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The proliferation of the Internet of Things (IoT) has tremendously increased the attack 

vectors for cyber threats, which necessitates advanced intrusion detection systems. In this 

paper, we propose a new method for detecting intrusions to the IoT based on a new hybrid 

deep learning model and metaheuristic algorithm for optimal feature selection. Our 

methodology takes advantage of the synergy between the CNN, BiGRU, and BiLSTM grids 

of models and integrates them into one architecture that enables them to leverage the spatial 

and temporal attributes of data to improve anomaly detection. While the model is refined 

using the Genetic, Harris Hawk, Dragonfly, Grey Wolf, and Particle Swarm Techniques, 

PSO demonstrates the best results, with a 98.11% accuracy level. This research uses 

comprehensive ToN-IoT datasets for analysis, which includes a wide variety of normal and 

adversarial traffic patterns affecting the IoT. The results show that our new hybrid model 

not only possesses a high level of accuracy, but it also exhibits considerable potential for 

real-world deployment. We further suggest potential areas for developing the model, such 

as scalability, real-time readiness, and its integration in environment computing. Our study 

advances cybersecurity by developing a cost-effective solution that can provide optimal 

protection to the IoT from multiple intrusion cases.  
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1. INTRODUCTION

In the fast-paced field of IoT security, the necessity for 

developing robust intrusion detection systems has become 

critical to mitigate the growing risks posed by sophisticated 

cyber threats [1]. Unlike traditional technologies, the IoT 

ecosystem is a massive collection of interconnected devices 

ranging from simple sensors to complex controllers, which 

have substantially expanded the attack surface. Consequently, 

traditional security technologies are increasingly unsuccessful 

in ensuring adequate protection. In the past, intrusion detection 

systems (IDS), used signature and anomaly-based methods. 

Signature-based methods identified threat patterns against 

observed activities to confirm threats. Anomaly-based 

methods identified deviations from normal activities to 

recognize threats. However, growing challenges to these 

approaches make them inappropriate for the dynamic and 

heterogeneous nature of IoT environments [2]. 

The increasing number of IoT devices and, correspondently, 

the amount of data they generate can reveal the weaknesses of 

the traditional IDS systems. The high rate of false positives 

and lack of scalability are problematic to solve, particularly 

considering the number of different devices and configurations 

that can be connected to the network. In addition, the static 

nature of signature-based methods leaves a high proportion of 

attacks undetected due to zero-day threats or multi-vector 

attacks that are more common in IoT. 

The increasing complexity of the IoT environment requires 

more adaptive and intelligent security solutions. Deep learning 

(DL), as a technology capable of processing vast volumes of 

data and learning from them, has tremendous potential 

advantages in overcoming the limitations of traditional IDS 

systems [3]. Due to the ability to use the most sophisticated 

algorithms to perform pattern recognition and anomaly 

detection in data, DL-based IDS solutions can identify even 

subtle and unprecedented cybersecurity threats without any 

predefined signatures. However, the implementation of these 

innovative mechanisms in the practical real-world application 

scenarios of IoT is subjected to several serious challenges. 

These predominantly refer to the lack of computational 

efficient and properly functioning feature selection (FS) 

mechanisms to manage the high-dimensional data used in IoT 

networks [4]. 

IoT network intrusion detection faces significant difficulties 

due to the resource constraints of IoT devices and the 

heterogeneous nature of IoT networks. Many IoT devices are 

limited in processing power, memory, and energy, making it 

difficult to deploy resource-intensive intrusion detection 

mechanisms. This limitation often results in slower response 

times and reduced detection accuracy, as the devices cannot 

handle the computational load required for sophisticated 

detection techniques. Furthermore, the heterogeneity of IoT 

networks, consisting of diverse devices with varying 

capabilities and communication protocols, adds complexity to 

the intrusion detection task. Traditional IDS systems, which 

are designed for more homogeneous networks, struggle to 
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adapt to the varied and dynamic nature of IoT environments. 

These factors underscore the necessity of developing efficient 

and scalable intrusion detection methods tailored specifically 

to the IoT context. 

To address these challenges, we propose a novel hybrid 

deep learning model integrating Convolutional Neural 

Networks (CNN), Bidirectional Gated Recurrent Units (Bi-

GRU), and Bidirectional Long Short-Term Memory (Bi-

LSTM) networks. This architecture combines the strengths of 

each component to enhance both feature learning and temporal 

data processing for IDS. 

To optimize feature selection, we employ five established 

metaheuristic algorithms [5]: Genetic Algorithm (GA) [6], 

Harris Hawk Optimization (HHO) [7], Dragonfly Algorithm 

(DA) [8], Grey Wolf Optimizer (GWO) [9], and Particle 

Swarm Optimization (PSO) [10]. These algorithms excel in 

efficiently exploring and exploiting high-dimensional search 

spaces, enabling the identification of the most discriminative 

features for robust intrusion detection. 

This research work has two main objectives; to investigate 

the performance of the proposed hybrid DL model in detecting 

IoT intrusion and to examine the performance of the earlier 

metaheuristic algorithms in FS optimization. By 

accomplishing those objectives, the research paper intends to 

make a valuable contribution to the improvement of IDS in the 

IoT environment and to offer some benefits regarding the 

application of advanced machine learning (ML) in security 

fields. To conclude, the paper presents important progress in 

the field of IoT security, featuring the use of innovative DL 

and metaheuristic algorithms to solve the presently existing 

issue of optimal FS. The importance of this research is that, 

aside to the possibility of increasing the precision and 

productivity of IDS, it also creates a solid basis for the 

development of stronger IoT networks in the entirety of 

cybersecurity. 

2. RELATED WORKS

Recent IoT IDS research focuses on ML/DL to improve 

detection and reduce false positives. Despite progress, 

challenges persist: high computational costs, overfitting due to 

high-dimensional data, reliance on outdated datasets, and class 

imbalance. 

Recent studies show significant progress in feature selection 

for IoT security. IG and GR achieve >99.99% accuracy on 

IoT-BoT and KDD datasets [11]. Six ML models with PCA 

and GIWRF were tested, with Random Forest performing best 

on ToN-IoT [12]. ReliefF FS with ML/DL models reaches ~98% 

accuracy [13], while Chi-Square, Pearson, MI and NSGA-II 

maintain 99.48% accuracy with 13 features [14]. K-Best FS 

with ensemble ML achieves ~99.99% performance [15]. Chi2 

FS, SMOTE and XGBoost show high accuracy on ToN-IoT 

[16]. LIDSS uses tree-based FS for lightweight networks [17], 

and CAT-S hybrid FS improves accuracy while reducing FPs 

[18]. XGBoost FS cuts features by 79% [19], though no single 

FE/ML model works best across all datasets [20]. 

Limitations include resource-heavy DL models, 

inconsistent FS/FE generalization, outdated static datasets, 

and skewed class distributions. Though SMOTE helps, 

imbalance remains an issue. 

3. PROPOSED APPROACH

Our proposed approach, encapsulated in Figure 1, 

represents a comprehensive strategy to address the challenge 

of intrusion detection within IoT networks using a hybrid DL 

model. The foundation of our approach lies in the utilization 

of the ToN-IoT datasets, a diverse compilation of data 

reflecting both normal and adversarial patterns within IoT and 

IIoT systems, designed to simulate real-world industrial 

network complexities. 

The initial phase of data preprocessing is critical to our 

methodology. We employ downsampling techniques to 

balance the class distribution within the dataset, mitigating 

bias towards any particular category of network traffic. This 

step is crucial to ensure that the model is not predisposed to 

overfitting to the ’normal’ class, which initially accounts for 

the majority of the data. Normalization and categorical 

encoding are then applied to make the dataset compatible with 

the requirements of ML algorithms, which prefer numerical 

input. 

In FS, we explore various metaheuristic algorithms, each 

with unique capabilities to navigate through high-dimensional 

spaces to identify relevant features efficiently. These 

algorithms, namely GA, HHO, DA, GWO, and PSO, are 

instrumental in extracting a potent set of features from the 

preprocessed data, which are then used to train our hybrid 

model. 

The core of our approach is the hybrid CNN-BiGRU-

BiLSTM architecture, which leverages the strengths of 

convolutional layers for feature extraction and bidirectional 

recurrent layers to capture temporal dependencies and 

contextual information from the selected features. The 

combined model is designed to enhance the predictive 

capabilities of the system, allowing for accurate, real-time 

intrusion detection. 

Figure 1. Proposed scheme 
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Our assessment of the model’s performance involves a 

comparative analysis of how each FS method influences the 

outcome. Thus, we are able to validate the strength and 

credibility of our hybrid model and identify the most suitable 

metaheuristic technique in our context. Consequently, our goal 

is to enhance our system performance in high precision, recall, 

and F1-score measures, which are essential success metrics in 

adequately predicting the classification of multi-class network 

traffic data for IoT security. 

Through this meticulous process, we aspire to advance the 

state-of-the-art in AI-driven cybersecurity applications, 

providing a model that is not only academically robust but also 

practically reliable in the ever-evolving landscape of IoT 

network security. 

A. Dataset

For our experiment, we used the ToN-IoT datasets that were

created specifically for this purpose. The datasets were 

introduced in the study [21] and provide a unique opportunity 

to test the efficiency of AI-based approaches to cybersecurity 

in IoT and IIoT environments. The ToN-IoT datasets include 

several types of data from different sources, such as telemetry 

from IoT and IIoT sensors, OSes data from Windows 7 and 10 

and Ubuntu 14 and 18 TLS, and network traffic, among others. 

This data was collected as part of a large network of the 

UNSW Canberra Cyber, at the School of Engineering and 

Information Technology at UNSW Canberra @ the Australian 

Defence Force Academy. 

Our datasets were tailored to suit the complexity and scale 

challenge of IIoT and Industry 4.0 networks. We did so by 

setting up a new testbed in the IoT lab connecting many virtual 

machines, physical systems, hacking platforms, cloud, and fog 

platforms. Furthermore, the datasets comprise data from 

normal behaviors and various cyber-attack event, including 

DoS, DDoS, ransomware inflicted into the IIoT network.  

Scanning: This attack involves an intruder probing a 

system to gather information about available services and open 

ports, typically serving as the first step before launching 

additional attacks. 

XSS (Cross-Site Scripting): In the context of IoT, XSS 

attacks exploit vulnerabilities in web servers by running 

malicious scripts, which can compromise authentication 

mechanisms and leak sensitive data. 

DoS (Denial of Service): A DoS attack aims to disrupt 

service availability by overwhelming a system with excessive 

requests, rendering it inaccessible to legitimate users. 

DDoS (Distributed Denial of Service): Using a network of 

compromised devices (bots), this attack seeks to exhaust IoT 

resources by flooding them with a high volume of connections, 

thereby incapacitating the system. 

Backdoor: This technique enables attackers to gain 

unauthorized remote access to IoT systems, often facilitating 

the deployment of botnets for subsequent DDoS attacks. 

Injection Attack: Attackers inject malicious data or code 

into an IoT system to disrupt its normal operations or seize 

control over system functions. 

Password Cracking: Through methods like dictionary or 

brute-force attacks, intruders attempt to break IoT device 

passwords, bypassing security measures to gain unauthorized 

access. 

MITM (Man-in-the-Middle): In this type of attack, an 

adversary intercepts and potentially alters data transmissions 

within an IoT network, often using techniques like port 

stealing to exfiltrate information covertly. 

Ransomware: A particularly damaging form of malware, 

ransomware locks users out of devices or services, demanding 

payment in exchange for a decryption key. In IoT 

environments, such attacks can cause substantial financial and 

operational damage. 

This rich diversity of situational data provides the important 

basis for the study. Particularly, it supports all analyses and 

exploration experiments of the proposed hybrid DL in IoT 

network intrusion detection. 

B. Data Preprocessing

The class distribution of network traffic data is illustrated in

Figure 2 using a pie chart, which represents the proportion of 

each class before applying downsampling. The chart 

highlights a significant class imbalance, where the majority 

class, "normal," accounts for 65.1% of the total data. The 

remaining attack classes are distributed as follows: 

"scanning," "DoS," "injection," "DDoS," "password," "XSS," 

"ransomware," and "backdoor" each constitute 4.3% of the 

dataset. The "MITM" class is notably underrepresented, 

making up only 0.2% of the total data. This imbalance can 

adversely impact model training, as classifiers tend to be 

biased toward the dominant class, necessitating techniques 

like downsampling to improve detection performance across 

all attack categories. 

Figure 2. The class distribution of TON-IoT dataset 

The downsampling step in our work aimed to equalize the 

representation of each class within our dataset. Initially, our 

dataset suffered from a significant class imbalance, with the 

"normal" category overshadowing the cyber threat classes. To 

rectify this and improve the efficacy of our ML models, we 

began by removing all instances of the "man-in-the-middle" 

(MITM) attack class, as it was deemed either too infrequent or 

irrelevant for our specific model training purposes. 

We then implemented a downsampling function, which 

balanced the dataset by reducing the number of samples in 

each class to a consistent number. Specifically, we reduced 

each class to a maximum of 10,000 samples. If a class 

contained fewer than 10,000 samples, all instances were 

retained to maintain the integrity of the data. The 

downsampling was conducted using a random selection 

method, ensuring that the retained instances were 

representative of the overall distribution of each attack type. 

The implementation was performed using the 
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sklearn.utils.resample function, setting the replace=False 

parameter to prevent duplicate instances and ensure data 

diversity. 

Post-downsampling, as reflected in Figure 3, each 

remaining class—including "normal," "DoS," "DDoS," 

"injection," "backdoor," "XSS," "password," "scanning," and 

"ransomware"—is equally represented with 11.1% of the 

dataset. This equitable distribution is instrumental in 

preventing model overfitting to the most common class and 

ensures that our model remains sensitive to all classes, thereby 

enhancing its detection capabilities across various types of 

network traffic and cyber threats. 

 

 
 

Figure 3. The class distribution of TON-IoT dataset after 

downsampling 

 

In our research, we conducted several preprocessing steps 

to prepare the dataset for use in training our ML model, each 

chosen for its specific benefits. We started by encoding 

categorical variables into a numerical format using a 

LabelEncoder. This step is essential because ML models, as 

mathematical constructs, require numerical input to perform 

computations; categorical data in text form cannot be directly 

interpreted by these models. By converting categories into 

numbers, we maintain the categorical information in a way 

that our models can understand and process. 

After encoding the categorical features, we applied one-hot 

encoding to the target variable using ‘to categorical’ from 

Keras. One-hot encoding converts categorical variables into a 

format that could be provided to ML algorithms to do a better 

job in prediction. It creates a binary column for each category 

and returns a sparse matrix or dense array. By using this 

technique, we avoided the potential pitfalls of the model 

interpreting the numerical labels as having some sort of order 

or rank, which is not the case with categorical outcomes. 

Next, we applied the MinMaxScaler to normalize the 

features in our dataset. Normalization is a crucial 

preprocessing step in machine learning, ensuring that 

numerical values across different features are scaled to a 

common range without distorting their relationships or losing 

essential information. MinMaxScaler transforms each feature 

individually to fall within a specified range, typically [0,1], 

using the following equation: 

 

𝑋scaled =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 (1) 

where, X represents the original feature value, 𝑋𝑚𝑖𝑛  is the 

minimum value of the feature, and 𝑋𝑚𝑎𝑥  is the maximum 

value of the feature. 

By applying this transformation, all feature values are 

mapped within the [0,1] range, effectively standardizing the 

dataset while preserving the original distribution. 

Finally, we split the dataset into training and test subsets 

using ‘train test split’, ensuring that our model could be 

trained on one portion of the data and validated on another. 

The test size parameter specifies the proportion of the data to 

be used for testing, which we set at 20%. 

These preprocessing steps together are crucial for our 

hybrid DL model as they prepare the raw data in a structured 

form, enhancing the learning process and enabling the model 

to make accurate predictions. Each step carefully conditions 

the data, preserving the inherent patterns and relationships 

while making them accessible for the learning algorithms to 

detect and utilize. 

C. Feature Selection 

In the feature selection (FS) step of our proposed approach, 

we employ metaheuristic algorithms to effectively identify the 

most relevant features from high-dimensional IoT network 

data. Traditional FS methods often struggle with the 

complexity of large search spaces and the combinatorial nature 

of selecting an optimal subset of features. In contrast, 

metaheuristic algorithms offer a robust alternative by 

employing iterative optimization strategies inspired by natural 

or social phenomena. These algorithms do not guarantee a 

globally optimal solution but are designed to explore and 

exploit the search space efficiently, leading to near-optimal 

solutions within a reasonable computational time. Their ability 

to balance exploration (diversely searching the solution space) 

and exploitation (refining promising solutions) makes them 

particularly suitable for FS in dynamic and high-dimensional 

IoT environments. 

Genetic Algorithm (GA): One of the core algorithms 

employed is the GA, which draws inspiration from Darwinian 

evolutionary principles, including natural selection and 

genetic inheritance. In GA, candidate solutions (individuals) 

are encoded as chromosomes, forming a population that 

evolves through generations via biologically inspired 

operations: selection, crossover, and mutation. The selection 

process ensures that individuals with higher fitness—typically 

evaluated by a classification accuracy function—have a 

greater likelihood of being selected for reproduction. This 

encourages the propagation of superior solutions. Crossover 

combines parts of two parent solutions to produce offspring 

with mixed characteristics, increasing diversity within the 

population. Mutation introduces random modifications to 

individuals, thereby maintaining genetic diversity and 

avoiding premature convergence to suboptimal solutions. 

Formally, if we define a population 𝑃 = {𝑥1, 𝑥2, … , 𝑥𝑛} where 

each 𝑑𝑥𝑖 ∈ {0,1}, d represents a binary string indicating the 

selection of features, the objective is to find a subset 𝑥∗ that 

minimizes a fitness function such as 𝑓(𝑥)  =  α ⋅ 𝐸(𝑥)  +  β ⋅
|𝑥|, where E(x) is the classification error of the model trained 

on the selected features, ∣x∣ denotes the number of selected 

features, and α,β are weighting parameters.  

Harris Hawks Optimization (HHO): Another potent 

metaheuristic in our framework is HHO, inspired by the 

cooperative predation strategies of Harris hawks. HHO 

simulates two distinct behavioral phases: exploration and 

exploitation. During exploration, hawks use diverse 

movement strategies—ranging from random to guided 
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searches—to identify promising areas in the feature space. 

When prey (a good solution) is detected, the hawks switch to 

exploitation, executing soft or hard besiege strategies that 

model cooperative attack behavior, gradually refining their 

positions to converge on the optimal solution. The position 

update equation in HHO is influenced by the prey’s energy 

level and escape probability, thereby guiding the hawks’ 

aggressiveness and convergence pattern. 

Dragonfly Algorithm (DA): In parallel, the DA replicates 

the dynamic swarming behavior of dragonflies by modeling 

five interaction forces: separation, alignment, cohesion, 

attraction to food, and distraction from enemies. These are 

used to iteratively update the positions of candidate solutions 

(dragonflies) in the feature space. Where 𝑋𝑖  denote the

position of dragonfly iii, then its movement is driven by a step 

vector ΔXi computed from these five factors. This collective 

behavior ensures that DA maintains balance between 

intensifying promising areas and diversifying the search—key 

to locating optimal feature subsets for complex intrusion 

detection tasks.  

Grey Wolf Optimization (GWO): Mimics the leadership 

hierarchy and hunting tactics of grey wolves, where the alpha 

(α), beta (β), and delta (δ) wolves lead the search, and omega 

(ω) wolves follow. The position of each wolf (representing a 

feature subset) is updated according to the positions of the 

leading wolves, enabling the swarm to encircle the prey (i.e., 

the optimal solution) progressively. This is expressed as 

𝑋(𝑡 + 1) =
𝑋α+𝑋β+𝑋δ

3
, where 𝑋α, 𝑋β, 𝑋δ  are the top three

positions. The use of adaptive coefficient vectors ensures a 

gradual transition from exploration to exploitation.  

Particle Swarm Optimization (PSO): PSO is deployed to 

emulate the social behavior of birds flocking or fish schooling. 

In PSO, each particle represents a candidate solution and 

adjusts its position and velocity based on personal and global 

best experiences. The velocity update equation is given 

by: 𝑣𝑖
𝑡+1 = ω𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝best,𝑖 − 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝑔best − 𝑥𝑖

𝑡),  and

the position update is 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1  , where ω is the

inertia weight, 𝑐1, 𝑐2 are cognitive and social coefficients, and

𝑟1, 𝑟2  are random factors. This learning mechanism allows

PSO to effectively balance between exploring new solutions 

and exploiting known good solutions. The adaptability of PSO 

to changing feature space dynamics makes it particularly 

effective for evolving IoT datasets.  

The use of these five metaheuristic algorithms in the FS step 

of our approach allows us to effectively navigate the high-

dimensional search space and pinpoint the most critical 

features for intrusion detection in IoT networks. Each 

algorithm brings distinct strengths: GA excels at maintaining 

diversity and avoiding local optima, HHO dynamically 

balances exploration and exploitation, DA simulates 

intelligent swarm behavior for efficient searching, GWO 

leverages hierarchical social structures to refine solutions, and 

PSO optimizes feature subsets through adaptive learning 

mechanisms. By integrating these diverse approaches, our 

method ensures comprehensive feature selection, improving 

both the accuracy and efficiency of IoT intrusion detection 

systems. 

D. Hybrid DL Model

During the modeling phase, we developed a hybrid CNN-

BiGRU-BiLSTM model designed to mitigate the challenges of 

intrusion detection in IoT networks. The CNNs, which are 

crucial during the model’s early stage of feature extraction, are 

specifically suitable for processing sequential/series data such 

as time-series data because the data from the sensors are 

sequences, and hence they are appropriate for analyzing the 

network traffic patterns in IoT. Our CNN had various layers, 

which included the convolutional layer with 64 filters and a 

kernel size of 3. After the convolutional layer is a ReLU 

activation function, which causes non-linearity, and our model 

was then subjected to max-pooling having a pool size of 2 

which downsamples the extracted features to reduce 

computational cost. Our model also had a dropout layer with 

0.2, which is then trained by randomly turning off or 

deactivating neurons. 

After the CNN layers, we add Bi-directional Gated 

Recurrent Units (BiGRU) and Bi-directional Long Short Term 

Memory (BiLSTM) layers capture the temporal pattern in the 

sequential data along with context information. BiGRU and 

BiLSTM are the best way to approach any time series data 

primarily because they capture long-term dependencies and 

enable handling bidirectionally sequential data. BiGRU 

includes 64 units along with hyperbolic tangent (tanh) as an 

activation function and then include one more dropout layer 

for model regularization. Then we introduce the BiLSTM 

layer with 32 units and hyperbolic tangent as an activation 

function that will enable the model to learn complex patterns 

of temporal in the sequence of data. Finally, to complete the 

architecture, a fully connected dense layer with 9 output units 

and a softmax activation function is added to do the multiclass 

classification of intrusion detection labels. Here, the model is 

compiled using the Adam optimizer with a learning rate of 

0.001 and binary cross- entropy loss function and the 

evaluation metric being an accuracy. Early stopping with a 

patience of 20 epochs is implemented as a callback in order to 

stop overfitting and recover the best weight using the 

validation loss. In this paper, we conducted a comparative 

study; the performance of the hybrid model is assessed by 

incorporating different metaheuristic FS techniques. Overall, 

the input data fed into the model was varied in terms of the 

selected features using individual metaheuristic methods. 

Therefore, variation was obtained via the model’s 

performance to determine the significance of FS on the 

intrusion detection system using GA Optimization, HHO, 

Dragonfly Optimization, Grey Wolf Optimization, and PSO. 

As a result, this process enables us to evaluate the reliability 

and generalization performance of the hybrid CNN-BiGRU-

BiLSTM model under various feature subsets generated by 

their respective metaheuristic algorithms. The adaptive feature 

selection technique is thus suitable for the real-world 

environment of the IoT system. 

E. Evaluation Measures

In our paper, we utilize several evaluation measures to

assess the performance of our proposed intrusion detection 

system in IoT networks. These measures include the 

Confusion Matrix, accuracy, precision, recall, and F1-score. 

• Confusion Matrix: It is a tabular representation of the

model predictions against the actual labels of the data.

The confusion matrix consists of four quadrants: True

positives (TP), false positives (FP), true negatives (TN),

and false negatives (FN), which help evaluate the

model's performance across different classes. Other

evaluation metrics are calculated based on these values.

• Accuracy: This metric measures the overall correctness

of the predictions made by the model. It is defined as

the ratio of the number of correct predictions to the total

number of predictions:
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Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(2) 

• Precision: Precision measures the proportion of true

positive predictions out of all predicted positive cases.

It quantifies the model's ability to avoid false alarms:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3) 

• Recall (Sensitivity or True Positive Rate): Recall

represents the model's ability to correctly identify all

actual positive instances. It is calculated as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4) 

• F1-score: The F1-score is the harmonic mean of

precision and recall, balancing both false positives and

false negatives. It is expressed as:

𝐹1-score = 2 ×
Precision × Recall

Precision + Recall
(5) 

Together, these evaluation measures provide a 

comprehensive assessment of the model’s performance, 

considering its ability to make accurate predictions while 

minimizing false alarms and missed detections. These metrics 

allow us to understand how well the designed intrusion 

detection system identifies and neutralizes cyber threats 

targeting IoT networks. 

4. RESULTS AND DISCUSSION

4.1 Results of hybrid DL with optimal features of GA 

Applications of the hybrid DL model with optimal features 

selected by the GA report the following results. Timestamp 

and source IP address are the most general data points. They 

are followed by protocol attributes, transaction attributes, 

protocol level features, visit attributes, DNS query class, class 

label, SSL cipher, HTTPCAMID, and HTTP features 

including method, URI, version, status code, and user agent 

codes. This diversity in selected features shows that the GA 

has been able to efficiently identify a subset of data points that 

significantly contribute to the model performance. The 

training exercise over 10 epochs shown in Figure 4 

consistently shows an increased accuracy over the training and 

validation datasets on top of a significant reduction in loss. The 

model achieved an initial accuracy of slightly above 50% of 

the training dataset, after which it rapidly learns and rises to 

over 94% by the fifth epoch. Validation accuracy, which is 

crucial to assess the model’s generalizability, also improves 

consistently, starting from approximately 71% and ending at 

around 97%. Notably, the validation loss decreases sharply 

and remains low, suggesting that the model is not overfitting 

to the training data (Figure 4). The final test accuracy of 

97.71% is particularly impressive, showcasing the model’s 

capability to generalize well to unseen data. The convergence 

of the training and validation loss and accuracy curves 

indicates that the model is well-tuned and the chosen features 

are likely providing a good representation of the underlying 

data patterns necessary for intrusion detection. The training 

and validation graphs suggest a well-fitting model: the training 

loss decreases smoothly, avoiding plateaus, and the validation 

loss follows closely without significant divergences that 

would indicate overfitting. Similarly, the training and 

validation accuracy curves converge nicely, with the 

validation accuracy reaching a slightly higher value than the 

training accuracy at the end, which sometimes happens when 

the model learns general patterns that perform even better on 

the validation set. 

The confusion matrix in Figure 5 for the hybrid DL model 

with optimal features selected by the GA provides detailed 

insights into the model’s performance across different classes. 

Each cell in the matrix represents the number of samples from 

the predicted class (horizontal axis) against the actual. 

Figure 4. Training process of hybrid DL with optimal features of GA 

The diagonal cells, which indicate correct predictions, are 

predominantly darker, suggesting a high number of true 

positives for most classes. Looking at the specific numbers, we 

can see that for class 0 (presumably ’normal’ traffic or another 

major class), the model correctly predicted 2050 instances, 

which indicates a strong performance for this class with very 

few instances being misclassified. Similar observations can be 

made for classes 1 through 8, with class 1 having 1908 true 

positives, and class 8 having 1903 true positives. There are, 

however, some off-diagonal cells with noticeable figures 

indicating misclassifications. For example, class 2 has been 

confused with class 4, 5, and 8 (81, 15 instances respectively), 

which could indicate similarities in the patterns of these 

specific classes that the model finds challenging to distinguish. 

1032



This pattern is also visible with class 4, where there are 18 

instances that were predicted as class 8. Despite these few 

areas of confusion, the overwhelming majority of predictions 

lie on the diagonal, suggesting that the model is performing 

well. It is also notable that the misclassifications are not 

heavily skewed towards a single wrong prediction, which 

would have indicated a systematic bias. Instead, the spread of 

misclassifications across different classes suggests that the 

model might be struggling with specific features or similarities 

between certain classes. 

Figure 5. Confusion matrix of hybrid DL with optimal 

features of GA class (vertical axis) 

The classification report in Figure 6 for the hybrid DL 

model with features selected by the GA demonstrates 

outstanding performance across all metrics—precision, recall, 

and F1-score—for the various classes. These metrics are well 

balanced, with most classes achieving scores above 0.95, an 

indication of the model’s ability to accurately identify and 

classify different types of network traffic. Notably, class 0 has 

achieved perfect precision and recall, leading to an F1-score 

of 1.00. This indicates that for this class, every instance that 

the model predicted was correct (precision), and it managed to 

identify all instances of this class within the test set (recall). 

Other classes also exhibit high scores, with classes 6 and 7 

achieving a recall of 1.00, which means all instances of these 

classes were correctly identified, although they were not all 

predicted perfectly (as seen from the precision score). The F1-

score, which is the harmonic mean of precision and recall, is a 

crucial metric as it considers both the precision and the recall 

to compute the score. It is particularly useful when the class 

distribution is uneven. High F1-scores across all classes, as 

seen in this report, indicate a balanced detection capability of 

the model. The support column, indicating the number of true 

instances for each class in the dataset, confirms that the model 

was evaluated on a significant number of instances across 

classes, adding validity to the performance metrics. At the 

bottom of the report, the macro average and weighted average 

both show equal excellence, with scores of 0.98 across 

precision, recall, and F1-score. The macro average calculates 

the metric independently for each class and then takes the 

average (hence treating all classes equally), while the weighted 

average takes into account the support for each class. This 

suggests that the model’s performance is consistently high 

across classes with varying numbers of instances. 

Figure 6. Classification report of hybrid DL with optimal 

features of GA 

4.2 Results of hybrid DL with optimal features of HHO 

The hybrid DL model utilizing HHO for FS exhibits an 

impressive trajectory of learning as evidenced by the training 

and validation curves. Starting with an initial accuracy of 

52.2% on the training data, the model quickly ramps up to 

96.2% by the 10th epoch, showcasing its rapid learning 

capability. This significant improvement is mirrored in the 

validation accuracy, which starts at a promising 77.05% and 

concludes at an impressive 97.72% (Figure 7). The loss curves 

further underscore the model’s efficiency, with both training 

and validation loss showing a steep decline, indicating the 

model’s improving ability to minimize error over time. 

There’s a notable gap between the training and validation loss, 

which typically suggests the model is learning well without 

over-fitting, as the validation loss remains lower than the 

training loss throughout the process. By the final epoch, the 

model achieves a validation accuracy that nearly matches the 

training accuracy, an ideal outcome demonstrating that the 

model is generalizing well and not merely memorizing the 

training data. The consistent improvement in accuracy and 

decrease in loss over successive epochs suggests that the HHO 

has effectively selected features that contribute to a robust 

model capable of high precision. The ultimate accuracy 

achieved by the model of 97.72% on the validation set is 

indicative of a highly effective model that is well-suited for 

accurate predictions in practical applications. The smooth and 

converging learning curves without erratic shifts or plateaus 

suggest that the model training is stable and the features 

selected are providing the necessary discriminative 

information for the model to learn effectively. The hybrid DL 

model utilizing HHO for FS exhibits an impressive trajectory 

of learning as evidenced by the training and validation curves. 

Starting with an initial accuracy of 52.2% on the training data, 

the model quickly ramps up to 96.2% by the 10th epoch, 

showcasing its rapid learning capability. This significant 

improvement is mirrored in the validation accuracy, which 

starts at a promising 77.05% and concludes at an impressive 

97.72%. The loss curves further underscore the model’s 

efficiency, with both training and validation loss showing a 

steep decline, indicating the model’s improving ability to 

minimize error over time. There’s a notable gap between the 

training and validation loss, which typically suggests the 

model is learning well without overfitting, as the validation 

loss remains lower than the training loss throughout the 

process. By the final epoch, the model achieves a validation 

accuracy that nearly matches the training accuracy, an ideal 
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outcome demonstrating that the model is generalizing well and 

not merely memorizing the training data. The consistent 

improvement in accuracy and decrease in loss over successive 

epochs suggests that the HHO has effectively selected features 

that contribute to a robust model capable of high precision. 

The ultimate accuracy achieved by the model of 97.72% on 

the validation set is indicative of a highly effective model that 

is well-suited for accurate predictions in practical applications. 

The smooth and converging learning curves without erratic 

shifts or plateaus suggest that the model training is stable and 

the features selected are providing the necessary 

discriminative information for the model to learn effectively. 

Figure 7. Training process of hybrid DL with optimal features of HHO 

Figure 8. Confusion matrix of hybrid DL with optimal 

features of HHO 

The confusion matrix in Figure 8 for the hybrid DL model, 

which utilizes HHO for FS, illustrates the model’s 

classification performance across various classes. The primary 

diagonal, where the true labels match the predicted labels, is 

predominantly populated with high values, indicating a 

substantial number of correct predictions for each class. For 

instance, class 0 and class 3 have the highest number of true 

positives with 2050 and 1975 correct classifications 

respectively, pointing towards a strong predictive capability of 

the model for these classes. Notably, class 1 shows a certain 

degree of misclassification with other classes, primarily with 

class 2, where there are 85 instances classified incorrectly. 

Similarly, class 4 has a relatively high number of 

misclassifications, with 44 instances mistaken as class 0 and 

31 as class 3. The misclassification patterns suggest that 

certain features or patterns within these classes share 

similarities that the model occasionally confuses. Despite 

these areas where the model’s performance could be improved, 

the overall high values along the matrix’s diagonal indicate 

that the HHO has done an effective job in FS, enabling the 

model to achieve accurate classifications in most cases. The 

few off-diagonal numbers, which represent errors, are 

relatively low compared to the true positive rates, suggesting 

that these errors are exceptions rather than the rule. The 

presence of some misclassification across almost all classes 

also indicates that while the model is generally robust, there is 

room for fine-tuning, especially in distinguishing between the 

more nuanced differences between certain classes. 

The classification report for the hybrid DL model with 

optimal features selected through HHO showcases a stellar 

performance across all classes. Precision, recall, and F1-scores 

are all consistently high, with most classes achieving scores 

close to or at 0.98, reflecting a well-tuned balance between 

accuracy and completeness in the model’s predictions. Class 0 

stands out with a perfect recall of 1.00 and an impressive F1-

score of 0.98, indicating that every instance of this class was 

correctly identified with no false negatives. The precision for 

class 6 is noteworthy as well, scoring a perfect 1.00; thus, 

every prediction made by the model for this class was correct. 

This suggests that the features selected for these classes 

provide a very clear signal that the model can confidently learn 

from. The F1-score, a crucial measure of a test’s accuracy, 

considers both the precision and the recall of the test to 

compute the score. The consistently high F1-scores seen here 

suggest that the model has a balanced classification 

performance and is equally adept at precision and recall. Such 

balance is essential in scenarios like intrusion detection, where 

the cost of false negatives and false positives are both high. 

The macro and weighted averages of precision, recall, and F1-

score all stand at 0.98, underlining the model’s robust 

performance across various class sizes. The macro average 

treats all classes equally, while the weighted average considers 

the support for each class, which is the number of actual 

occurrences of the class in the dataset. High values in both 

averages reveal that the model’s predictive power is not only 

good on average but also when weighted by the prevalence of 

each class, a testament to the model’s generalizability. 
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4.3 Results of hybrid DL with optimal features of DA 

 

The results obtained from the hybrid DL model, where 

optimal features were determined through the DA, show an 

impressive performance trajectory. The training began with an 

accuracy of approximately 52.86%, which rapidly increased to 

96.66% by the end of the 10th epoch. This steep increase in 

accuracy indicates that the model effectively learned from the 

features selected by the DA. The validation accuracy also 

shows a promising trend, starting at 78.16% and rising to 

97.85% by the last epoch. Such an increase is indicative of a 

model that not only fits the training data well but also 

generalizes effectively to new, unseen data. This high 

validation accuracy is crucial for the practical application of 

the model, suggesting it will perform reliably when deployed 

in real-world scenarios (Figure 9). The loss curves for both 

training and validation descend sharply and converge, 

signifying a good fit of the model. The validation loss 

decreases to a lower level than the training loss and remains 

below it throughout the training process. This behavior is 

typically indicative of a model that is not overfitting and is 

generalizing well to the validation dataset. With a final 

validation accuracy of 97.85%, the model demonstrates high 

predictive performance, suggesting that the features selected 

through the DA are highly informative and contribute 

effectively to the model’s ability to discriminate between 

classes accurately. The consistent improvement in 

performance over the epochs and the final high accuracy mark 

the success of the model and the potential utility of the DA in 

FS for complex tasks like the one at hand. 

 

 
 

Figure 9. Training process of hybrid DL with optimal features of DA 

 

 

 
 

Figure 10. Confusion matrix of hybrid DL with optimal 

features of DA 

 

The confusion matrix in Figure 10 for the hybrid DL model 

with features selected by the DA illustrates the model’s 

classification performance for various categories. A 

predominant number of predictions lie along the diagonal, 

which represents accurate classification for each category. 

Notably, class 0 shows an exemplary performance with 2050 

instances correctly identified, indicating the model’s high 

sensitivity and specificity for this category. However, there are 

some instances of misclassification visible in the matrix. For 

example, class 1 has 95 instances that are incorrectly classified 

as class 2, and class 4 has 59 instances that are incorrectly 

predicted as class 0. Similarly, there’s a notable number of 

instances where class 4 is misclassified as class 8, with 35 

instances misplaced. Despite these, the overall darker shades 

along the diagonal compared to the lighter shades in the off-

diagonal cells suggest that misclassifications are relatively low 

in comparison to the correct predictions. This indicates that the 

DA has successfully identified a set of features that allows the 

model to make robust predictions across most classes. These 

results indicate a well-performing model, albeit with room for 

improvement in distinguishing between certain classes where 

the feature overlap may cause confusion. Optimizing the 

model further could potentially reduce these instances of 

misclassification and improve the model’s overall accuracy. 

The classification report for the hybrid DL model that used 

the DA for FS shows excellent results, with high precision, 

recall, and F1-scores for all classes. The model achieved 

perfect scores of 1.00 across all three metrics for class 0, which 

indicates that every instance was correctly identified, with no 

false positives or false negatives. Other classes also performed 

very well, with classes 2, 5, and 6 notably achieving very high 

scores, particularly in precision and recall. This demonstrates 

that the model was quite adept at correctly predicting these 

classes and that the DA selected features that effectively 

characterize and distinguish these data points. The macro 

average and weighted average scores of 0.98 across precision, 

recall, and F1-score metrics are particularly telling. These 

averages are high and consistent, suggesting that the model’s 
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performance is uniformly strong across all classes, regardless 

of their size (support). This is essential for ensuring that the 

model’s performance is not skewed by classes with more data 

points. 

4.4 Results of hybrid DL with optimal features of GWO 

The hybrid DL model, enhanced with optimal features 

selected via the GWO, displays a strong learning curve as 

evidenced by the training and validation charts. The training 

loss shows a steady and sharp decrease from the initial epoch 

and levels off, which is mirrored in the validation loss that 

starts from a high point and descends to converge closely with 

the training loss. This pattern of loss reduction is indicative of 

the model’s increasing accuracy in making predictions as it 

learns from the training data. Accuracy metrics paint a 

similarly positive picture, with training accuracy beginning at 

54.26% and achieving a significant climb to 96.64% by the 

final epoch. The validation accuracy, starting at 76.61%, 

follows an upward trajectory, culminating at an impressive 

97.86%. This final figure speaks volumes about the model’s 

ability to generalize well to unseen data, a critical aspect for 

real-world application (Figure 11). The convergence of the 

training and validation accuracy, alongside a consistent 

decrease in loss without any signs of divergence, suggests the 

model is neither overfitting nor underfitting. It indicates the 

optimal features selected by the GWO are well-fitted for the 

model, providing the necessary information for it to 

understand and predict the target classes accurately. With an 

ending accuracy of 97.86%, the model shows that it’s 

equipped to perform with high reliability and precision, 

making it a promising tool for tasks where accurate 

classification is essential. The results affirm the efficacy of the 

GWO in identifying the most informative features to feed into 

a hybrid DL model. 

Figure 11. Training process of hybrid DL with optimal features of GWO 

Figure 12. Confusion matrix of hybrid DL with optimal 

features of GWO 

The confusion matrix in Figure 12 for the hybrid DL model 

using features selected by the GWO reveals a high degree of 

accurate predictions, as indicated by the large numbers on the 

matrix’s diagonal, where the predicted classes match the true 

classes. The model excels particularly in classifying class 0 

and class 2 with no misclassifications into other classes, 

demonstrating high precision and recall. 

Figure 13. Classification report of hybrid DL with optimal 

features of GWO 

There are, however, some instances of confusion between 

certain classes. For example, class 1 has 68 instances 

mistakenly classified as class 2, and class 4 shows some 

misclassification with class 8, with 23 instances incorrectly 

identified. Additionally, class 3 appears to be mistaken for 

class 4 and vice versa, suggesting some feature overlap 

between these classes that the model is sensitive to. Despite 

these minor areas of confusion, the general trend of the matrix 
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shows that the model, bolstered by the GWO, is robust in its 

predictive capabilities. The darker shades along the diagonal 

compared to the lighter shades off-diagonal underscore that 

the correct classifications vastly outnumber the incorrect ones. 

The instances of misclassification also provide insight into 

how the model might be improved. Understanding the feature 

overlap that leads to confusion between classes such as 1 and 

2, or 3 and 4, can help in further tuning the model or in 

selecting features that might better distinguish between these 

classes. 

The classification report in Figure 13 for the hybrid DL 

model using features selected by the GWO displays 

outstanding performance metrics across all classes. The 

precision, recall, and F1-score for class 0 are exemplary, each 

achieving a perfect score of 1.00, which indicates that the 

model was able to identify and classify every instance of this 

class with absolute accuracy. 

The other classes also demonstrate high precision and recall, 

with scores mostly above 0.95. The F1-score, which balances 

precision and recall, reflects a consistently high level of 

accuracy across the different classes, indicating that the model 

is not only precise but also reliable in its classifications. 

Notably, class 6 has achieved a perfect recall of 1.00, 

suggesting that the model captured all instances of this class 

without any false negatives. 

The macro average and weighted average are also 

impressive, both at 0.98 for precision, recall, and F1-score. 

These averages suggest that the model performs exceptionally 

well across all classes, not disproportionately favoring any 

single class over others, regardless of the number of instances 

(support) in each class. This is indicative of a well-

generalizing model that is accurate and equitable in its 

predictive ability. 

4.5 Results of hybrid DL with optimal features of PSW 

The hybrid DL model employing optimal features derived 

from PSO demonstrates a successful learning pattern, as 

depicted in Figure 14. Initially, the model started with an 

accuracy of 50.46%, and through subsequent epochs, it has 

shown remarkable improvement, finishing with an accuracy of 

97.08% on the training set. 

Validation accuracy commences at a promising 76.63% and 

climbs consistently across epochs, ending at an impressive 

98.11%, which speaks volumes about the model’s 

generalizability and its aptness for application beyond the 

training data. This validation accuracy is crucial as it suggests 

that the model can perform exceptionally well on new, unseen 

data. 

Figure 14. Training process of hybrid DL with optimal features of PSO 

The loss curves further endorse the model’s capability; both 

training and validation loss present a steep decline, converging 

to indicate the model’s growing efficiency at minimizing 

prediction error. The validation loss consistently remains 

below the training loss, suggesting that the model is well-

calibrated and not overfitting the data it was trained on. 

Such training dynamics, accompanied by a high final 

validation accuracy, are indicative of the effectiveness of PSO 

in selecting salient features that contribute significantly to the 

learning process. The results are encouraging and suggest that 

the model, with its PSO-selected features, is capable of 

delivering precise and reliable predictions, which is vital for 

tasks that require a high degree of accuracy. 

The confusion matrix in Figure 15 from the hybrid DL 

model with optimal features selected by PSO presents a largely 

successful prediction landscape. For class 0, the model has 

correctly predicted 2052 instances, showing a strong 

capability to accurately identify this class. This trend of high 

true positives is evident across most classes, which is a 

positive indication of the model’s overall classification 

accuracy. 

Nevertheless, some classes have noticeable 

misclassifications. For instance, class 1 has 84 instances 

incorrectly classified as class 2, and class 3 has several 

misclassifications spread across classes 4 and 8. These errors 

suggest that there may be some feature similarities between 

these classes that are leading the model to confusion. 

Class 4 also exhibits confusion with class 8, with a non-

negligible number of instances (21) being misclassified. 

This again may hint at overlapping feature characteristics or 

insufficiently distinct features between these classes, which 

could be an area for model improvement. 

The classification report in Figure 16 for the hybrid DL 

model with optimal features selected via PSO reveals out-

standing precision, recall, and F1-score across all classes. The 

model achieves perfect scores in class 0, demonstrating its 

exceptional ability to classify this class with absolute accuracy. 

High precision and recall are evident in the other classes as 

well, particularly class 2 and class 6, where recall reaches 0.99 

and precision is perfect at 1.00 for class 6. These results 
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suggest not only a high level of accuracy but also a strong 

consistency in the model’s performance, with class 3 being the 

only one where the recall drops slightly to 0.96, indicating a 

few instances were missed. The F1-scores, which are the 

harmonic mean of precision and recall, are near perfect for all 

classes, reflecting a balanced classification capability. The 

macro and weighted averages for precision, recall, and F1-

score stand impressively at 0.98, underlining the model’s 

robustness. These averages account for the performance across 

all classes, treating each class equally in the macro average and 

in proportion to their support (number of true instances) in the 

weighted average. This indicates that the model is not only 

accurate on average but performs well across classes of 

different sizes. 

Figure 15. Confusion matrix of hybrid DL with optimal 

features of PSO 

Figure 16. Classification report of hybrid DL with optimal 

features of PSO 

4.6 Discussion 

The comparative analysis of model performance using 

different optimization algorithms for FS reveals intriguing 

insights into the effectiveness of these techniques when 

applied to a hybrid DL model (Figure 17 and Table 1). The 

optimization algorithms in comparison are GA, HHO, DA, 

GWO, and PSO. Accuracy, as the most straightforward metric, 

shows PSO leading by a slight margin with 98.11%. This 

suggests that PSO is slightly better at navigating the search 

space and finding a set of features that allows the model to 

generalize well from training to unseen data. The other 

methods also demonstrate high accuracy, particularly GWO at 

97.86%, indicating that these techniques are almost as 

effective. In precision, which measures the correctness of 

positive predictions, PSO again outperforms the other 

algorithms with a score of 98.13%. This superiority, albeit 

marginal, suggests that PSO might be more consistent in FS 

that contributes to the model’s ability to correctly label 

positive instances. GWO closely follows, which implies its 

effectiveness in selecting features that result in fewer false 

positives. The recall comparison reveals that PSO and GWO 

achieve the same high score of 98.11%, indicating fewer false 

negatives and a strong ability to identify all relevant instances. 

Given that recall is a critical measure in scenarios where 

missing out on true positives is costly, the performance of PSO 

and GWO in this aspect is commendable. The F1-score, a 

harmonic mean of precision and recall, further corroborates 

the close performance of the algorithms, with PSO slightly 

ahead at 98.11%. This score reflects a balanced classification 

capability, which is crucial in practical applications where 

both precision and recall are important. Across all metrics, the 

differences between the algorithms are narrow, suggesting that 

FS, regardless of the algorithm used, can lead to high-

performing models. However, the consistently slight edge of 

PSO in all metrics suggests that its approach to FS may offer 

the most balanced improvements overall. This nuanced 

analysis also implies that while the choice of algorithm can 

influence performance, the impact may not be substantial 

enough to be the sole determining factor in algorithm selection. 

Practitioners might also consider the computational efficiency, 

ease of implementation, and convergence behavior of these 

algorithms, especially in real-world applications where 

resources and time are limited. 

To assess the statistical significance of the observed 

differences in performance across various feature selection 

algorithms, we conducted a series of significance tests, 

including the paired t-test and Wilcoxon signed-rank test, on 

the evaluation metrics (accuracy, precision, recall, and F1-

score). These tests help determine whether the differences in 

performance between the feature selection methods are 

statistically significant or occur due to random variations. 

Based on our analysis, the Hybrid DL model with Particle 

Swarm Optimization (PSO)-selected features achieved the 

highest scores across all evaluation metrics, with an accuracy 

of 98.11% and an F1-score of 98.11%. This slight but 

consistent improvement over GA, HHO, DA, and GWO 

suggests that PSO is more effective in selecting the most 

relevant features for network intrusion detection.  

One potential explanation for PSO’s superior performance 

is its efficient balance between exploration and exploitation, 

allowing it to identify optimal feature subsets while avoiding 

local optima. In contrast, GA and HHO, while effective, may 

suffer from convergence issues, particularly in high-

dimensional spaces, which could lead to suboptimal feature 

selection. The relatively similar performance of GWO and DF 

suggests that both algorithms exhibit comparable search and 

selection behaviors, possibly due to their reliance on swarm 

intelligence principles. However, the slightly lower scores for 

GWO may indicate that its convergence speed or exploitation 

capabilities are not as refined as those of PSO.  

Furthermore, the statistical significance tests revealed that 

the performance differences between PSO and the other 

algorithms are significant at a 95% confidence level, 
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particularly in accuracy and F1-score. This reinforces the 

conclusion that PSO's feature selection mechanism contributes 

meaningfully to improving model performance. These 

findings highlight the importance of selecting an appropriate 

feature selection algorithm, as even minor improvements in 

evaluation metrics can significantly enhance the effectiveness 

of network intrusion detection systems. 

Figure 17. Performance metrics comparison 

Table 1. Performance comparison of hybrid DL models with different metaheuristic feature selection techniques 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Hybrid DL with Optimal Features of GA 97.71 97.73 97.71 97.71 

Hybrid DL with Optimal Features of HHO 97.72 97.73 97.72 97.72 

Hybrid DL with Optimal Features of DF 97.85 97.85 97.85 97.85 

Hybrid DL with Optimal Features of GWO 97.86 97.88 97.86 97.86 

Hybrid DL with Optimal Features of PSO 98.11 98.13 98.11 98.11 

4.7 Comparison results 

Our proposed model advances IoT intrusion detection 

through optimized feature selection and hybrid deep learning 

architecture. Unlike previous approaches that relied on 

XGBoost-based feature reduction [19] or Chi2 FS with 

SMOTE balancing [16], we employ metaheuristic algorithms 

that dynamically adapt to identify optimal features, achieving 

superior classification performance across all metrics. The 

model outperforms tree-based FS techniques [17] in 

preventing overfitting while maintaining computational 

efficiency, and surpasses hybrid wrapper approaches like 

CAT-S [18] in detection accuracy and predictive performance. 

By integrating metaheuristic feature selection with deep 

learning classifiers, our solution effectively reduces data 

dimensionality without compromising threat detection 

capability, as demonstrated by comprehensive experimental 

validation. 

5. CONCLUSION

Intrusion detection in IoT networks is a crucial challenge 

due to the increasing volume and complexity of cyber threats. 

The highly dynamic nature of IoT environments, characterized 

by heterogeneous devices and real-time data streams, 

necessitates robust and adaptive security mechanisms. 

However, existing intrusion detection systems often struggle 

with high computational overhead, poor scalability, and 

difficulties in real-time adaptation to emerging threats. 

Addressing these limitations, our research proposed a hybrid 

deep learning-based intrusion detection model that integrates 

Convolutional Neural Networks (CNN), Bidirectional Gated 

Recurrent Units (Bi-GRU), and Bidirectional Long Short-

Term Memory (Bi-LSTM), coupled with metaheuristic-based 

feature selection. 

The proposed model follows a systematic approach to 

improving IoT security. First, the ToN-IoT dataset is 
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preprocessed using class balancing, feature encoding, and 

normalization techniques. Next, feature selection is optimized 

using GA, HHO, DA, GWO, and PSO. Among these, PSO 

demonstrated the best performance in selecting the most 

relevant features. The refined feature set is then fed into the 

hybrid CNN-BiGRU-BiLSTM model, leveraging both spatial 

and temporal characteristics for enhanced anomaly detection. 

The final model is evaluated using standard classification 

metrics such as accuracy, precision, recall, and F1-score. 

Experimental results confirmed the effectiveness of the 

proposed approach, with PSO achieving the highest accuracy 

of 98.11%, outperforming other metaheuristic algorithms. The 

hybrid deep learning model demonstrated strong predictive 

capabilities across various intrusion categories, with high 

recall and precision, ensuring minimal false positives and false 

negatives. These findings highlight the feasibility of 

integrating deep learning and metaheuristic optimization to 

improve the performance of intrusion detection systems in IoT 

environments. 

Despite these promising results, practical deployment poses 

several challenges. One critical issue is computational 

complexity. The deep learning model, particularly with 

recurrent layers, requires significant processing power, 

making real-time deployment on resource-constrained IoT 

devices challenging. To mitigate this, model pruning and 

quantization techniques can be explored to reduce 

computational overhead without significantly compromising 

accuracy. Additionally, edge computing architectures can be 

leveraged to distribute the processing load, ensuring real-time 

detection without overwhelming central servers. 

Another significant challenge is model updating and 

adaptability. As IoT threats continuously evolve, a static 

model may become obsolete over time. To address this, 

incremental learning and online training strategies should be 

incorporated, allowing the model to learn from new attack 

patterns dynamically. Furthermore, federated learning could 

be an effective approach to update the model across distributed 

IoT devices while preserving data privacy. 

Future work will focus on enhancing the scalability and 

real-time adaptability of the proposed model. Exploring 

ensemble learning techniques to combine the strengths of 

multiple metaheuristic algorithms may further refine feature 

selection and improve detection robustness. Additionally, 

adversarial machine learning techniques will be investigated 

to strengthen the model against sophisticated evasion attacks. 

Finally, real-world deployment scenarios, such as edge-based 

intrusion detection systems, will be explored to validate the 

model's practical applicability. 
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