′) and in 

turn enhancing (Cf), mass transfer rate (Sh), heat transfer rate 

(Nu). On the other hand, a higher (Fs) increases inertial 

resistance, reducing (Cf), mass transfer rate (Sh), heat transfer 

rate (Nu). 

The present study has revealed some interesting 

characteristics of semi-infinite substrate magnetic NF coating 

BL flows. This has practical implications for enhancing design 

and optimization of cooling systems, enhancing thermal 

properties of coatings electronic thermal management, and 

energy systems, where precise thermal control and efficient 

heat transfer are critical. This study fills the gap by 

incorporating all these aspects into a comprehensive 

mathematical model, offering new insights into the complex 

interplay between magnetic fields, heat and mass transfer, and 

NF behavior in porous structures that deviate from Darcy’s 

law. “Keller’s box method is very efficient in solving this 

complex multi-physical coating BVP. The study provides a 
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foundation for designing efficient thermal management 

systems by utilizing magneto-dissipative NFs to enhance heat 

transfer in porous structures. Its findings can be applied to 

optimize cooling in electronic devices, heat exchangers, and 

microfluidic systems where localized thermal control is 

essential. The ability to manipulate thermal conductivity via 

external magnetic fields enables adaptive and energy-efficient 

cooling solutions. Furthermore, the study's insights into 

controlled heat and mass transfer in magneto-dissipative NF 

flows can be directly applied to optimize coating uniformity 

and thickness in thermal spray and dip-coating processes. By 

tuning magnetic fields and nanoparticle pattern, enhanced 

adhesion and thermal stability of coatings on porous substrates 

can be achieved. This is particularly beneficial in industries 

requiring high-performance coatings, such as aerospace, 

biomedical, and microelectronics. 

As a result, future research may examine non-Newtonian 

polymeric models, such as viscoelastic and shear-thinning 

formulations, which will be presented shortly. 
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NOMENCLATURE 

B magnetic field vector (Tesla), Cw 

B0 constant transverse (radial) magnetic field (Tesla), C∞ 

b inertial drag coefficient (-), V 

Da Darcy number (-), Nu 

Fs Forchheimer number (-), Sh 

Ec Eckert number (-), Cp 

Pr Prandtl number (-), M 

Sc Schmidt number (-), p 

Gr local Grashof number (-), Cf 

x streamwise coordinate (m) 

y transverse coordinate (m),  

u dimensionless velocity components in x direction

(m/s),  

v dimensionless velocity components in y

direction(m/s), μ

Nb Brownian motion parameter (-),  

Nt thermophoresis parameter (-),  

Nr Buoyancy ratio parameter (-),  

f non-dimensional stream function,  

g 
acceleration due to gravity (m/s2), 

L 
characteristic length (m), 

DB 
Brownian diffusion coefficient (m2/s), (or)

Dm 
molecular diffusivity (m2/s), (or)

DT 
thermophoretic diffusion coefficient (m2/s), 

K 
permeability (-), (or)

k thermal conductivity of the fluid (W/mK),  

km effective thermal conductivity (W/mK), ρCp  

C nanoparticle volume fraction (-),  
T temperature of the fluid (Kelvin) 

wT wall temperature (K), w 

T ambient temperature (K),  

D nanoparticle diffusivity 

f

f

 f

 f

p

 m
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