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 In the present study, the entropy generation of Magnetohydrodynamic free convection in a 

two dimensional trapezoidal enclosure filled with hybrid nanofluid Al2O3-Cu/water was 

numerically analyzed. The hybrid nanofluid flow is designated using the Brinkman-

Forchheimer model. A finite volume approach is used to solve the Navier Stock equations 

numerically. A range of dimensionless variables, such as the Rayleigh number (Ra=104, 

105, 106), the position of inner hot rectangular barrier (0.5, 1.0, 1.5) and Hartmann number 

(Ha=0, 25, 50, 100) were simulated numerically. The numerical results are illustrated in 

forms of streamlines, isotherms, entropy generation, and the average of Nusselt number. 

They indicated that the convective heat transfer becomes significant when (Ra) increases, 

while it decreases when (Ha) increases. Also, it is seen that the location of hot barrier 

affects significantly the entropy generation. Furthermore, it is demonstrated that the 

thermal and the dynamical behaviour of the hybrid nanofluid enhanced pattern degrades 

with strong Hartmann values, which significantly decreased the entropies generation. In 

order to improve heat transfer, it is recommended to reduce the magnetic influence. 
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1. INTRODUCTION 

 

In recent years, a variety of engineering uses such as 

electrical parts cooling [1, 2], crystal formation, heat 

exchangers [3], and solar collectors [4, 5], have drawn a lot of 

attention to natural convection in closed cavities. Several 

important research works on natural convection in several 

cavities can be get in the previous studies [6-10]. Convective 

heat transfer in U-shaped enclosure has several scientific uses. 

and mechanical engineering. Esfe et al. [11] have investigated 

the free convection in a porous enclosure in a U shape 

contained Al2O3/H2O nanofluid. They have used the two-

phase mixture method. The results showed that the heat 

transfer rate and average Nusselt number increase with the 

increasing of the volume fraction of Al2O3 nanoparticles. Ali 

et al. [12] used the Galerkin finite element method to study the 

magnetohydrodynamic convection of a non-Newtonian 

nanofluid in a U-shaped enclosure. Nabwey et al. [13] 

investigated unsteady natural convection. They founded that 

the magnetic field control the heat transfer. In the last decade, 

we have seen a significant rise of nanofluids in industrial 

applications. The base fluid's thermal conductivity is raised by 

the nanoparticles. Choi and Eastman [14] investigated 

“nanofluids” used in engineering applications. Khanafer et al. 

[15] studied the natural convection in a closed cavity filled 

with nanofluid. They concluded that the heat transfer increase 

proportionally with increasing of volume fraction of 

nanoparticules. In addition, Khanafer and Vafai [16] 

experimentally investigated thermal conductivity models of 

nanofluid. Buongiorno [17] studied natural convection 

enhancement associated with using nanofluid. He founded a 

new analytical model for the transport phenomena in nanofluid. 

Kefayati [18] analyzed the two dimensional free convection 

and entropy generation in a porous square cavity filled with 

non-Newtonian nanofluid. They showed that the fluid friction 

changes with the power-law index for various numbers of Da. 

Al-Kouz et al. [19] analysed laminar natural convection in a 

tilted square enclosure equipped with hot walls. The free 

convection of Al2O3/H2o nanofluid in a square enclosure under 

Lorenz force was investigated by Ghasemi et al. [20]. They 

showed that concentration of nanofluid enhance strongly the 

heat transfer for important Rayleigh number. Also, Kefayati et 

al. [21] used a lattice Boltzmann approach to investigate the 

natural convection's movement and heat transfer in square 

enclosure filled with water/SiO2. They defined that there is a 

correlation ship between the Nusselt number, the volume 

fraction ϕ and Rayleigh number. Al-Kouz et al. [22] 

investigated the natural convection gas under low pressure 

inside a square cavity filled with of (Air/Al2O3) nanofluid. 

Recently, many researches were produced to investigate the 

application of the magnetic nanofluids in porous enclosures. 

Recent research indicates that the use of hybrid nanofluids is 

crucial for engineering applications [23, 24]. The exploration 

of Nanoparticles' thermophysical properties and applications 

of the magnetic nanofluids in porous enclosures fascinated 

scientists. These nanoparticles are suspended in base fluids 

that have subpar thermophysical characteristics [25-27]. 

Moreover, the previous studies examined the addition of 
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nanoparticles on the thermal conductivity [28, 29]. They 

discovered that even at modest volume fractions, nanoparticles 

can dramatically boost heat conductivity. In addition, the 

investigation of Acharya et al. [30] and Subhani and Nadeem 

[31] examined the causes of the increasing thermal 

conductivity, especially in magnetic fields and porous media. 

By assessing several hybrid nanofluids in the cavity, some 

researchers looked into how the type of nanoparticles affected 

heat transfer [32]. The utilization of hybrid nanofluid with 

important thermophysical properties improves heat transfer. 

A few review papers re-examined the impact of hybrid 

nanofluid characteristics on the system's total generated 

entropy. It is important to remember that although these fluids' 

properties have a significant impact on heat transmission, they 

also promote irreversibilities [33-37]. They noted that the 

Lorenz force has a significant effect on the entropy generation. 

Despite these advancements, the literature hasn’t 

thoroughly examined the development of entropy in complex 

geometries filled with a hybrid nanofluid under a Lorenz force. 

This research examines the entropy generation of laminar 

convection flow in a trapezoidal enclosure filled with hybrid 

nanofluid under the influence of a magnetic field. 

 

 

2. PHYSICAL AND MATHEMATICAL 

 

Figure 1 shows a physical model of a two-dimensional 

trapezoidal cavity of height and width (L) geometric 

parameters. The liquid filled in the enclosure is a hybrid 

Al2O3-Cu/water (50/50) nanofluid. The horizontal walls of the 

enclosure are adiabatic, while the two vertically inclined walls 

are maintained at constant cold temperatures (TC). The inner 

heated rectangular obstacle is minted at hot temperature TH. 

The cavity is applied to a constant horizontal magnetic field 

(B). Also, the space medium of the cavity is a homogeneous 

porous material. It is supposed that the liquid is incompressible, 

Newtonian, the Boussinesq approximation is validated and the 

flow is laminar and steady. 

 

 
 

Figure 1. The physical model 

 

2.1 Mathematical modeling 

 

2.1.1 Governing equations and boundary 

The Darcy-Brinkman-Forchheimer model is used to solve 

the Navier Stock equations, taking into account the Boussinesq 

approximation [23, 38, 39]: 
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2.1.2 The dimensionless governing equations 

The dimensionless variables are: 
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Eqs. (1)-(4) are reduced as follows after being transformed 

into dimensionless form: 
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The boundary conditions are given by: 

• Bottom horizontal wall of the cavity is adiabatic (Y=0, 

X=0 to L) 

 

𝑈 = 0, 𝑉 = 0,
∂𝜃

∂𝑋
= 0 (10) 

 

• Upper horizontal wall is adiabatic (Y=H, X1= H/tgα to L-

X1) 

 

𝑈 = 0, 𝑉 = 0,
∂𝜃

∂𝑋
= 0 (11) 

 

• The inclined left and right walls 

 

𝑈 = 0, 𝑉 = 0, θ = 0 (left) (12) 

 

𝑈 = 0, 𝑉 = 0, θ = 0 (right) (13) 

 

• The inner hot rectangular obstacle inside the cavity (Y=0, 

Y=h) 

 

𝑈 = 0, 𝑉 = 0, θ = 1 (14) 

 

2.2 Thermophysical properties of nanofluid 

 

The nanofluid's density, heat capacity, and coefficient of 

thermal expansion are calculated respectively as follow. Those 

formulas have been used in numerical simulation of natural 

convection [40-42]. 

The diffusion coefficient of nanofluid is presented by: 

 

( )1hnf f np   = − +  (15) 

 

The density, the thermal expansion coefficient, the specific 

heat capacity and the thermal conductivity of nanofluid is 

given respectively by: 

 

( )1hnf f np   = − +  (16) 

 

( ) ( )( ) ( )1
hnf f np

    = − +  (17) 

 

( ) ( )( ) ( )1p p phnf f np
c c c    = − +  (18) 
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According to the Brinkman mode, the effective dynamic 

viscosity is regarded as: 

 

( )
2.5

1

f

hnf





=

−
 (21) 

 

Designed for nanoparticles Al2O3 and Cu, the properties are 

obtained [37]. 

 

𝜑 = 𝜑𝐴𝑙2𝑂3 + 𝜑𝐶𝑢 (22) 

 

𝜌𝑛𝑓 =
𝜑𝐴𝑙2𝑂3(𝜌)𝐴𝑙2𝑂3 + 𝜑𝐶𝑢(𝜌)𝐶𝑢
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 (23) 
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𝑘𝑛𝑓 =
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𝜑
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Water base fluid and copper-aluminum oxide nanoparticles, 

thermo physical properties are presented in Table 1. 

 

Table 1. Thermo-physical properties of the fluid and the 

nanoparticles (Cu-Al2O3/ water (50/50) [43] 

 
Physical Properties Water Cu Al2O3 

Cp (J/kg k) 4179 383 765 

𝝆 (kg/m3) 997.1 8954 3600 

k (W/m k) 0.6 400 46 

β×10-5 (K-1) 21 1.67 0.63 

 

2.3 Heat transfer relation 

 

The corresponding average Nusselt numbers are used to 

express the heat transfer across the hot inner rectangular 

obstacle. 
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𝐿
7

0
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(29) 

 

In accordance with Seyyedi et al. [29], the definition of total 

entropy generation is: 

 

𝑆𝑔𝑒𝑛𝑇𝑜𝑡 = 𝑆𝑔𝑒𝑛𝑓 + 𝑆𝑔𝑒𝑛ℎ (30) 

 

Eq. (30), the entropy generated resulting from the flow is 

denoted by 𝑆𝑔𝑒𝑛𝑓, while the entropy generated caused by heat 
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is represented by 𝑆𝑔𝑒𝑛ℎ. 

 

𝑆𝑔𝑒𝑛𝑓 =
𝑘𝑛𝑓

𝜃0
2 [(

𝜕𝜃

𝜕𝑋
)

2

+ (
𝜕𝜃

𝜕𝑌
)

2

] (31) 

 

𝑆𝑔𝑒𝑛ℎ =
𝑘𝑛𝑓

𝜃0

[2 (
𝜕𝑈

𝜕𝑋
)

2

+ 2 (
𝜕𝑉

𝜕𝑌
)

2

+ (
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
)]

+  
𝜎𝑛𝑓

𝜎
𝐻𝑎2𝑉2 and 𝜃0 =

𝜃𝑐 + 𝜃ℎ

2
 

(32) 

 

2.4 Validation 

 

Numerical results published in the literature were used to 

validate the computer code. The dimensionless temperature in 

the cavity's midplane (Y=0.5) is compared to the benchmark 

study of Khanafer et al. [15] (Figure 2). 

 

 
 

Figure 2. The comparison of dimensionless temperature for 

ϕ=0.01, Pr=6.8, and Ra=6.8.104 at the midplane (Y=0.5) 

3. RESULTS AND DISCUSSION 

 

These results present the alteration of streamlines (ψ), 

isotherms (θ), the average Nusselt numbers (Nuavg), and 

entropy generation (S) for various values of impacted 

parameters like Rayleigh number Ra (Ra =102 ,103 ,105), 

Hartman number Ha (Ha=0, 100) and varying position of hot 

rectangular barrier (0.5, 0.9, 1.9) for fixed Darcy number 

Da=10-1, proportion of nanoparticles in volume ϕ=0.02 and 

porosity ϵ=0.5 through contours as observed in Figures 3-10. 

 

3.1 Effects of Rayleigh number (Ra) on (ψ), (θ) and (S) 

 

Figure 3 presents the variation of streamlines, isotherms and 

entropy generation for varying Ra at Ha=0.0 and Da=10-1. 

As Ra=103, the thermal buoyancy-driven convection is very 

feeble, we observe a horizontal stratification of the isotherms 

due to the stagnant fluid in the center of the enclosure. The 

streamlines form two single cells turning in the clockwise and 

unclockwise direction respectively. The heat transfer exhibits 

the characteristics of pure conduction. The overall shape of the 

streamlines demonstrates a downward flow at the cold inclined 

sides and an upward flow at the inner heated rectangular 

barrier for Ra≥105. 

For further, we observe that the variation of Ra number 

affects significantly the entropy generation because of a large 

temperature differential between the nanofluid and the hot and 

cold walls respectively. The entropy (S) is important in the 

vicinity of active walls. 
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Figure 3. The variation of (ψ), (θ) and (S) for different Ra at ϕ=0.02, ϵ=0.5, Da=10-1 and Ha=0 
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Figure 4. The plot of the (ψ), (θ) and (S) for different a) HR=0.5, b) HR=1.0 and c) HR=1.5 at ϕ=0.02, ϵ=0.5, Da=10-1 and Ha=0 

 

3.2 Effects of location inner hot rectangular barrier (HR) 

on (ψ), (θ) and (S) 

 

To highlight the effect of the location of the hot barrier (HR), 

we have considered different positions HR=0.5, 1 and 1.5 for 

fixed Ra=105. By observing the isotherms in Figure 4, when 

HR=1.0, we see that the heat flow is horizontal, through the 

thermal boundary layers at vicinity of actives walls (hot and 

cold walls), then it becomes vertical descending through 

vertical stratification gradually as we approach the middle 

space of the cavity with a low temperature gradient. On the 

other hand, when the position of the hot barrier is HR=0.5 and 

HR=1.5 Figure 4(a) and Figure 4(c), The fluid heats up more 

efficiently when the hot barrier is close to the cold wall. The 

temperature gradient is extremely strong at the hot wall and 

weak at the cold wall (HR=0.5, 1.5). The entropy (S) is 

considerable when the hot barrier is close to the cold wall 

(HR=0.5, 1.5). These results suggest that hot barriers can 

enhance thermal performance, which has significant 

implications for thermal system design. 

3.3 Effects of Hartman number (Ha) on (ψ), (θ) and (S) 

 

Figure 5 presents the development of (θ), (ψ) and entropy 

(S) inside the enclosure. The (θ) and (ψ) under a magnetic field 

demonstrate that the increasing of (Ha) number reduces the 

stream values. Figure 5(a) illustrates how the stream value 

decreases by 78% for Ha=0 to Ha=25 and by 230% for Ha=0 

to Ha=100. Based on these findings, we can conclude that the 

magnetic induction intensity limits the fluid's mobility. 

Furthermore, as the fluid becomes immobile in the cavity, 

the thermal exchange is significantly decreases. The entropy 

(S) is exclusively surrounding the heated obstacle, the 

isothermal contours is illustrated by horizontal stratification. 

The Entropy (S) is presented in Figure 5(c) where the (Ha) 

number is varied from 0 to 100. The thermal entropy decreases 

by around 69% as the (Ha) number increases for 0 to 25, but it 

decreases by 356% when Ha is increased from 25 to 50. By 

carefully modifying the (Ha) number, heat transfer efficiency 

can be managed. 

 Ψ ϴ S 

103 

 
Ψ max= 0.59  
Ψ min =-0.59  

 

 
104 

 
Ψ max = 4.43  
Ψ min = -4.43  

 

 
105 

 
Ψ max = 12.26  
Ψ min = -12.26  

 

 
106 

 
Ψ max =27.08  
Ψ min=-27.08  

 

 
 

 Ψ ϴ S 

103 

 
Ψ max= 0.59  
Ψ min =-0.59  

 

 
104 

 
Ψ max = 4.43  
Ψ min = -4.43  

 

 
105 

 
Ψ max = 12.26  
Ψ min = -12.26  

 

 
106 

 
Ψ max =27.08  
Ψ min=-27.08  

 

 
 

 Ψ ϴ S 

103 

 
Ψ max= 0.59  
Ψ min =-0.59  

 

 
104 

 
Ψ max = 4.43  
Ψ min = -4.43  

 

 
105 

 
Ψ max = 12.26  
Ψ min = -12.26  

 

 
106 

 
Ψ max =27.08  
Ψ min=-27.08  

 

 
 

 Ψ ϴ S 

103 

 
Ψ max= 0.59  
Ψ min =-0.59  

 

 
104 

 
Ψ max = 4.43  
Ψ min = -4.43  

 

 
105 

 
Ψ max = 12.26  
Ψ min = -12.26  

 

 
106 

 
Ψ max =27.08  
Ψ min=-27.08  

 

 
 

    

H=0.5 

 
 

 
H=0.9 

  

 
H=1.5 

  

 
 

    

H=0.5 

 
 

 
H=0.9 

  

 
H=1.5 

  

 
 

    

H=0.5 

 
 

 
H=0.9 

  

 
H=1.5 

  

 
 

    

H=0.5 

 
 

 
H=0.9 

  

 
H=1.5 

  

 
 

    

H=0.5 

 
 

 
H=0.9 

  

 
H=1.5 

  

 
 

    

H=0.5 

 
 

 
H=0.9 

  

 
H=1.5 

  

 
 

385



Ha=0.0 

   

 

Ha=25 

ψmin=-12.26, ψmax=12.26  
 

 

   

   

Ha=50 

ψmin=-9.62, ψmax=9.62  
 

 

   

   

 ψmin=-6.38, ψmax=6.38  
 

 

     

Ha=100 

   

 

ψmin=-2.84, ψmax=2.84  
 

 

Figure 5. The variation of the (ψ), (θ) and (S) for different Ha at ϕ=0.02, ϵ=0.5, Da=10-1 
 

 
 

Figure 6. The Nuavg number for different (Ra) number and 

location of inner hot barrier (HR) at ϕ=0.02, ϵ=0.5, Da=10-1 

and Ha=25 

 

3.4 Effects of location inner hot rectangular barrier (HR) 

on main (Nu) number 

 

Figure 6 provides the trend of (Nu) for various (Ra) number 

and various location of inner hot barrier (HR). The results 

illustrate that the increasing the Ra number is proportional to 

increasing of heat transfer for all position of hot barrier HR. 

Also, for low Ra number in range 103, 104 the heat transfer is 

important for HR=1.5 compared with the authors cases 

HR=0.5 and HR=1.0, because of the impact of a magnetic field 

applied in left side of the cavity. The heat exchange is 

favorable in the narrow space between the hot and cold walls. 

The system design implications are noteworthy, indicating that 

thermal management can be significantly enhanced by moving 

the hot barrier. 

 

3.5 Effects of (Ha) on the Nuavg number 

 

Figure 7 shows how the Hartmann number affects the (Nu) 

number; as the (Ha) number rises, the Nu number falls. The 

magnetic fields can be used to control fluid motion, but they 

may also decrease the efficiency of heat transfer. This has 

important consequences for system design. Therefore, it is 

crucial to evaluate the usage of magnetic fields in thermal 
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management systems to strike a balance between fluid 

movement and heat transfer performance. 

 

 
 

Figure 7. The main (Nu) number for various (Ha) number 

and different (Ra) number at ϕ=0.02, ϵ=0.5, Da=10-1 and 

HR=1.0 

 

3.6 Impact of porosity (ϵ) on the Nuavg number 

 

Figure 8 presents the influence of porosity on the (Nuavg) 

number for various volume fractions (ϕ) at (Da) number of 

10−2, Ha=0, and Ra=105. The results show that increasing 

porosity is proportional to the average Nusselt number. As 

porosity is important (ϵ=0.5), the hybrid nanofluid move freely 

through the orifices of the porous medium, thereby enhancing 

heat transfer. 

Furthermore, the heat exchange capacity is enhanced by the 

volume fraction (ϕ) due to the increasing of thermal 

conductivity. The Nuavg number for ϕ=0.06 is 5% higher than 

ϕ=0.02. 

 

 
 

Figure 8. The Nuavg number for various (ϵ) and different 

volumes fractions (ϕ) at Ra=105, Ha=0.0, Da=10-2 and 

HR=1.0 

 

3.7 Impact of Hartman number (Ha) on the Nuavg number 

 

Figures 9 indicates the evolution of the (Nuavg) number 

induced by the (Ha) number. The (Nuavg) number and the 

Hartmann number are shown to be inversely related. As the 

Hartmann number increases to 25 and 100, it significantly 

impacts heat transfer by reducing the Nusselt number for all 

volume fractions ranging from 2% to 6%. 

 

 
 

Figure 9. The Nuavg number for differents (Ha) and volumes 

fractions (ϕ) at Ra=105, ϵ=0.5, Da=10-2 and HR=1.0 

 

Magnetic fields can be used to control fluid motion, but they 

may also decrease the efficiency of heat transfer. This has 

important consequences for system design. The use of 

magnetic fields in thermal systems must therefore be carefully 

considered in order to balance the relation-ship between heat 

transfer performance and fluid motion control. 

 

3.8 Impact of Hartman number (Ha) on total entropy 

generation (STot) 

 

The variations of (STot) for different parameters are shown 

in Figure 10, including the volume fraction of the hybrid 

nanofluid and high values of (Da) number. According to the 

plot. 11, the entropy is enhanced when the volume fraction (ϕ) 

increases, particularly at high volume fractions (ϕ=6%) and 

significant porosity (ϵ=0.5). According to quantitative 

measurements, the entropy (STot) at ϕ=6% and ϵ=0.5 is 

substantially higher than at lower volume fractions. 

 

 
 

Figure 10. The total entropy (STot) for various (ϵ) and 

different volumes fractions (ϕ) at Ra=105, Ha=0.0, Da=10-2 

and HR=1.0 
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4. CONCLUSION 

 

Entropy generation study of magnetohydrodynamic 

convection, two-dimensional laminar Hybrid nanofluid flow 

inside a trapezoidal cavity with hot inner rectangular barrier 

was carried out. These flows have numerous technical uses, 

which makes them extremely important. The effects of Ra, Ha 

and HR on isotherms, streamline and entropy generation were 

examined. Results indicated that: 

1) Heat transfer is enhanced when the Ra number 

increase, whereas it decreases when the Ha number 

increase. 

2) For low Ra values, the heat exchange was more 

substantial for HR=1.5 than other position HR=0.5 

and HR=1.0. 

3) Entropy generation increase as Ra number increased 

but it decreases when Ha number increased. 

4) Heat transfer was enhanced by the hybrid nanofluid's 

volume fraction. The Nuavg number for ϕ=0.06 is 5% 

higher than ϕ=0.02. 

5) The isotherms, streamlines, and entropy generation 

were all strongly impacted by the displacement of the 

inner hot barrier. 

6) To enhance heat transfer and entropy generation in 

porous media systems, it is recommended to optimize 

these parameters, (Ra), (Ha) and (ϕ). 
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