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 Amid the global shift of smart manufacturing towards greener and more intelligent 

paradigms, the spatiotemporal coupling characteristics of dynamic heat conduction 

networks pose significant challenges for optimizing thermal consumption. Traditional 

mathematical models often lack adaptability to complex operational conditions, while 

conventional machine learning methods struggle to capture deep spatiotemporal 

dependencies in data. Moreover, static graph neural networks fail to account for the 

evolving relationships among nodes in heat conduction systems, limiting the accuracy of 

current prediction and optimization approaches. To address these issues, this study 

proposes a thermal consumption prediction algorithm based on spatiotemporal graph 

neural networks tailored for smart manufacturing. The proposed model integrates spatial 

graph structures with temporal sequence features: it employs graph convolution operations 

to capture the dynamic evolution of spatial heat conduction relationships among nodes, and 

leverages temporal analysis techniques to model time-dependent patterns. This unified 

approach enables comprehensive modeling of spatiotemporal dependencies in dynamic 

heat conduction networks. The study details the model architecture, spatial and temporal 

dependency modeling, and prediction methodology, and validates its effectiveness using 

real-world production data. The findings offer a precise prediction framework and strategic 

support for optimizing thermal energy use in smart manufacturing, overcoming the 

limitations of traditional methods in capturing dynamic spatiotemporal characteristics. 

This contributes both theoretical insight and practical value to enhancing energy efficiency 

and advancing green manufacturing initiatives. 
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1. INTRODUCTION 

 

Under the global trend of intelligent and green 

transformation of the manufacturing industry, smart 

manufacturing, as the core direction for industrial upgrading 

[1, 2], faces the dual challenge of improving production 

efficiency and reducing energy consumption. The heat 

conduction process widely exists in many aspects of smart 

manufacturing [3-5], such as processing technology, 

equipment operation, and material handling. Its dynamic 

characteristics directly affect the stability of the production 

process, product quality, and energy utilization efficiency. 

Dynamic heat conduction networks have complex 

spatiotemporal coupling characteristics [6], and the heat 

conduction relationships between nodes dynamically evolve 

with time and production conditions [7, 8]. Traditional thermal 

consumption management methods are difficult to accurately 

capture this dynamic nature, resulting in poor optimization 

performance. With the development of technologies such as 

the Industrial Internet and the Internet of Things [9], large 

amounts of multi-source heterogeneous data related to heat 

conduction have been accumulated in smart manufacturing 

systems. How to effectively utilize these data to build accurate 

dynamic heat conduction network models has become a key 

issue in achieving thermal consumption optimization. 

Modeling dynamic heat conduction networks and exploring 

thermal consumption optimization strategies have important 

theoretical and practical value in the field of smart 

manufacturing. Dynamic heat conduction networks involve 

complex spatiotemporal dependencies [10]. Integrating 

theories and methods such as graph theory and neural 

networks to model them [11, 12] can enrich and expand the 

theoretical system of complex system modeling in smart 

manufacturing and provide new ideas and methods for solving 

similar spatiotemporal dynamic system problems. Moreover, 

accurate thermal consumption optimization strategies can 

effectively reduce energy consumption in smart 

manufacturing processes, lower production costs, and improve 

the economic benefits of enterprises [13]. At the same time, 

they help improve the stability of production processes and 

product quality, enhancing the market competitiveness of 

enterprises. In addition, this aligns with the global concept of 

green manufacturing and sustainable development and plays a 

positive role in promoting the realization of the "dual carbon" 

goals. 

At present, for the research on heat conduction networks in 
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smart manufacturing, scholars have adopted a variety of 

methods. For example, some studies are based on traditional 

mathematical models, such as partial differential equations, to 

model the heat conduction process. However, such methods 

have poor adaptability when facing complex and variable 

production conditions and are difficult to accurately describe 

the dynamic characteristics of heat conduction [14, 15]. In 

data-driven methods, some studies use machine learning 

algorithms, such as support vector machines and random 

forests, for thermal consumption prediction. However, these 

methods are insufficient in mining the complex spatiotemporal 

dependencies hidden in the data, and their prediction accuracy 

needs improvement [16, 17]. In recent years, graph neural 

networks have shown advantages in processing graph-

structured data. Some scholars have applied static graph neural 

networks to heat conduction network modeling [18]. However, 

static graph neural networks cannot effectively capture the 

dynamic changes of node relationships in heat conduction 

networks and ignore the dependencies in the time dimension, 

resulting in limited model performance in dynamic scenarios. 

This paper mainly explores a thermal consumption 

prediction algorithm for smart manufacturing based on 

spatiotemporal graph neural networks, aiming to construct a 

model that can simultaneously capture the spatiotemporal 

dependencies of dynamic heat conduction networks. The 

specific content includes: first, a detailed explanation of the 

model structure, designing a spatiotemporal graph neural 

network architecture suitable for dynamic heat conduction 

networks, integrating modules for processing spatial graph 

structures and time series data; second, an in-depth study of 

spatial dependency modeling, using graph convolution 

operations to capture the spatial heat conduction relationships 

between nodes and their dynamic changes; then, modeling 

temporal dependencies, using time series analysis methods 

such as recurrent neural networks and temporal convolutional 

networks to explore the evolution patterns of the heat 

conduction process in the time dimension; finally, based on the 

constructed spatiotemporal graph neural network model, 

carrying out research on thermal consumption prediction in 

smart manufacturing, and verifying the effectiveness and 

superiority of the model using real production data. 

 

 

2. RESEARCH PROBLEM DESCRIPTION AND 

MODEL FRAMEWORK 

 

2.1 Research problem 

 

The dynamic heat conduction network in intelligent 

manufacturing is defined as a directed graph H=(N, R), where 

the node set N={n1, ..., nV} represents physical entities with 

heat conduction characteristics in the manufacturing system, 

such as processing equipment, material units, cooling devices, 

etc. Each node nu is associated with a set of static and dynamic 

attributes: The static attributes include physical parameters 

such as thermal conductivity of materials, geometric 

dimensions, rated power, etc., while the dynamic attributes 

cover time-varying state data such as real-time temperature, 

operating load, energy consumption rate, etc. The directed 

edge set R represents the heat conduction relationship between 

nodes. The edge direction nu→nk reflects the direction of heat 

flow from entity nu to nk, and the edge weight quk quantifies the 

conduction intensity, determined by contact area, thermal 

resistance coefficient, operating condition parameters, etc. 

The time dimension S={s1, ..., sl} characterizes the dynamic 

evolution features of the network, making the network present 

differentiated connection weights and node attributes at 

different moments sj, forming a time-dependent graph 

sequence {Hs1, ..., Hsl}. Figure 1 shows the schematic diagram 

of the spatiotemporal data flow of dynamic heat conduction in 

intelligent manufacturing. 

 

 
 

Figure 1. Spatiotemporal data flow of dynamic heat 

conduction in intelligent manufacturing 

 

The core data attribute characteristics of the directed graph 

are reflected in spatiotemporal coupling and multi-source 

nature: in the spatial dimension, the directed edge structure 

between nodes explicitly expresses the physical path of heat 

flow conduction, while the node attributes not only include the 

thermodynamic parameters of the device itself, but also 

integrate real-time operating condition data collected by 

sensors, such as motor temperature, surface heat flux density 

of workpieces, providing the basis for graph neural networks 

to capture nonlinear dependencies of spatial heat conduction. 

In the time dimension, the node attributes and edge weights 

dynamically change along with the production process, such 

as heat source fluctuations caused by the switching on and off 

of processing equipment, and changes in thermal resistance 

induced by cooling system adjustments, forming a time-series-

driven graph structure evolution. In addition, the data 

attributes integrate multi-source heterogeneous information, 

also including material property parameters in the process 

design stage and historical energy consumption records. After 

time-stamp alignment, these data form a spatiotemporal graph 

structure containing the node feature matrix As and the 

adjacency matrix Xs, providing rich input features for graph 

neural network modeling of the dynamic heat conduction 

process. 

Based on this model, the core objective of heat consumption 

optimization is transformed into: designing strategies that can 

dynamically adapt to changes in production conditions by 

capturing the spatiotemporal coupled heat conduction patterns 

in the graph structure, to minimize the total system heat 

consumption under the premise of ensuring production quality. 

Based on the above directed graph model, the specific research 

problem of this paper can be summarized as: how to construct 

a graph neural network architecture that integrates 

spatiotemporal dependencies, to accurately model the 

spatiotemporal evolution patterns of node attributes and edge 

weights in the dynamic heat conduction network, and generate 

optimal heat consumption control strategies accordingly. This 

problem includes three core sub-problems: 1) Spatiotemporal 

feature modeling problem – Existing static graph models are 
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difficult to handle the dynamic changes of edge weights and 

node attributes over time, requiring the design of suitable 

spatiotemporal graph convolution operators to jointly model 

the neighborhood dependency in spatial dimension and the 

sequential dependency in temporal dimension of the heat 

conduction network; 2) Multi-source data fusion problem – 

The heat conduction-related data in manufacturing systems 

have multi-source and heterogeneous characteristics, requiring 

research on how to convert these data into a unified 

representation processable by graph neural networks, avoiding 

information loss or feature conflict; 3) Optimization strategy 

mapping problem – Heat consumption optimization needs to 

balance production efficiency and energy cost, requiring the 

construction of a decision model with the prediction results of 

the graph neural network as input, combining constraints and 

objective functions to generate control strategies that can 

directly guide the actuators. Solving the above problems can 

break through the dependence of traditional heat consumption 

management methods on fixed conduction models, and 

provide a data-driven accurate solution for heat consumption 

optimization in complex dynamic scenarios of intelligent 

manufacturing. Figure 2 shows the overall architecture of the 

heat consumption optimization platform constructed in this 

paper for intelligent manufacturing. 

 

 
 

Figure 2. Overall architecture of heat consumption optimization platform in intelligent manufacturing 

 

2.2 Model composition 

 

For the directed graph structure of the dynamic heat 

conduction network in intelligent manufacturing, the model 

first captures the spatial heat conduction relationships between 

nodes through the diffusion graph convolution module. This 

module is based on node position representations, converting 

the heat flow conduction process among physical entities into 

signal diffusion on the graph structure. By designing diffusion 

operators regularized by the Laplacian matrix, the module 

realizes hierarchical aggregation of spatial features in node 

neighborhoods. Specifically, the inputs of the module are the 

node attribute matrix As and the adjacency matrix Xs. Through 

diffusion convolution operations, each node’s local 

neighborhood information is fused with its own attributes, 

generating node embeddings with spatial dependencies. This 

module not only retains the directional edge structure 

information of the heat conduction network, but also 

distinguishes the spatial position characteristics of different 

physical entities through a position encoding mechanism. Its 

output is directly used as the input features of the subsequent 

dynamic Gated Recurrent Unit (GRU) module, providing 

basic spatial representations for spatiotemporal joint modeling. 

The model achieves hierarchical modeling of temporal 

dependencies through the dynamic GRU module and Informer 

module. The D-GCGRU module embeds graph convolution 

operations into the gating mechanism of the traditional GRU, 

taking the spatial feature sequence generated by the diffusion 
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graph convolution as input. It dynamically fuses the spatial 

neighborhood information at the current time and the historical 

hidden states through the gating units, thereby capturing local 

temporal patterns in time series data such as node temperature 

changes and heat flow rates. Complementarily, the Informer 

module addresses issues of gradient vanishing and insufficient 

global dependency capture in long-term heat consumption 

prediction. Through a self-attention mechanism and Fourier 

transform, it converts time series into frequency domain 

features, efficiently capturing global dependencies at different 

time scales. Specifically, the Informer reduces computational 

complexity through probabilistic self-attention mechanisms, 

and extracts multi-resolution temporal features using 

hierarchical temporal aggregation strategies. Finally, it fuses 

with the output features of the D-GCGRU to generate 

prediction sequences containing spatiotemporal coupling 

information. The entire model architecture forms a three-level 

processing flow of “spatial feature extraction — local 

temporal modeling — global temporal dependency 

enhancement,” which can not only accurately depict the real-

time thermal coupling effects among devices in the heat 

conduction network, but also capture the long-term evolution 

trends of heat consumption in the production process, 

providing multi-dimensional prediction support for generating 

heat consumption optimization strategies. Figure 3 shows the 

heat consumption prediction model architecture in intelligent 

manufacturing. 

 

 

 
 

Figure 3. Heat Consumption prediction model architecture in intelligent manufacturing 

 

 

3. SPATIAL HEAT MODELING IN SMART 

MANUFACTURING 

 

In the dynamic heat conduction network of intelligent 

manufacturing, spatial dependency essentially refers to the 

spatial correlation characteristics formed by heat flow 

conduction among physical entities in the manufacturing 

system, manifested in the directionality of heat transfer 

between nodes, conduction intensity, and the influence of 

spatial layout on heat diffusion paths. In the dynamic heat 

conduction network of intelligent manufacturing, heat flow 

transfer has a clear physical directionality, and the directed 

graph modeling characteristics of diffusion graph convolution 

precisely match this requirement. To effectively capture the 

spatial dependencies of the dynamic heat conduction network, 

the model designs a diffusion graph convolution module that 

includes position representation. This module uses a diffusion 

operator regularized by the Laplacian matrix to hierarchically 

aggregate each node’s local neighborhood information with its 

own attributes, realizing nonlinear modeling of spatial heat 

conduction patterns. Specifically, the module inputs the node 

attribute matrix As and the adjacency matrix Xs, and through 

diffusion convolution operations, aggregates the features of 

the neighborhood nodes of node nu weighted by conduction 

intensity, generating node embeddings containing spatial 

dependencies. This forward modeling not only retains the 

physical causal relationships of heat conduction, but also 

captures long-range heat diffusion effects of higher-order 

neighborhoods through multi-layer convolution operations, 

enabling the model to accurately characterize the cascading 

propagation patterns of heat flow in the spatial dimension, and 

providing dependency information of forward conduction 

paths for heat consumption prediction. 

In the design of heat consumption optimization strategies, 

in addition to forward prediction of heat flow influence, it is 

also necessary to determine key control nodes through 

backward analysis, and the mathematical properties of 

diffusion graph convolution provide support for this kind of 

backward modeling. From the perspective of backward 

derivation of spatial dependencies, although the adjacency 

matrix Xs of diffusion graph convolution is constructed based 

on the physical conduction direction, its transposed matrix Xs
T 

can be used to characterize the reverse dependency 

relationships between nodes during the optimization process, 
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such as the sensitivity of the temperature change of node nk to 

the heat consumption regulation of node nu. For example, 

when the goal is to reduce the total heat consumption of the 

system, through backward propagation gradient analysis, 

diffusion graph convolution can identify upstream heat source 

nodes that have the most significant impact on the thermal 

states of downstream nodes, thereby guiding the optimization 

strategy to prioritize adjustment of the operating parameters of 

these nodes. In addition, the position encoding mechanism of 

diffusion graph convolution can quantify the impact of spatial 

layout on heat consumption in backward modeling. For 

example, high-heat-generating devices located at the center of 

the production line have a comprehensive impact on 

surrounding devices through multi-directional conduction 

paths. This can be captured by the model through gradient 

aggregation in backward propagation, and thus prioritized for 

regulation during optimization. This combination of forward 

modeling and backward derivation enables diffusion graph 

convolution to not only describe the physical propagation 

process of heat flow, but also provide key node identification 

and conduction path weight analysis in the spatial dimension 

for optimization targets, forming a “prediction–analysis–

regulation” closed loop, and ultimately improving the 

relevance and effectiveness of heat consumption optimization 

strategies. Specifically, suppose the out-degree matrix is 

represented by FP=ΣkX, the in-degree matrix is represented by 

FU=ΣkXT, the Sigmoid activation function is represented by δ, 

and the learnable parameters are represented by ϕ. The 

diffusion graph convolution operation is defined as: 

 

( ) ( )( )
1

1 1

0

j j
T

OUT P s U s

j

A F X F X A − −

=

 
= + 

 
  (1) 

 

In the dynamic heat conduction network of intelligent 

manufacturing, the static weights of traditional predefined 

adjacency matrices are difficult to adapt to complex and 

variable production conditions. The fundamental flaw lies in 

ignoring the dynamic and multi-source nature of heat 

conduction relationships. The intensity of heat flow 

conduction is not only affected by spatial position but also 

closely related to dynamic factors such as real-time operating 

status and process parameters. For example, when the spindle 

of a machine tool adjusts its speed due to changes in the 

hardness of the processed material, the contact thermal 

resistance between it and the workpiece changes in real time, 

resulting in dynamic changes in conduction weight; similarly, 

when multiple devices work collaboratively, the cluster 

thermal effect may cause indirect thermal coupling between 

non-adjacent nodes, and this implicit correlation cannot be 

captured by predefined static weights. In addition, the rich 

information contained in multi-source data in manufacturing 

systems needs to be fused through learnable weights, while 

static weights can only express a single spatial proximity 

relationship and cannot realize the joint modeling of "spatial 

position + operating status + process constraints." Therefore, 

the adjacency matrix weights must be learned dynamically as 

model parameters along with the data to accurately portray the 

dynamic dependencies between nodes in the heat conduction 

network, and to avoid spatial feature extraction bias caused by 

fixed weights. 

To achieve adaptive learning of adjacency matrix weights, 

the model adopts a dual-layer mechanism of "initial matrix 

initialization + data-driven optimization": First, an initial 

adjacency matrix is constructed based on geographical 

proximity and physical connection relationships from design 

drawings, serving as prior knowledge for weight learning to 

ensure the physical interpretability of model convergence; 

second, by introducing learnable parameters, the static matrix 

is upgraded to a dynamic matrix. Specifically, for each node 

nu, a position representation is learned, that is, through linear 

transformation ou=Qau, the pairwise relationship between 

arbitrary nodes is represented as follows: 

 

( )( )( )
( )( )( )
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1

exp ,
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where, T(ou,ok) = oS
uok. The following operation is then 

performed: 

 

, 0

0,

uk uk

e
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E
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 (3) 

 

Combining the ideas of diffusion graph convolution and 

position representation learning, assuming that the out-degree 

and in-degree matrices of E  are represented by �̃�𝑃  and �̃�𝑈 , 

respectively, and the activation function is denoted by δ, the 

graph convolution operation can be defined as follows: 

 

( ) ( )( )
1

1 1

0

j j
S

OUT P U

j

A F E F E A − −

=

 
= + 

 
  (4) 

 

 

4. TEMPORAL HEAT MODELING IN 

MANUFACTURING 

 

In the dynamic heat conduction network of intelligent 

manufacturing, local time dependency mainly manifests as 

high-frequency fluctuations and instantaneous associations of 

node states on a short time scale, such as transient heat flow 

changes caused by device start/stop or sudden temperature 

changes caused by cooling system adjustments. As a variant 

of recurrent neural networks, GRU's gating mechanism can 

effectively capture such short-term dynamic features: the 

update gate determines the retention degree of historical state 

to the current state, and the reset gate controls the forgetting 

rate of past information, thereby focusing on recent data's local 

dependencies when processing time series. Specifically in the 

heat consumption optimization scenario, GRU can 

dynamically integrate node historical temperature, power load 

and other dynamic attributes, such as the impact of the spindle 

temperature change of a machine tool at the previous moment 

on the current heat consumption. It also incorporates the heat 

conduction states of spatial neighbors into gate computation 

through graph convolution operations, achieving local time 

modeling of "node's own temporal features + spatial coupling 

effect of neighborhood." This mechanism is suitable for 

capturing short-term heat consumption fluctuations at the 

minute or second level, providing real-time feedback for heat 

flow regulation, and avoiding the bias of local dependency 

characterization caused by the lack of spatial information 

fusion in traditional temporal models. 

Global time dependency focuses on long-term evolution 

patterns of the heat conduction network on time scales of hours, 

shifts, or even days, such as periodic changes of device 
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accumulated heat loss during continuous processing, or the 

effect of diurnal temperature variation on the overall heat 

dissipation efficiency of the factory. Traditional recurrent 

neural networks have problems like gradient vanishing and 

high computational complexity when dealing with long 

sequences, while the Informer model, through probabilistic 

self-attention mechanisms and Fourier transform, can 

efficiently capture long-distance time dependencies, becoming 

the key to solving this issue. Specifically, Informer reduces 

computational cost through sparse self-attention operations, 

allowing the model to process longer time series without 

losing key information, and extracts multi-resolution temporal 

features using a hierarchical time aggregation strategy. In the 

heat consumption optimization scenario, Informer can capture 

heat consumption trends within production planning cycles 

and long-term influences such as seasonal variations on the 

energy efficiency of cooling systems, avoiding long-term 

prediction bias caused by relying solely on local temporal 

modeling. Complementing GRU's local modeling, Informer's 

global perspective provides cross-period planning support for 

heat consumption optimization strategies. The combination of 

the two achieves full coverage of the time dimension with 

"short-term dynamic response + long-term trend prediction." 

Specifically, this paper replaces the matrix multiplication 

operation in GRU with the graph convolution operation shown 

in Eq. (4). Suppose the input and output at time s are 

represented by As and Gs, the reset and update gates at time s 

are denoted by es and is, the diffusion graph convolution 

operation is represented by *ξ, and the corresponding 

convolution kernel parameters are represented by ϕe, ϕi, and ϕZ, 

then the model expression is as follows: 
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Based on the physical layout and design drawings of 

intelligent manufacturing equipment, an initial adjacency 

matrix is constructed with geographic proximity as the core, 

where nodes represent thermal conduction entities such as 

machining equipment and cooling devices, and the initial edge 

weights are determined by static spatial parameters such as 

equipment distance and contact area. Subsequently, the initial 

adjacency matrix is incorporated into model training as 

learnable parameters, allowing its weights to be dynamically 

updated with real-time thermal conduction data. For example, 

when the contact state between a machine tool and the 

workpiece changes due to process adjustments, the 

corresponding edge weight in the adjacency matrix is updated 

in real time through backpropagation to reflect the actual 

thermal conduction intensity under current working conditions. 

On the basis of the dynamic adjacency matrix, a recurrent 

neural network layer D-GCGRU is constructed. This module 

embeds the diffusion graph convolution operation into the 

GRU gating mechanism. It first aggregates the spatial 

neighborhood information of nodes at the current moment 

through diffusion graph convolution, generating node feature 

vectors that contain spatial dependencies. Then, the update 

gate and reset gate of GRU combine the current spatial 

features with the historical hidden state to dynamically 

determine the degree of forgetting and retaining past 

information. Taking machine tool heat consumption 

optimization as an example, when the spindle experiences a 

rapid temperature rise due to high-speed processing, D-

GCGRU captures the short-term temperature fluctuation 

sequence of the node and its neighboring cooling devices 

through the gating mechanism, and generates a hidden state 

representation of local thermal flow variation in real time, 

providing instant decision-making support for second-level or 

minute-level heat regulation, effectively coping with high-

frequency dynamic events such as equipment switching and 

load mutation. 

After being processed by the D-GCGRU layer, the output 

local temporal features are input to the Informer module to 

capture long-range temporal dependencies. First, positional 

encoding is performed on the local temporal features to 

generate an encoding vector containing relative temporal 

information for each time point, solving the self-attention 

mechanism’s insensitivity to temporal order. For example, 

when processing equipment heat consumption data recorded 

by shift, positional encoding can distinguish cyclical temporal 

features such as morning and night shifts. Then, the encoded 

sequence is input into the multi-head probabilistic sparse self-

attention layer of the Informer. Through the sparsification 

operation, computational complexity is reduced, allowing the 

model to efficiently process long-sequence data at hour or day 

scale. Specifically, the sequence of node nu over a certain time 

period Gu[:]=[G1
u, G2

u, ..., Gs
u] is computed as follows: 

 

( ), , softmax
SWJ

X W J N N
f

 
=  

 
 

 (6) 

 

To enhance the model’s expressive power for complex 

temporal patterns, the Informer adopts a multi-head attention 

mechanism, mapping the input sequence into multiple 

independent subspaces for parallel processing. Each head 

learns a different attention distribution, capturing 

dependencies in heat consumption sequences at different 

temporal scales. For instance, the first head focuses on minute-

level fluctuations due to equipment switching, the second head 

attends to hour-level shift cycle patterns, and the third head 

captures day-level differences between weekdays and 

weekends. Taking the heat consumption of stamping dies in 

automobile manufacturing as an example, multi-head attention 

can simultaneously identify the instantaneous heat flow peaks 

from single stamping operations, the accumulated thermal loss 

after 100 continuous stampings, and the baseline temperature 

after daily mold cooling. The outputs of each head are fused 

through concatenation to form a comprehensive representation 

containing multi-dimensional temporal information, enabling 

the model to cope with high-frequency noise, mid-term trends, 

and long-term cycles in heat consumption sequences, 

providing richer temporal feature inputs for optimization 

strategies. Assuming the output of the u-th attention head is 

HEADu, and the output linear transformation matrix is QP, it 

can be expressed as: 

 

( ) ( )1- ,..., P

u TMU HEAD G CONCAT HE HE Q=  (7) 

 

To ensure the Informer layer understands the relative 

positions of Gs, the output of the D-GCGRU is positionally 

encoded, that is, the time segment sequence Gu[:]=[G1
u, G2

u, ..., 

Gs
u] is combined with the positional encoding rs to generate a 
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new representation. The formula is: 
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After the multi-head attention layer, a self-attention 

distillation layer is introduced to optimize the computational 

results and address the complexity issue in long-sequence 

processing. The distillation layer adopts a hierarchical 

aggregation strategy to progressively compress the attention 

weights of long sequences, retaining only the most critical 

global dependencies for heat consumption prediction. For 

example, when processing 30-day heat consumption data of a 

production line, the distillation layer can automatically 

identify the 5 most influential historical time points for the 

current heat consumption, ignoring irrelevant noise data, 

thereby effectively reducing computational complexity while 

maintaining prediction accuracy. Specifically, for the output 

Gsv
u of the multi-head attention, the computation of the self-

attention distillation layer is: 

 

( )( )( )maxpool 1
l vs s

u uG CONV D G  =    
 (10) 

 

Finally, the global temporal features output by the Informer 

module are fused with the local spatiotemporal features from 

the D-GCGRU layer and input into the prediction layer to 

generate future heat consumption sequences for each node. 

During the fusion process, the model dynamically adjusts the 

weights of local and global features through a fully connected 

layer. For instance, in scenarios of sudden heat anomalies due 

to equipment failure, the weight of local features from D-

GCGRU is automatically increased for rapid response; in 

stable production phases, the model relies on the global trend 

features from Informer for optimization. The final heat 

consumption prediction results can be directly used to guide 

actuators: short-term predictions drive real-time regulation of 

cooling valves, heating elements, etc.; long-term predictions 

assist production planning systems in adjusting process 

parameters. Figure 4 shows the constructed Informer module 

architecture. 

 

 
 

Figure 4. Informer module architecture 

 

 

5. HEAT PREDICTION VIA DYNAMIC NETWORKS 

 

The core input of the prediction layer is the global temporal 

features output by the Informer module, which have integrated 

the long-term temporal dependencies and multi-scale time 

patterns of each node in the dynamic heat transfer network. To 

adapt to the heat consumption prediction task, the node feature 

matrix output by the Informer is first dimensionally integrated, 

concatenating each node’s global temporal representation with 

the local spatiotemporal features extracted by the D-GCGRU 

module to form a composite feature vector containing "node 

attributes–spatial correlation–temporal evolution". Then, a 

multi-layer feedforward network processes this feature 

through hierarchical nonlinear transformations: the first layer 

of neurons captures the nonlinear mapping relationship 

between heat consumption and device operating parameters 

and process conditions through the ReLU activation function; 

the middle layer utilizes Dropout to avoid overfitting; the final 

layer outputs the heat consumption sequence [As+1, ..., As+S] for 

the next S time points according to the prediction length S. 

Taking machine tool heat consumption prediction as an 

example, this network can convert features such as the 

spindle's historical temperature curve, the real-time heat 

dissipation efficiency of adjacent cooling devices, and the 

seasonal variation of workshop ambient temperature into 

hourly heat consumption predictions for the next 24 hours, 

providing data support for strategies such as equipment 

preheating and cooling system power regulation. 
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6. EXPERIMENTAL RESULTS AND ANALYSIS 

 

As shown in Table 1, regarding the R2 metric, the proposed 

method achieves 0.9752, significantly higher than ST-GNN 

(0.9652), GraphSAGE (0.9613), LSTM (0.9546), and ARIMA 

(0.9485), indicating that the proposed method has better 

goodness of fit for the heat consumption data and can explain 

more variation of the dependent variable. In terms of error 

metrics, the proposed method’s RMSE is 0.945, lower than 

ST-GNN (1.1236), GraphSAGE (1.2358), etc., and the MAPE 

and MAE are 2.8954 and 0.4752 respectively, also 

outperforming other models. This demonstrates that the 

proposed method controls both absolute and relative errors at 

a lower level when predicting heat consumption, and the 

deviation between the predicted and actual values is smaller. 

Combining with the content of this study, the proposed method, 

by designing a spatiotemporal graph neural network 

architecture adapted to the dynamic heat transfer network, 

effectively integrates spatial graph convolution operations and 

time series analysis, and can accurately capture the 

spatiotemporal dependencies in the heat transfer process. In 

contrast, although ST-GNN, GraphSAGE and other models 

involve graph structure or sequence processing, they are 

insufficient in capturing dynamics or spatiotemporal 

collaborative modeling, resulting in poorer fitting and error 

control compared to the proposed method. Traditional 

sequence models such as LSTM and ARIMA lack the 

characterization of spatial heat transfer relationships, leading 

to even more significant performance gaps. 

Table 2 shows the comparison of error between simulated 

and actual values of intelligent manufacturing heat 

consumption under different environments and layouts. For 

the Normalized Mean Bias Error (NMBE) metric, the open 

layout is 7.65%, and the dense layout is 6.4%; for the 

Coefficient of Variation of Root Mean Square Error 

(CVRMSE) metric, the open layout is 14.23%, and the dense 

layout is 13.26%. These two metrics both reflect the error level 

between simulated and actual values, with smaller values 

indicating smaller errors and more accurate predictions. The 

model captures the dynamic variation of spatial heat transfer 

relationships between nodes through graph convolution 

operations, demonstrating effective modeling capability of 

spatial dependencies under different layouts. In dense layouts, 

nodes have tighter heat transfer connections, and the model 

captures the dynamic features of heat transfer in such scenarios 

more precisely, thus resulting in relatively smaller errors; in 

open layouts, heat transfer is more complex due to 

environmental influences, but the model still controls errors 

within a reasonable range. Overall, the model can accurately 

predict heat consumption under different environmental and 

layout scenarios, effectively reflecting the spatiotemporal 

dependencies of the dynamic heat transfer network, further 

verifying the effectiveness and adaptability of the 

spatiotemporal graph neural network-based heat consumption 

prediction model in intelligent manufacturing, and providing a 

reliable predictive basis for subsequent heat consumption 

optimization strategies. 
 

Table 1. Performance comparison of different intelligent 

manufacturing heat consumption prediction models 

 

 R2 RMSE MAPE MAE 

Proposed Method 0.9752 0.945 2.8954 0.4752 

ST-GNN 0.9652 1.1236 4.1235 0.6895 

GraphSAGE 0.9613 1.2358 5.1236 0.8452 

LSTM 0.9546 1.3265 5.5632 0.9123 

ARIMA 0.9485 1.5689 6.3245 1.1256 

 

Table 2. Comparison of error between simulated and actual 

values of intelligent manufacturing heat consumption under 

different environments and layouts 

 

Metric Open Layout Dense Layout 

NMBE 7.65% 6.4% 

CVRMSE 14.23% 13.26% 

 

 

 
1) Open-layout 

 
2) Dense-layout 

 

Figure 5. Comparison of predicted and actual heat consumption values under different environments and layouts in intelligent 

manufacturing 
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Figure 5 shows the comparison between predicted and 

actual heat consumption values in intelligent manufacturing 

under different environmental and layout conditions. In the 

open-layout scenario, the fluctuation trend of the predicted 

values (light green) and the actual values (yellow) is highly 

consistent, and the variation amplitude of heat consumption at 

each time point is similar. For example, during the period from 

14:13 to 14:17, both show a significant upward trend in heat 

consumption, with peak values being close. Under the dense-

layout condition, the predicted values also closely follow the 

changes of the actual values. For instance, during 14:13 to 

14:17, the heat consumption increase amplitude and rhythm of 

the two are almost identical, indicating that the predicted 

values can reflect the dynamic change of actual heat 

consumption well under different layouts. Combined with the 

content of this paper, the model effectively captures the 

spatiotemporal dependencies of the dynamic heat conduction 

network by integrating spatial graph structure and time series 

data processing modules. The graph convolution operation 

accurately characterizes the dynamic changes of spatial heat 

conduction relationships between nodes, and the time series 

analysis method extracts the evolution pattern of heat 

conduction on the temporal dimension. As shown in the figure, 

whether it is open-layout or dense-layout, the predicted values 

are closely aligned with the actual values. Even though the 

spatial heat conduction characteristics of the two layouts are 

significantly different, the model can still adapt accurately. 

This fully verifies the effectiveness and robustness of the heat 

consumption prediction model based on spatiotemporal graph 

neural networks under different environmental and layout 

scenarios, which can provide accurate and reliable prediction 

support for heat consumption optimization strategies in 

intelligent manufacturing. 

The heat consumption prediction results present the heat 

consumption values and variation trends of equipment, 

process, and other links in future time periods. Through in-

depth analysis of the prediction data, the key factors affecting 

heat consumption are identified. For example, the prediction 

shows that the heat consumption of a certain machine tool 

increases significantly during a specific machining phase. By 

combining equipment operation parameters and the spatial 

dependencies of the heat conduction network, it is determined 

that the increase in heat generation is caused by excessive 

cutting speed or significant thermal aggregation effect due to 

proximity to adjacent equipment, thereby identifying key 

parameters to be adjusted and directions for optimization. 

According to the identified key influencing factors, 

corresponding heat consumption optimization strategies are 

matched. If the prediction shows that the heat consumption is 

too high due to unreasonable operation parameters of the 

equipment, then a dynamic adjustment strategy of equipment 

operation parameters is adopted. If it is found that the heat 

consumption of different production tasks is concentrated in 

time distribution, affecting overall heat consumption 

efficiency, a production task scheduling optimization scheme 

is selected. For example, if multiple high-heat-generating 

devices are predicted to operate at the same time period, 

resulting in excessive local thermal load in the workshop, a 

production task scheduling optimization strategy is matched to 

reschedule some tasks to other time periods. 

Using the spatial dependencies of the dynamic heat 

conduction network, the initially matched strategy is refined. 

Taking the equipment layout and spatial optimization scheme 

as an example, according to the heat consumption prediction 

results and the heat conduction relationships and edge weights 

between nodes in the directed graph, it is determined which 

devices have strong thermal coupling effects and need to be 

rearranged. For example, if the prediction shows that several 

devices in a certain area have high overall heat consumption 

due to close proximity and mutual heat conduction, a specific 

equipment relocation plan is formulated based on the spatial 

dependencies, including node position encoding and 

adjacency matrix information. This plan clarifies which 

devices should be moved to where, and how to adjust the 

layout of cooling devices to reduce heat consumption. A 

quantitative analysis is conducted on the refined plan to 

evaluate its feasibility and optimization effect. By simulating 

the changes in heat consumption after the implementation of 

different plans and comparing the prediction results, the 

optimal plan is selected. For example, for the strategy of 

dynamic adjustment of equipment operation parameters, the 

degree of heat consumption reduction under different 

parameter adjustment ranges is simulated, and the best 

parameter adjustment value is determined by combining 

factors such as production efficiency and machining accuracy, 

ultimately forming a complete and executable heat 

consumption optimization plan. 

 

Table 3. Total heat consumption and energy-saving rate of intelligent manufacturing in different test cases 

 

Optimization Strategy 
Test Period 

Case 1 Case 2 Case 3 Case 4 

Dynamic Adjustment of Equipment Operation Parameters 456.32 7.6% 512.23 6.2% 489.36 6.3% 465.32 6.6% 

Optimization of Production Task Scheduling 458.32 7.4% 514.36 6.3% 489.32 6.1% 468.62 6.1% 

Heat Recovery and Reuse 459.31 7.3% 512.39 5.7% 487.21 6.1% 469.21 6.8% 

Intelligent Temperature Control System Coordination 512.36 7.4% 528.69 6.3% 512.36 6.1% 512.58 6.6% 

 

Table 3 presents the total heat consumption and energy-

saving rates of intelligent manufacturing under different 

optimization strategies across various test cases. The dynamic 

adjustment of equipment operating parameters strategy 

achieved total heat consumption values of 456.32, 512.23, 

489.36, and 465.32 in Cases 1 to 4, with energy-saving rates 

of 7.6%, 6.2%, 6.3%, and 6.6%, respectively. The production 

task scheduling optimization strategy resulted in heat 

consumption totals of 458.32, 514.36, 489.32, and 468.62, 

with energy-saving rates of 7.4%, 6.3%, 6.1%, and 6.1%. The 

heat recovery and reuse strategy yielded heat consumption 

values of 459.31, 512.39, 487.21, and 469.21, with energy-

saving rates of 7.3%, 5.7%, 6.1%, and 6.8%. The intelligent 

temperature control system linkage strategy achieved heat 

consumption totals of 512.36, 528.69, 512.36, and 512.58, 

with energy-saving rates of 7.4%, 6.3%, 6.1%, and 6.6%. Each 

strategy achieved varying degrees of energy savings, with total 

heat consumption values fluctuating within a reasonable 

range. Based on the research presented in this paper, the 

spatiotemporal graph neural network model accurately 

510



 

captures the spatiotemporal dependencies of dynamic heat 

conduction networks, enabling the effective implementation 

of various optimization strategies. Strategies such as dynamic 

adjustment of equipment operating parameters and production 

task scheduling optimization leverage the model's analysis of 

spatial heat conduction relationships and temporal evolution 

patterns to achieve targeted control of heat consumption. For 

instance, the heat recovery and reuse strategy enhances waste 

heat utilization efficiency through the model's modeling of 

heat conduction paths, achieving an energy-saving rate of 

6.8% in Case 4. The intelligent temperature control system 

linkage strategy utilizes the model's exploration of temporal 

heat consumption evolution to adjust temperature control 

parameters in real time, achieving an energy-saving rate of 

7.4% in Case 1. These data demonstrate that heat consumption 

optimization strategies based on this model effectively reduce 

heat consumption and improve energy-saving rates across 

different scenarios, validating the effectiveness of the 

optimization strategies and the reliability of the model's 

support, providing practical and feasible pathways for 

achieving energy savings in intelligent manufacturing. 

Figure 6 illustrates the variations in heat consumption 

values at different times of the day for various intelligent 

manufacturing heat consumption optimization strategies in 

Case 1. The intelligent temperature control system linkage 

strategy had a heat consumption value of approximately 48 

kW at 8:00, which subsequently fluctuated downward. The 

heat recovery and reuse strategy started at around 44 kW at 

8:00, showing a trend of decreasing, then increasing, and then 

decreasing again. The production task scheduling optimization 

strategy began at about 43 kW at 8:00, with more frequent 

fluctuations thereafter. The dynamic adjustment of equipment 

operating parameters strategy started at approximately 44 kW 

at 8:00, maintaining a relatively stable overall trend. At all 

times, the heat consumption values for each strategy were 

lower than those in the unoptimized state, and they exhibited 

fluctuations throughout the day that aligned with production 

activities, reflecting the effective regulation of heat 

consumption by the optimization strategies. Experimental 

results indicate that these optimization strategies rely on the 

spatiotemporal graph neural network model's precise capture 

of the spatiotemporal dependencies in dynamic heat 

conduction networks. The intelligent temperature control 

system linkage strategy utilizes the model's analysis of 

temporal heat consumption evolution patterns to adjust 

temperature control parameters in real time, effectively 

controlling heat consumption growth during peak production 

periods. The heat recovery and reuse strategy enhance waste 

heat utilization efficiency through the model's modeling of 

spatial heat conduction relationships, reducing overall heat 

consumption. The production task scheduling optimization 

and dynamic adjustment of equipment operating parameters 

strategies also achieve targeted control of heat consumption 

based on the model's analysis of spatial dependencies and 

temporal sequence features. The data in the figure demonstrate 

that each strategy effectively reduces heat consumption at 

different times of the day, validating the effectiveness and 

adaptability of the heat consumption optimization strategies 

based on this model in actual production, and highlighting the 

feasibility and advantages of achieving heat consumption 

optimization through dynamic heat conduction network 

modeling. 

 

 
 

Figure 6. Heat consumption at all optimized time points of intelligent manufacturing in case 1 throughout one day 

 

 

7. CONCLUSION 

 

This study focused on optimizing heat consumption in 

intelligent manufacturing by proposing a heat consumption 

prediction algorithm based on spatiotemporal graph neural 

networks. The model integrated spatial graph structures with 

time series processing modules to deeply explore the modeling 

of spatial and temporal dependencies. Validated by real 

production data, the model outperformed comparative 

methods such as ST-GNN, GraphSAGE, and LSTM across 

various metrics. Additionally, optimization strategies based on 

the model achieve energy-saving rates exceeding 5% in 

different test cases, effectively demonstrating the feasibility of 

precise heat consumption prediction and optimization through 

dynamic heat conduction network modeling. This provides 

innovative methods and technical support for energy 
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conservation and consumption reduction in intelligent 

manufacturing, highlighting the study's significant value in 

enhancing energy utilization efficiency and promoting green 

manufacturing. 

However, the study has limitations: the model relies on 

specific scenario data, and its generalizability needs further 

validation; the complex architecture of the spatiotemporal 

graph neural network demands high computational resources, 

limiting its applicability in certain scenarios. Future work may 

expand data coverage to include heat consumption data from 

multiple industries and scenarios to enhance model 

generalization; explore model lightweighting techniques to 

reduce computational costs and improve deployment 

convenience; and further integrate emerging technologies such 

as reinforcement learning and digital twins to deepen the 

regulation of complex behaviors in dynamic heat conduction 

networks, advancing the research toward more efficient, 

intelligent, and universal directions, aiding the manufacturing 

industry in achieving green and low-carbon transformation, 

and expanding the application boundaries and depth of the 

research in cross-industry intelligent manufacturing scenarios. 
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